-
Notifications
You must be signed in to change notification settings - Fork 19
/
KMSample.R
47 lines (36 loc) · 1.54 KB
/
KMSample.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
library(sp)
library(fields)
library(ggplot2)
#Read data with coordinates and other attributes of fine grid (discretization of study area)
load(file="Data/HunterValley4Practicals.RData")
summary(grdHunterValley)
cor(grdHunterValley[,c(3,4,5,6,7)])
#Set number of sampling locations to be selected
n<-20
#Compute clusters
set.seed(314)
myClusters <- kmeans(scale(grdHunterValley[,c(3,4,5,6,7)]), centers=n, iter.max=100,nstart=10)
grdHunterValley$clusters <- myClusters$cluster
#Select locations closest to the centers of the clusters
rdist.out <- rdist(x1=myClusters$centers,x2=scale(grdHunterValley[,c(3,4,5,6,7)]))
ids.mindist <- apply(rdist.out,MARGIN=1,which.min)
mySample <- grdHunterValley[ids.mindist,]
#Plot clusters and sampling points
pdf(file = "KMSample_HunterValley.pdf", width = 7, height = 7)
ggplot(grdHunterValley) +
geom_tile(mapping = aes(x = Easting, y = Northing, fill = factor(clusters))) +
scale_fill_discrete(name = "cluster") +
geom_point(data=mySample,mapping=aes(x=Easting,y=Northing),size=2) +
scale_x_continuous(name = "") +
scale_y_continuous(name = "") +
coord_fixed() +
theme(legend.position="none")
dev.off()
pdf(file = "Scatterplot_KMSample_HunterValley.pdf", width = 7, height = 7)
ggplot(grdHunterValley) +
geom_point(mapping=aes(y=elevation_m,x=cti,colour=factor(clusters))) +
geom_point(data=mySample,mapping=aes(y=elevation_m,x=cti),size=2) +
scale_y_continuous(name = "Elevation") +
scale_x_continuous(name = "CTI") +
theme(legend.position="none")
dev.off()