-
Notifications
You must be signed in to change notification settings - Fork 19
/
ModelBasedGridSpacingKED_MeanKV.R
115 lines (86 loc) · 4.09 KB
/
ModelBasedGridSpacingKED_MeanKV.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
library(gstat)
library(sp)
library(geoR)
library(ggplot2)
#Load data on soil organic carbon
load(file="Data/DataThreeWoredasEthiopia.RData")
#Load file with discretisation grid
load("Data/CovariatesThreeWoredasEthiopia.RData")
#Estimate variogram parameters by REML
#We assume that the mean of SOC is a linear combination of several covariates such as elevation (dem), enhanced vegetation index (evi), et cetera. To optimize the grid spacing we need the variogram of the residuals. Below this variogram is estimated by REML. Initial values are obtained by the parameters of the OLS residual variogram.
#Fit linear model, compute residuals, and compute experimental variogram of residuals
vg <- variogram(SOC~dem+rfl_NIR+rfl_red+lst, data = priordataEthiopia, cutoff=20)
vgfitOLS <- fit.variogram(vg, model = vgm(model = "Sph", psill = 0.2, range = 6, nugget = 0.5))
plot(vg,vgfitOLS)
#Fit model by REML
dGeoR <- as.geodata(
obj = as.data.frame(priordataEthiopia),
header=TRUE,
coords.col=13:14,
data.col=1,
data.names=NULL,
covar.col=c(3,6,9,10,11,13,14)
)
lmSOC_REML<- likfit(geodata = dGeoR, trend=~dem+rfl_NIR+rfl_red+lst,cov.model="spherical", ini.cov.pars=c(vgfitOLS[2,2], vgfitOLS[2,3]),nugget=vgfitOLS[1,2], lik.method="REML")
summary(lmSOC_REML)
#Select a simple random sample of size 1000 for evaluating the square grids. Add a small number to the x-coordinates and y-coordinates by drawing from a uniform distribution with lower and upper limit equal to -cellsize/2 and +cellsize/2, respectively.
set.seed(314)
ids<-sample.int(nrow(grdEthiopia),size=1000)
mysample<-grdEthiopia[ids,]
#Shift the randomly selected grid points to random points within the cells (the cellsize is 1 km x 1 km)
mysample$s1 <- jitter(mysample$s1,0.5)
mysample$s2 <- jitter(mysample$s2,0.5)
coordinates(mysample) <- ~s1+s2
#Set variogram parameters to those estimated by REML
vgfitREML <- vgfitOLS
vgfitREML[1,2] <- lmSOC_REML$nugget
vgfitREML[2,2] <- lmSOC_REML$sigmasq
vgfitREML[2,3] <- lmSOC_REML$phi
#Specify grid spacings
spacing<-seq(from=5,to=12,by=1)
#Set number of times grid sampling of a given spacing is repeated
r<-10
coordinates(grdEthiopia) <- ~s1+s2
gridded(grdEthiopia)<-TRUE
MKV<-matrix(nrow=length(spacing),ncol=r)
for (i in 1:length(spacing)) {
for (j in 1:r) {
mygridxy<-spsample(x=grdEthiopia,cellsize=spacing[i],type="regular")
#add a dummy variable for interpolation
mygrid<-data.frame(s1=mygridxy$x1,s2=mygridxy$x2,dummy=1)
coordinates(mygrid)<-~s1+s2
mygrd<-data.frame(mygrid %over% grdEthiopia,mygrid)
coordinates(mygrd)<-~s1+s2
#Use gstat for KED predictions
predictions <- krige(
dummy ~ dem+rfl_NIR+rfl_red+lst,
mygrd,
newdata = mysample,
# model = vgfitREML,
model = vgfitOLS,
nmax = 100
)
MKV[i,j]<-mean(predictions$var1.var)
}
}
#Plot the mean kriging variance against the grid spacing.
MMKV<-apply(MKV,MARGIN=1,FUN=mean)
result<-data.frame(spacing,MKV,MMKV)
ggplot(data=result)+
geom_point(mapping=aes(x=spacing,y=MMKV),size=3)+
scale_x_continuous(name="Spacing (km)")+
scale_y_continuous(name="Mean Kriging Variance")
ggplot(data=result)+
geom_point(mapping=aes(x=spacing,y=X1),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X2),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X3),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X4),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X5),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X6),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X7),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X8),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X9),size=1,alpha=0.5)+
geom_point(mapping=aes(x=spacing,y=X10),size=1,alpha=0.5)+
scale_x_continuous(name="Spacing (km)")+
scale_y_continuous(name="Mean Kriging Variance")
write.csv(result,file="MKEDVvsGridspacing_Ethiopia.csv",row.names=F)