-
Notifications
You must be signed in to change notification settings - Fork 55
/
embeddings_data_models.py
244 lines (219 loc) · 10.1 KB
/
embeddings_data_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from sqlalchemy import Column, String, Float, DateTime, Integer, UniqueConstraint, ForeignKey, LargeBinary
from sqlalchemy.dialects.sqlite import JSON
from sqlalchemy.orm import declarative_base, relationship
from sqlalchemy.ext.declarative import declared_attr
from hashlib import sha3_256
from pydantic import BaseModel, field_validator
from typing import List, Optional, Union, Dict
from decouple import config
from sqlalchemy import event
from datetime import datetime
Base = declarative_base()
DEFAULT_MODEL_NAME = config("DEFAULT_MODEL_NAME", default="Meta-Llama-3-8B-Instruct.Q3_K_S", cast=str)
DEFAULT_EMBEDDING_MODEL_NAME = config("DEFAULT_EMBEDDING_MODEL_NAME", default="nomic-embed-text-v1.5.Q6_K", cast=str)
DEFAULT_MULTI_MODAL_MODEL_NAME = config("DEFAULT_MULTI_MODAL_MODEL_NAME", default="llava-llama-3-8b-v1_1-int4", cast=str)
DEFAULT_MAX_COMPLETION_TOKENS = config("DEFAULT_MAX_COMPLETION_TOKENS", default=100, cast=int)
DEFAULT_NUMBER_OF_COMPLETIONS_TO_GENERATE = config("DEFAULT_NUMBER_OF_COMPLETIONS_TO_GENERATE", default=4, cast=int)
DEFAULT_COMPLETION_TEMPERATURE = config("DEFAULT_COMPLETION_TEMPERATURE", default=0.7, cast=float)
DEFAULT_EMBEDDING_POOLING_METHOD = config("DEFAULT_EMBEDDING_POOLING_METHOD", default="mean", cast=str)
class SerializerMixin:
@declared_attr
def __tablename__(cls):
return cls.__name__.lower()
def as_dict(self):
return {c.key: getattr(self, c.key) for c in self.__table__.columns}
class TextEmbedding(Base, SerializerMixin):
__tablename__ = "embeddings"
id = Column(Integer, primary_key=True, index=True)
text = Column(String, index=True)
text_hash = Column(String, index=True)
embedding_pooling_method = Column(String, index=True)
embedding_hash = Column(String, index=True)
llm_model_name = Column(String, index=True)
corpus_identifier_string = Column(String, index=True)
embedding_json = Column(String)
ip_address = Column(String)
request_time = Column(DateTime)
response_time = Column(DateTime)
total_time = Column(Float)
document_file_hash = Column(String, ForeignKey('document_embeddings.document_file_hash'))
document = relationship("DocumentEmbedding", back_populates="embeddings", foreign_keys=[document_file_hash, corpus_identifier_string])
__table_args__ = (UniqueConstraint('embedding_hash', name='_embedding_hash_uc'),)
class DocumentEmbedding(Base):
__tablename__ = "document_embeddings"
id = Column(Integer, primary_key=True, index=True)
document_hash = Column(String, ForeignKey('documents.document_hash'))
filename = Column(String)
mimetype = Column(String)
document_file_hash = Column(String, index=True)
embedding_pooling_method = Column(String, index=True)
llm_model_name = Column(String, index=True)
corpus_identifier_string = Column(String, index=True)
file_data = Column(LargeBinary) # To store the original file
sentences = Column(String)
document_embedding_results_json_compressed_binary = Column(LargeBinary) # To store the embedding results JSON
ip_address = Column(String)
request_time = Column(DateTime)
response_time = Column(DateTime)
total_time = Column(Float)
embeddings = relationship("TextEmbedding", back_populates="document", foreign_keys=[TextEmbedding.document_file_hash])
__table_args__ = (UniqueConstraint('document_embedding_results_json_compressed_binary', name='_document_embedding_results_json_compressed_binary_uc'),)
document = relationship("Document", back_populates="document_embeddings", foreign_keys=[document_hash])
class Document(Base):
__tablename__ = "documents"
id = Column(Integer, primary_key=True, index=True)
llm_model_name = Column(String, index=True)
corpus_identifier_string = Column(String, index=True)
document_hash = Column(String, index=True)
document_embeddings = relationship("DocumentEmbedding", back_populates="document", foreign_keys=[DocumentEmbedding.document_hash])
def update_hash(self): # Concatenate specific attributes from the document_embeddings relationship
hash_data = "".join([emb.filename + emb.mimetype for emb in self.document_embeddings])
self.document_hash = sha3_256(hash_data.encode('utf-8')).hexdigest()
@event.listens_for(Document.document_embeddings, 'append')
def update_document_hash_on_append(target, value, initiator):
target.update_hash()
@event.listens_for(Document.document_embeddings, 'remove')
def update_document_hash_on_remove(target, value, initiator):
target.update_hash()
# Request/Response models start here:
class EmbeddingRequest(BaseModel):
text: str = ""
llm_model_name: str = DEFAULT_EMBEDDING_MODEL_NAME
embedding_pooling_method: str = DEFAULT_EMBEDDING_POOLING_METHOD
corpus_identifier_string: str = ""
class SimilarityRequest(BaseModel):
text1: str = ""
text2: str = ""
llm_model_name: str = DEFAULT_EMBEDDING_MODEL_NAME
embedding_pooling_method: str = DEFAULT_EMBEDDING_POOLING_METHOD
similarity_measure: str = "all"
@field_validator('similarity_measure')
def validate_similarity_measure(cls, value):
valid_measures = ["all", "spearman_rho", "kendall_tau", "approximate_distance_correlation", "jensen_shannon_dependency_measure", "hoeffding_d"]
if value.lower() not in valid_measures:
raise ValueError(f"Invalid similarity measure. Supported measures are: {', '.join(valid_measures)}")
return value.lower()
class SemanticSearchRequest(BaseModel):
query_text: str = ""
number_of_most_similar_strings_to_return: int = 10
llm_model_name: str = DEFAULT_EMBEDDING_MODEL_NAME
embedding_pooling_method: str = DEFAULT_EMBEDDING_POOLING_METHOD
corpus_identifier_string: str = ""
class SemanticSearchResponse(BaseModel):
query_text: str
corpus_identifier_string: str
embedding_pooling_method: str
results: List[dict] # List of similar strings and their similarity scores using cosine similarity with Faiss (in descending order)
class AdvancedSemanticSearchRequest(BaseModel):
query_text: str = ""
llm_model_name: str = DEFAULT_EMBEDDING_MODEL_NAME
embedding_pooling_method: str = DEFAULT_EMBEDDING_POOLING_METHOD
corpus_identifier_string: str = ""
similarity_filter_percentage: float = 0.01
number_of_most_similar_strings_to_return: int = 10
result_sorting_metric: str = "hoeffding_d"
@field_validator('result_sorting_metric')
def validate_similarity_measure(cls, value):
valid_measures = ["spearman_rho", "kendall_tau", "approximate_distance_correlation", "jensen_shannon_dependency_measure", "hoeffding_d"]
if value.lower() not in valid_measures:
raise ValueError(f"Invalid similarity measure. Supported measures are: {', '.join(valid_measures)}")
return value.lower()
class AdvancedSemanticSearchResponse(BaseModel):
query_text: str
corpus_identifier_string: str
embedding_pooling_method: str
results: List[Dict[str, Union[str, float, Dict[str, float]]]]
class EmbeddingResponse(BaseModel):
id: int
text: str
text_hash: str
embedding_pooling_method: str
embedding_hash: str
llm_model_name: str
corpus_identifier_string: str
embedding_json: str
ip_address: Optional[str]
request_time: datetime
response_time: datetime
total_time: float
document_file_hash: Optional[str]
embedding: List[float]
class SimilarityResponse(BaseModel):
text1: str
text2: str
similarity_measure: str
embedding_pooling_method: str
similarity_score: Union[float, Dict[str, float]] # Now can be either a float or a dictionary
embedding1: List[float]
embedding2: List[float]
class AllStringsResponse(BaseModel):
strings: List[str]
class AllDocumentsResponse(BaseModel):
documents: List[str]
class TextCompletionRequest(BaseModel):
input_prompt: str = ""
llm_model_name: str = DEFAULT_MODEL_NAME
temperature: float = DEFAULT_COMPLETION_TEMPERATURE
grammar_file_string: str = ""
number_of_tokens_to_generate: int = DEFAULT_MAX_COMPLETION_TOKENS
number_of_completions_to_generate: int = DEFAULT_NUMBER_OF_COMPLETIONS_TO_GENERATE
class TextCompletionResponse(BaseModel):
input_prompt: str
llm_model_name: str
grammar_file_string: str
number_of_tokens_to_generate: int
number_of_completions_to_generate: int
time_taken_in_seconds: float
generated_text: str
finish_reason: str
llm_model_usage_json: str
class ImageQuestionResponse(BaseModel):
question: str
llm_model_name: str
image_hash: str
time_taken_in_seconds: float
number_of_tokens_to_generate: int
number_of_completions_to_generate: int
time_taken_in_seconds: float
generated_text: str
finish_reason: str
llm_model_usage_json: str
class AudioTranscript(Base):
__tablename__ = "audio_transcripts"
audio_file_hash = Column(String, primary_key=True, index=True)
audio_file_name = Column(String, index=True)
audio_file_size_mb = Column(Float) # File size in MB
segments_json = Column(JSON) # Transcribed segments as JSON
combined_transcript_text = Column(String)
combined_transcript_text_list_of_metadata_dicts = Column(JSON)
info_json = Column(JSON) # Transcription info as JSON
ip_address = Column(String)
request_time = Column(DateTime)
response_time = Column(DateTime)
total_time = Column(Float)
corpus_identifier_string = Column(String, index=True)
class AudioTranscriptResponse(BaseModel):
audio_file_hash: str
audio_file_name: str
audio_file_size_mb: float
segments_json: List[dict]
combined_transcript_text: str
combined_transcript_text_list_of_metadata_dicts: List[dict]
info_json: dict
url_to_download_zip_file_of_embeddings: str
ip_address: str
request_time: datetime
response_time: datetime
total_time: float
url_to_download_zip_file_of_embeddings: str
llm_model_name: str
embedding_pooling_method: str
corpus_identifier_string: str
class ShowLogsIncrementalModel(BaseModel):
logs: str
last_position: int
class AddGrammarRequest(BaseModel):
bnf_grammar: str
grammar_file_name: str
class AddGrammarResponse(BaseModel):
valid_grammar_files: List[str]