这是一个Pythorch实现的论文: StarGAN VC:星型生成对抗网络下的非并行多对多语音转换.
转换后的语音示例位于samples和results_2019-06-10目录中
- Python 3.6+
- pytorch 1.0
- librosa
- pyworld
- tensorboardX
- scikit-learn
将vcc 2016数据集下载到当前目录。
python download.py
下载的zip文件解压到./data/vcc2016_training
和./data/evaluation_all
两个目录。
- 训练集: 在本文中,作者从目录
./data/vcc2016_training
选用四个说话人。所以我们将对应的文件夹(比如SF1,SF2,TM1,TM2)到./data/speakers
. - 测试集: 在本文中,作者从目录
./data/evaluation_all
选用四个说话人。所以我们将对应的文件夹(比如SF1,SF2,TM1,TM2)到./data/speakers_test
.
那么数据目录会变成这样:
data
├── speakers (训练集)
│ ├── SF1
│ ├── SF2
│ ├── TM1
│ └── TM2
├── speakers_test (测试集)
│ ├── SF1
│ ├── SF2
│ ├── TM1
│ └── TM2
├── vcc2016_training (vcc 2016训练集)
│ ├── ...
├── evaluation_all (vcc 2016评价集,作为测试集合)
│ ├── ...
从每个语音片段中提取特征(mcep、f0、ap)。这些特性存储为npy文件。我们还计算了每个说话人的统计特征。
python preprocess.py
这个预处理很可能花几分钟!
python main.py
python main.py --mode test --test_iters 200000 --src_speaker TM1 --trg_speaker "['TM1','SF1']"
注:我们的实现遵循了原论文的网络结构,而pytorch-StarGAN的VC代码使用StarGAN的网络。两者都有可以产生良好的音质。
原实现的网络结构是原论文的网络结构,但为了达到更好的转换效果,本次更新做了如下修改:
- 无训练问题的分类器改进
- 更新损失函数
- 将鉴别器激活函数修改为tanh(双曲正切函数)
如果你觉得这个回购是好的,请点星!
你的鼓励是我最大的动力!
This is a pytorch implementation of the paper: StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks.
The converted voice examples are in samples and results_2019-06-10 directory
- Python 3.6+
- pytorch 1.0
- librosa
- pyworld
- tensorboardX
- scikit-learn
Download the vcc 2016 dataset to the current directory
python download.py
The downloaded zip files are extracted to ./data/vcc2016_training
and ./data/evaluation_all
.
- training set: In the paper, the author choose four speakers from
./data/vcc2016_training
. So we move the corresponding folder(eg. SF1,SF2,TM1,TM2 ) to./data/speakers
. - testing set In the paper, the author choose four speakers from
./data/evaluation_all
. So we move the corresponding folder(eg. SF1,SF2,TM1,TM2 ) to./data/speakers_test
.
The data directory now looks like this:
data
├── speakers (training set)
│ ├── SF1
│ ├── SF2
│ ├── TM1
│ └── TM2
├── speakers_test (testing set)
│ ├── SF1
│ ├── SF2
│ ├── TM1
│ └── TM2
├── vcc2016_training (vcc 2016 training set)
│ ├── ...
├── evaluation_all (vcc 2016 evaluation set, we use it as testing set)
│ ├── ...
Extract features (mcep, f0, ap) from each speech clip. The features are stored as npy files. We also calculate the statistical characteristics for each speaker.
python preprocess.py
This process may take minutes !
python main.py
python main.py --mode test --test_iters 200000 --src_speaker TM1 --trg_speaker "['TM1','SF1']"
Note: Our implementation follows the original paper’s network structure, while pytorch StarGAN-VC code use StarGAN's network.Both can generate good audio quality.
The former implementation's network structure is the network of the original paper, but in order to achieve better conversion result, the following modifications are made in this update:
- Modification of classifier without training problem
- Update loss function
- Modify the discriminator activation function to tanh
If you feel this repo is good, please star !
Your encouragement is my biggest motivation!