forked from fpvandoorn/hanabi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
general_encoding_player.py
893 lines (788 loc) · 42 KB
/
general_encoding_player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# -*- coding: utf-8 -*-
"""
Created on Sun May 08 12:57:34 2016
@author: robieta
"""
from copy import deepcopy as c
import itertools as it
import numpy as np
import random, re, sys, time
from hanabi_classes import AIPlayer
class GeneralEncodingPlayer(AIPlayer):
@classmethod
def get_name(cls):
return 'gencoder'
def __init__(self, me, logger, verbosity):
super(GeneralEncodingPlayer, self).__init__(me, logger, verbosity)
# This boolean is for replicate runs. Certain initialization routines
# only need to be performed once, and can be carried over across
# multiple games. However since the initialization depends on the game
# specifics, the __init__ function only tracks whether it has taken
# place.
self.Initialized = False
def play(self,r):
r.HandHistory.append(c(r.h))
nPriorTurns = len(r.playHistory)
if nPriorTurns <= r.nPlayers - 1:
self.Startup(r)
self.GenerateHandRecord(r)
self.UpdateInfoMat(r)
PlayableCards, ExpectedValue = self.GetPlayableIndex(r)
DiscardableCards, SaferDiscard, AlreadyPlayed = self.GetDiscardable(r)
# If PrintInternal is set to true, internal state information will be
# printed. Recommended to be used with verbose output. The sleep call
# is to ensure prints are grouped with the correct verbose log print.
# It does, however, slow down evaluation somewhat.
PrintInternal = False
if PrintInternal:
if nPriorTurns == 0:
print('\n'*10)
print('')
self.PrintInfoMat(self.SelfID)
print(r.progress)
time.sleep(0.4)
"""Central Strategy Block"""
# This block is intended to compactly specify the AI strategy so that
# one need not necessarily learn the entire code framework in order to
# experiment with different strategies
# ---------------------------------------------------------------------
# If the game is already won, there is no need to play anything
# (also it messes up the set theory code)
if (np.sum([r.progress[key] for key in r.progress])
== 5*len(self.SuitSet)):
return 'discard',r.h[r.whoseTurn].cards[0]
SemiSafeCutoff = 0.85
if len(DiscardableCards) > 0 and r.lightning < 2:
pPlayable = self.GetSemiSafePlay(r,SaferDiscard)
if np.max(pPlayable) >= SemiSafeCutoff:
PlayIndex = ([m for m,M in enumerate(pPlayable)
if M == np.max(pPlayable)][0])
return 'play',r.h[r.whoseTurn].cards[PlayIndex]
# Play the card with the lowest expected value
if len(PlayableCards) > 0:
PlayIndex = [M for m,M in enumerate(PlayableCards) if
ExpectedValue[m] == np.min(ExpectedValue)][0]
return 'play',r.h[r.whoseTurn].cards[PlayIndex]
nPlayed = self.GetnPlayed(r)
NearEndCutoff = 2
# Estimate for the number of cards left to be drawn. Incorrect in the
# end game (incomplete hands) but that is fine
nDraw = len(self.SortedDeck) - nPlayed - self.nPlayers * self.nCards
# Preempt normal discard to use up hints, drag out game.
if nDraw <= NearEndCutoff and r.hints > 0:
Code = self.GenerateCode(nPriorTurns,self.SelfID,
self.GroupCardNumbers(r.progress),r.progress)
Hint = self.DetermineHint(Code,self.SelfID,nPriorTurns)
return 'hint', (Hint[0],Hint[1])
# Again, the choice of which card to discard is very primitive (lowest
# index, favoring cards that have already been played)
if len(DiscardableCards) > 0 and r.hints < self.nPlayers-1:
if len(AlreadyPlayed) > 0:
DiscardIndex = AlreadyPlayed[0]
elif len(SaferDiscard) > 0:
DiscardIndex = SaferDiscard[0]
else:
DiscardIndex = DiscardableCards[0]
return 'discard',r.h[r.whoseTurn].cards[DiscardIndex]
if r.hints == 0:
# self.PrintInfoMat()
# return 'resign', ''
return 'discard',r.h[r.whoseTurn].cards[0]
Code = self.GenerateCode(nPriorTurns,self.SelfID,
self.GroupCardNumbers(r.progress),r.progress)
Hint = self.DetermineHint(Code,self.SelfID,nPriorTurns)
return 'hint', (Hint[0],Hint[1])
# ---------------------------------------------------------------------
def InitializeConstants(self,r):
""" Monte Carlo Constants"""
# The combinatorics are such that complete enumeration is impractical.
# Instead, combinations are psudo randomly selected and tested. Larger
# sampling will produce better results at the cost of longer run times
self.nMCCandidates = np.float(1e2)
# This block initializes constants which depend on game specifics
self.nPlayers = r.nPlayers
self.nCards = len(r.h[r.whoseTurn].cards)
if not self.Initialized:
self.Initialized = True
self.StaticCombinatorics()
self.SelfID = r.whoseTurn
self.OtherIDs = [i for i in range(r.nPlayers) if i != self.SelfID]
self.SuitSet = ['r','y','g','b','w']
self.NumberSet = [str(i+1) for i in range(5)]
self.SortedDeck = []
for suit in self.SuitSet:
for number in '1112233445':
self.SortedDeck.append(number + suit)
# I choose to represent the information matrix as a dictionary because
# it makes it easier to retreive elements. The tradeoff is that the
# intrinsic structure is not contained in the variable. However, the
# shape is always nPlayers x nCards, so this is acceptable
self.InformationMatrix = {}
for i in range(self.nPlayers):
# "Dummy" r1 at the -1 position can be pointed to during encoding
# if the origional target is not present (less than full hand size)
# See self.GenerateHandRecord for more information
self.InformationMatrix[i,-1,'S'] = ['r']
self.InformationMatrix[i,-1,'N'] = [1]
for j in range(self.nCards):
self.InformationMatrix[i,j,'S'] = c(self.SuitSet)
self.InformationMatrix[i,j,'N'] = c(self.NumberSet)
# I plan on using random sampling methods to study different play
# strategies. However, introduction of a full CSPRNG would
# desynchronize the players. Instead, I use a shared fixed seed so all
# players can access the same list of psudo random numbers.
self.StartRandom(r.CommonSeed)
self.RandomSeedList = [random.randint(1,sys.maxint) for i in
range(100)]
self.EndRandom()
# added to avoid "magic numbers"
self.MaxCardNumber = np.max([int(i) for i in self.NumberSet])
# The encoding AI considers transmitting encoded subsets to more
# efficiently satisfy the integer constrained nature of bits
if self.nPlayers == 2:
self.NumSetCombo = [[2,5],[3,3]]
elif self.nPlayers == 3:
self.NumSetCombo =[[2,2,5],[4,5],[2,3,3]]
elif self.nPlayers == 4:
self.NumSetCombo = [[2,3,5],[3,3,3],[5,5],[2,2,2,3]]
elif self.nPlayers == 5:
self.NumSetCombo = [[2,2,2,5],[2,4,5],[2,2,3,3],[3,3,4],
[2,2,2,2,2],[5,5]]
else:
raise NameError('Invalid number of players for this AI')
# Misc. Values
self.RunningPlayInd = -1
def GetnPlayed(self,r):
nPlayed = 0
for I in r.playHistory:
if I[0] == 'play' or I[0] == 'discard':
nPlayed += 1
return nPlayed
def GetCountFromDiscard(self,r,turn = ''):
# Card counting function, uses the played and discarded cards
if turn == '':
turn = len(r.playHistory)
CardCount = {i:0 for i in np.unique(self.SortedDeck)}
for i in self.SortedDeck:
CardCount[i] += 1
for i,I in enumerate(r.playHistory[:turn]):
if I[0] == 'play' or I[0] == 'discard':
CardCount[I[1]['name']] -= 1
elif I[0] == 'hint':
pass
else:
raise NameError('')
return CardCount
def GetCardCountFromHandAndDiscard(self,r):
# Card counting function. Uses played, discarded, and other players'
# hands.
CardCount = self.GetCountFromDiscard(r)
for i in self.OtherIDs:
for j in range(self.nCards):
Value = self.HandHistory[-1][i,j]
if Value != 'xx':
CardCount[Value] -= 1
return CardCount
def GetSemiSafePlay(self,r,SafeDiscard):
# This function calculates the probability that a card is safe to play.
# It only does this for the cards that are safe to discard. That way
# the game isn't ruined if it plays an invalid card.
progress = r.progress
CardCount = self.GetCardCountFromHandAndDiscard(r)
PlayableSet = [str(progress[key]+1) + key for key in progress]
pPlayable = [0 for m in range(self.nCards)]
for i in SafeDiscard:
N = self.InformationMatrix[self.SelfID,i,'N']
S = self.InformationMatrix[self.SelfID,i,'S']
PossibleSet = [m[0] + m[1] for m in list(it.product(N,S))]
PosPlayable = [1 if m in PlayableSet else 0 for m in PossibleSet]
PosCount = [CardCount[m] for m in PossibleSet]
pPlayable[i] = (np.float(np.sum(np.array(PosCount)*
np.array(PosPlayable)))/np.sum(PosCount))
return pPlayable
def GetPlayableIndex(self,r):
# Gets which cards in the player's hand are safely playable.
progress = r.progress
CardCount = self.GetCardCountFromHandAndDiscard(r)
PlayableSet = [str(progress[key]+1) + key for key in progress]
nSuits = len(PlayableSet)
PlayableCards = []
ExpectedValue = []
for i in range(self.nCards):
N = self.InformationMatrix[self.SelfID,i,'N']
S = self.InformationMatrix[self.SelfID,i,'S']
PossibleSet = [m[0] + m[1] for m in list(it.product(N,S))]
nPos = len(PossibleSet)
Playable = False
if nPos <= nSuits:
if len(set(PossibleSet).intersection(PlayableSet)) == nPos:
Playable = True
if Playable:
PlayableCards.append(i)
PosSetCount = [CardCount[m] for m in PossibleSet]
PosSetVal = [int(m[0]) for m in PossibleSet]
ExpectedValue.append(
float(np.sum(np.array(PosSetCount)*np.array(PosSetVal)))
/np.sum(PosSetCount))
return PlayableCards, ExpectedValue
def GetDiscardable(self,r):
# Gets which cards can be discarded:
# SafeDiscard = can be discarded
# SaferDiscard = more than 1 other copy
# SafestDiscard = already played, no issue with discarding
SafeDiscard = []
SaferDiscard = []
SafestDiscard = []
CardCount = self.GetCountFromDiscard(r)
for i in range(self.nCards):
N = self.InformationMatrix[self.SelfID,i,'N']
S = self.InformationMatrix[self.SelfID,i,'S']
PossibleSet = [m[0] + m[1] for m in list(it.product(N,S))]
AlreadyPlayed = [1 if int(m[0]) <= r.progress[m[1]]
else 0 for m in PossibleSet]
MultipleLeft = [1 if CardCount[m] > 1 else 0 for m in PossibleSet]
MultipleLeft2 = [1 if CardCount[m] > 2 else 0 for m in PossibleSet]
SafeDiscardBool = np.min([1 if AlreadyPlayed[m] == 1 or
MultipleLeft[m] == 1 else 0 for m in
range(len(PossibleSet))]) == 1
if SafeDiscardBool:
SafeDiscard.append(i)
if np.min(MultipleLeft2) == 1:
SaferDiscard.append(i)
if np.min(AlreadyPlayed) == 1:
SafestDiscard.append(i)
return SafeDiscard, SaferDiscard, SafestDiscard
def GenerateHandRecord(self,r):
# Converts the hands in r into a form used in this algorithm. This has
# several functions:
# 1) More convenient to access
# 2) No cheating. One's own hands are aliased as 'xx'
# 3) Builds an 'InPlay' list which allows exclusion of cards from
# encoding
self.HandHistory = []
self.DirectRecord = []
self.IndirectRecord = []
self.InPlay = []
for i in r.HandHistory:
self.HandHistory.append({})
self.DirectRecord.append({})
self.IndirectRecord.append({})
self.InPlay.append({})
for j in range(self.nPlayers):
# This line is somewhat unintuitive. Each player is assigned a
# psudo card within the framework of of the internal
# information accounting. Moreover, the value of this psudo
# card is considered to be know. For this reason, if a code
# ever points to a card which should not be considered (either
# because a player has less than a full hand and the card does
# not exist or because that player has spent its last turn and
# revealing its cards would serve no purpose except to skew the
# code generation) then it can be redirected to the '-1' index
# as a dummy card.
self.HandHistory[-1][j,-1] = '1r'
for k in range(self.nCards):
if k < len(i[j].cards):
self.DirectRecord[-1][j,k] = ([str(m) for m in
i[j].cards[k]['direct']])
self.IndirectRecord[-1][j,k] = ([str(m) for m in
i[j].cards[k]['indirect']])
self.InPlay[-1][j,k] = True
if j == self.SelfID:
# This prevents players from looking at their own
# hands
self.HandHistory[-1][j,k] = 'xx'
else:
self.HandHistory[-1][j,k] = i[j].cards[k]['name']
else:
self.DirectRecord[-1][j,k] = []
self.IndirectRecord[-1][j,k] = []
self.HandHistory[-1][j,k] = 'xx'
self.InPlay[-1][j,k] = False
self.HandHistory.append({})
self.DirectRecord.append({})
self.IndirectRecord.append({})
self.InPlay.append({})
for j in range(self.nPlayers):
self.HandHistory[-1][j,-1] = '1r'
for k in range(self.nCards):
if k < len(r.h[j].cards):
self.DirectRecord[-1][j,k] = ([str(m) for m in
r.h[j].cards[k]['direct']])
self.IndirectRecord[-1][j,k] = ([str(m) for m in
r.h[j].cards[k]['indirect']])
self.InPlay[-1][j,k] = True
if j == self.SelfID:
# This prevents players from looking at their own hands
self.HandHistory[-1][j,k] = 'xx'
else:
self.HandHistory[-1][j,k] = r.h[j].cards[k]['name']
else:
self.DirectRecord[-1][j,k] = []
self.IndirectRecord[-1][j,k] = []
self.HandHistory[-1][j,k] = 'xx'
self.InPlay[-1][j,k] = False
def UpdateInfoMat(self,r):
# This is the heart of the encoding scheme. It takes the hints that
# have been given and inverts the encoding to determine what has been
# transmitted.
CurrentTurn = len(r.playHistory)
if CurrentTurn > 0:
FirstEvalTurn = np.max([CurrentTurn - self.nPlayers,0])
TurnEvalRange = range(FirstEvalTurn,CurrentTurn)
for Turn in TurnEvalRange:
PlayType = r.playHistory[Turn][0]
CurrentPlayer = Turn % self.nPlayers
if PlayType == 'hint':
HintingPlayer = CurrentPlayer
# Back out the dynamic code chosen by the hinting player
Code = self.GenerateCode(Turn,HintingPlayer,
self.GroupCardNumbers(r.progressHistory[Turn]),
r.progressHistory[Turn])
self.UpdateInformationMatrix(r.playHistory[Turn][1],Code,
HintingPlayer,Turn)
for i in range(self.nPlayers):
for j in range(self.nCards):
# Use the actual hinted information in addition to
# the encoded information
for k in self.DirectRecord[Turn][i,j]:
if k in self.NumberSet:
self.InformationMatrix[i,j,'N'] = k
else:
self.InformationMatrix[i,j,'S'] = k
self.InformationMatrix[i,j,'N'] = list(set(
self.InformationMatrix[i,j,'N']).difference(
self.IndirectRecord[Turn][i,j]))
self.InformationMatrix[i,j,'S'] = list(set(
self.InformationMatrix[i,j,'S']).difference(
self.IndirectRecord[Turn][i,j]))
# Use card counting methods to further restrict
# possibilities.
Improvement = True
while Improvement:
Improvement = self.CardCountInfoMat(r,Turn)
elif PlayType == 'play' or PlayType == 'discard':
# Shift cards to the left and initialize the rightmost
# card as unknown: [1,2,3,4,5]['r','y','g','b','w']
# If there is no card (endgame) this initialization is
# incorrect; however anything that points to that slot gets
# redirected to the dummy r1 at the -1 position.
self.RunningPlayInd += 1
DroppedCardInd = r.DropIndRecord[self.RunningPlayInd]
for j in range(DroppedCardInd,self.nCards-1):
self.InformationMatrix[CurrentPlayer,j,'N'] = c(
self.InformationMatrix[CurrentPlayer,j+1,'N'])
self.InformationMatrix[CurrentPlayer,j,'S'] = c(
self.InformationMatrix[CurrentPlayer,j+1,'S'])
self.InformationMatrix[CurrentPlayer,self.nCards-1,'N'] = (
c(self.NumberSet))
self.InformationMatrix[CurrentPlayer,self.nCards-1,'S'] = (
c(self.SuitSet))
else:
raise NameError('Still to be implemented')
# Raise exception if a mistake is made
self.CheckInfoMat(r)
def CardCountInfoMat(self,r,Turn):
# This function uses card counting methods to restrict the
# possibilities of the information matrix
Improvement = False
CardCount = self.GetCountFromDiscard(r,Turn)
for i in range(self.nPlayers):
for j in range(self.nCards):
if (len(self.InformationMatrix[i,j,'N']) == 1 and
len(self.InformationMatrix[i,j,'S']) == 1):
CardVal = (self.InformationMatrix[i,j,'N'][0]
+ self.InformationMatrix[i,j,'S'][0])
CardCount[CardVal] -= 1
for i in range(self.nPlayers):
for j in range(self.nCards):
N = self.InformationMatrix[i,j,'N']
S = self.InformationMatrix[i,j,'S']
if len(N) > 1 or len(S) > 1:
PossibleSet = ([m[0] + m[1] for m in
list(it.product(N,S)) if
CardCount[m[0] + m[1]] > 0])
Nnew = np.unique([m[0] for m in PossibleSet]).tolist()
Snew = np.unique([m[1] for m in PossibleSet]).tolist()
if len(Nnew) < len(N) or len(Snew) < len(S):
Improvement = True
self.InformationMatrix[i,j,'N'] = c(Nnew)
self.InformationMatrix[i,j,'S'] = c(Snew)
return Improvement
def CheckInfoMat(self,r):
# Check to see if the information matrix is wrong, and if so raise an
# exception.
for i in range(self.nPlayers):
for j in range(self.nCards):
if j < len(r.h[i].cards):
N = self.InformationMatrix[i,j,'N']
S = self.InformationMatrix[i,j,'S']
PossibleSet = [m[0] + m[1] for m in list(it.product(N,S))]
if r.h[i].cards[j]['name'] not in PossibleSet:
print(r.playHistory)
print(r.DropIndRecord)
for m in range(self.nCards):
print(self.InformationMatrix[i,m,'N'],)
print(self.InformationMatrix[i,m,'S'],)
print(' ' * 10,)
print('')
for m in range(self.nCards):
print(r.h[i].cards[m]['name'],)
print(' ' * 10,)
print('')
raise NameError('Error detected in the information matrix')
def ExpandCode(self,Code):
# Utility function, just converts a string into several lists
CodeList = Code.split('__')
TypeList = [i.split('_')[0] for i in CodeList]
ColList = [i.split('_')[1] for i in CodeList]
GroupSetList = [i.split('_')[2] for i in CodeList]
EvalSetList = [[['r'],['y'],['g'],['b'],['w']] if i ==
'[[r],[y],[g],[b],[w]]' else eval(i) for i in GroupSetList]
EncodeBase = [len(i) for i in EvalSetList]
PossibleResultList = list(it.product(*[range(i) for i in EncodeBase]))
return (CodeList,TypeList,ColList,GroupSetList,EvalSetList,EncodeBase,
PossibleResultList)
def UpdateInformationMatrix(self,Hint,Code,HintingPlayer,Turn):
# This is the function which performs the modular arithmetic back
# calculation to convert a code and hint into the underlying encoded
# information and transfers it into the information matrix.
ActualResult = self.BackCalcHintedState(Hint,Code,HintingPlayer)
(CodeList,TypeList,ColList,GroupSetList,EvalSetList,EncodeBase,
PossibleResultList) = self.ExpandCode(Code)
NonHintingIDs = [m for m in range(self.nPlayers) if m != HintingPlayer]
OtherNonHintingIDs = [m for m in NonHintingIDs if m != self.SelfID]
CodePosOtherNonHinting = [m for m,M in enumerate(NonHintingIDs) if M != self.SelfID]
for i,I in enumerate(CodeList):
CurrentColList = [int(m) for m in ColList[i].split(',')]
CurrentOtherColList = [CurrentColList[m] for m in CodePosOtherNonHinting]
OtherHandVals = []
for j,J in enumerate(OtherNonHintingIDs):
# Within this loop "Val" refers to the index of the set which
# the card is known to belong
HandValue = self.HandHistory[Turn][J,CurrentOtherColList[j]]
if TypeList[i] == 'S':
HandValue = HandValue[-1]
else:
HandValue = int(HandValue[:-1])
OtherHandVals.append(
[m for m,M in enumerate(EvalSetList[i]) if HandValue in M][0])
if self.SelfID != HintingPlayer:
SelfVal = int((ActualResult[i] - np.sum(OtherHandVals))
% len(EvalSetList[i]))
OtherHandValsRev = c(OtherHandVals)
OtherHandValsRev.reverse()
NonHintingVals = ([OtherHandValsRev.pop() if M != self.SelfID
else SelfVal for M in NonHintingIDs])
for j,J in enumerate(NonHintingIDs):
RestrictedSet = EvalSetList[i][NonHintingVals[j]]
RestrictedSet = [str(m) for m in RestrictedSet]
self.InformationMatrix[J,CurrentColList[j],TypeList[i]] = (
list(set(self.InformationMatrix[J,CurrentColList[j],
TypeList[i]]).intersection(RestrictedSet)))
def BackCalcHintedState(self,Hint,Code,HintingPlayer):
# Converts the actual hint (i.e. player 3 green) into the intended
# vector of numbers (i.e. [2,0,0])
OtherIDs = [m for m in range(self.nPlayers) if m != HintingPlayer]
(CodeList,TypeList,ColList,GroupSetList,EvalSetList,EncodeBase,
PossibleResultList) = self.ExpandCode(Code)
NumSuitSet = c(self.NumberSet)
[NumSuitSet.append(m) for m in self.SuitSet]
ResultSelection = ([m for m,M in enumerate(list(
it.product(OtherIDs,NumSuitSet)))
if np.array_equal(M,Hint)][0])
ActualResult = PossibleResultList[ResultSelection]
return ActualResult
def DetermineHint(self,Code,HintingPlayer,Turn):
# Takes a selected code, looks at the other players' hands, and
# determines what hint to give to provide the information corresponding
# to the selected code.
OtherIDs = [m for m in range(self.nPlayers) if m != HintingPlayer]
(CodeList,TypeList,ColList,GroupSetList,EvalSetList,EncodeBase,
PossibleResultList) = self.ExpandCode(Code)
ActualResult = []
for i,I in enumerate(CodeList):
Columns = [int(m) for m in ColList[i].split(',')]
PositionInSetList = []
for j,J in enumerate(Columns):
RawVal = (self.HandHistory[Turn][OtherIDs[j],J]
[0 if TypeList[i] == 'N' else 1])
if TypeList[i] == 'N':
RawVal = int(RawVal)
PositionInSetList.append([m for m,M in enumerate(EvalSetList[i])
if RawVal in M][0])
ActualResult.append(
np.sum(PositionInSetList) % len(EvalSetList[i]))
ResultSelection = ([m for m,M in enumerate(PossibleResultList)
if np.array_equal(M,ActualResult)][0])
NumSuitSet = c(self.NumberSet)
[NumSuitSet.append(m) for m in self.SuitSet]
Hint = list(it.product(OtherIDs,NumSuitSet))[ResultSelection]
return Hint
def GenerateCode(self,TurnNumber,HintingPlayer,CardNumberGroups,progress):
# Iterates through a number of candidate codes (using common seed
# Monte Carlo) and selects the best based on some evaluation criteria
OtherIDs = [m for m in range(self.nPlayers) if m != HintingPlayer]
self.StartRandom(self.RandomSeedList[TurnNumber])
SuitSetStr = ''
for i in self.SuitSet:
SuitSetStr += '[' + i +']' + ','
SuitSetStr = '[' + SuitSetStr[:-1] +']'
# For the various numerical subset groupings (including the trivial
# case where each value is its own subset) there is a number of DoF
# needed to transmit the information
RequiredBase = [len(i) for i in CardNumberGroups]
BaseSets = [[] for i in range(5)]
BaseSets[4].append('0S')
for i,I in enumerate(RequiredBase):
BaseSets[I-1].append(str(i)+'N')
ValidCombinations = []
for i in self.NumSetCombo:
PreProduct = []
for j in i:
if len(BaseSets[j-1]) > 0:
PreProduct.append(BaseSets[j-1])
for j in list(it.product(*PreProduct)):
if len(j) > 0:
ValidCombinations.append(j)
nMCPerValidCombo = int(self.nMCCandidates/len(ValidCombinations))
CodeCandidateList = []
for i in ValidCombinations:
for k in range(nMCPerValidCombo):
TrialStr = ''
for j in i:
TrialStr += j[-1]
TrialStr += '_'
ColComboChoice = random.randint(0,
self.ColumnCombinations.shape[0]-1)
Cols =c(self.ColumnCombinations[ColComboChoice,:]).tolist()
ColInPlay = ([self.InPlay[TurnNumber][M,Cols[m]]
for m,M in enumerate(OtherIDs)])
for l,L in enumerate(ColInPlay):
if not L:
Cols[l] = -1
TrialStr += re.sub(' ','',str(Cols)[1:-1])
TrialStr += '_'
if j[-1] == 'S':
TrialStr += SuitSetStr
else:
TrialStr += re.sub(' ','',str(
CardNumberGroups[int(j[:-1])]))
TrialStr += '__'
CodeCandidateList.append(TrialStr[:-2])
BestReduction = 0
BestCode = CodeCandidateList[0]
for i,I in enumerate(CodeCandidateList):
Reduction = self.EvaluateCode(OtherIDs,I,progress)
if Reduction > BestReduction:
BestReduction = Reduction
BestCode = I
self.EndRandom()
return BestCode
def EvaluateCode(self,OtherIDs,Code,progress):
# This function takes a code and returns an evaluation of the merit of
# said code. Currently this takes the form of a degree of freedom (DoF)
# minimization weighted by some coefficients (AMaster)
# Weighting coefficients for determining set reduction. Currently just
# naively the number of each card number in the deck
AMaster = [3,2,2,2,1]
P,D,O = self.GetPDO(progress)
for i in P:
AMaster[i-1] = AMaster[i-1] * 2.
for i in D:
AMaster[i-1] = AMaster[i-1] / 2.
DoFReductionList = []
CodeList = Code.split('__')
TypeList = [i.split('_')[0] for i in CodeList]
ColList = [i.split('_')[1] for i in CodeList]
GroupSetList = [i.split('_')[2] for i in CodeList]
NumIndex = [i for i,I in enumerate(TypeList) if I == 'N']
SuitIndex = [i for i,I in enumerate(TypeList) if I == 'S']
# Calculate numeric DoF reduction
if len(NumIndex) > 0:
NumColList = [ColList[i].split(',') for i in NumIndex]
CodeNumSets = [eval(GroupSetList[i]) for i in NumIndex]
NumColListSwitch = ([[int(NumColList[i][j])
for i in range(len(NumColList))]
for j in range(len(NumColList[0]))])
# This is the list of columns in each row that I need to check to
# determine the reduction in uncertainty for a given code
ColCheckList = [list(set(i)) for i in NumColListSwitch]
for i,I in enumerate(ColCheckList):
for j,J in enumerate(I):
InitialInfoSet = [int(m) for m in
self.InformationMatrix[OtherIDs[i],J,'N']]
AParticular = [AMaster[m-1] for m in InitialInfoSet]
nPosFinal = []
for PosValInd,PossibleValue in enumerate(InitialInfoSet):
InfoSetRestrict = set(c(InitialInfoSet))
for k,K in enumerate(NumColListSwitch[i]):
if K == J:
InfoSetRestrict = InfoSetRestrict.intersection(
[m for m in CodeNumSets[k] if
PossibleValue in m][0])
nPosFinal.append(len(InfoSetRestrict))
DoFReduction = len(InitialInfoSet) - (
1./np.sum(AParticular)*np.sum([AParticular[m]*
nPosFinal[m] for m in range(len(AParticular))]))
DoFReductionList.append(DoFReduction)
# Calculate suit DoF reduction
if len(SuitIndex) > 0:
SuitColList = [ColList[i].split(',') for i in SuitIndex]
SuitColListSwitch = ([[int(SuitColList[i][j])
for i in range(len(SuitColList))]
for j in range(len(SuitColList[0]))])
ColCheckList = [list(set(i)) for i in SuitColListSwitch]
for i,I in enumerate(ColCheckList):
for j,J in enumerate(I):
InitialInfoSet = [m for m in
self.InformationMatrix[OtherIDs[i],J,'S']]
DoFReduction = len(InitialInfoSet) - 1
DoFReductionList.append(DoFReduction)
return np.sum(DoFReductionList)
def Startup(self,r):
# Currently rainbow compatability is not implemented
if r.suits != 'rygbw':
raise NameError('Encoding AI requires vanilla suits\n')
for i in r.NameRecord:
if i[:-1] != 'Gencoder':
raise NameError('Encoding AI must only play with other' +
' encoders')
self.InitializeConstants(r)
def StartRandom(self,seed):
# This function initializes the fixed seed random method used by
# players. There is a concern that the use of this method, particularly
# the setting of a fixed seed, may bias other functions which wish to
# call random. For this reason, the RNG state is recorded at the start
# of the player call; the RNG state will then be set back to this state
# before the player concludes it's turn. This will prevent the fixed
# seed method from interacting with other random calls outside of the
# AI program.
self.RNG_State = random.getstate()
random.seed(seed)
def EndRandom(self):
# This function is responsible for returning the RNG to the same state
# as when it entered the AI
random.setstate(self.RNG_State)
def StaticCombinatorics(self):
# This function performs the combinatoric math which only needs to be
# done once (even across replicate games)
# This array represents the combination of cards in other players'
# hands. Each row is a different possibility. The columns are
# associated with the indicies of the other players (that is, there
# are nPlayers - 1 columns). This array should be called with the
# appropriate OtherID vector (not necessarily the current player's).
# The numeric value in the array represents the positional index of a
# card. Note that this format intentionally disallows multiple cards
# in the same player's hand to be selected as this introduces
# non-uniqueness into the modular arithmetic algebra. Also note that a
# card is chosen from every other hand. In the chose encoding method,
# there is no benefit to encoding fewer cards, so reencoding already
# determined cards is fine; by contrast encoding a number less than
# nPlayers - 1 in a single value would further conbinatorically grow
# the number of choices. (Unnecessarily)
IndexVector = [i for i in range(self.nCards)]
self.ColumnCombinations = np.array(list(it.product(IndexVector,
repeat=self.nPlayers-1)))
def GetPDO(self,progress):
# Utility to get the set of playable (P), discardable (D),
# and other (O)
NumericVec = [progress[key] for key in progress]
P = list(np.unique(
[i + 1 for i in NumericVec if i < self.MaxCardNumber]))
D = [int(i) for i in self.NumberSet if int(i) < np.min(P)]
O = list(set([int(i) for i in self.NumberSet]).difference(
set(P).union(D)))
return P,D,O
def GroupCardNumbers(self,progress):
# This function accepts a progress dictionary (not necessarily the
# current one) and generates the grouped sets for the card number
# encoding. That is to say, one can use less than a full quint (base
# 5 bit) and transmit only some information about the numeric value of
# a card. This is currently not implemented with suits, as the suits
# are equivilent in a way that the numbers are not, and implementing
# a similar convention is not currently worth the extra effort and
# complexity.
# P is the playable set. Elements in P have at least one suit where
# playing a card with a value equal to said element is a legal move
# D is the strict discard set. There is no suit for which a a card
# whose value is in D is a legal move
# O is the "other" set. Elements of self.NumberSet which are not in P
# or D fall in O:
# O = self.NumberSet \ (P U D)
# Suit identity is not important for this operation
P,D,O = self.GetPDO(progress)
# This code constructs the numeric grouping sets used during incomplete
# encoding (in order to use less than a full quint)
NumericSets = []
# [[D],P+O]
NumericSets.append([])
if len(D) > 0: NumericSets[-1].append(D)
for i in P:
NumericSets[-1].append([i])
for i in O:
NumericSets[-1].append([i])
# [[D],P,[O]]
NumericSets.append([])
if len(D) > 0: NumericSets[-1].append(D)
for i in P:
NumericSets[-1].append([i])
if len(O) > 0: NumericSets[-1].append(O)
# [[P],[D+O]]
if len(D) + len(O) > 0:
NumericSets.append([])
NumericSets[-1].append(P)
NumericSets[-1].append(list(set(D).union(O)))
# Variable end grouping sets
for k in range(len(D)+len(P),self.nCards):
NumericSets.append([])
if len(D) > 0: NumericSets[-1].append(D)
for i in P:
NumericSets[-1].append([i])
OSplit1 = O[:k-[1 if len(D)>0 else 0][0]-len(P)]
OSplit2 = O[k-[1 if len(D)>0 else 0][0]-len(P):]
for i in OSplit1:
NumericSets[-1].append([i])
if len(OSplit2) > 0:
NumericSets[-1].append(OSplit2)
UniqNumericSets = []
for i in NumericSets:
if i not in UniqNumericSets:
if len(i) > 1:
UniqNumericSets.append(i)
return UniqNumericSets
def PrintInfoMat(self,row = ''):
# Prints the current state of the information matrix in an aestetically
# pleasing fashon.
if row == '':
playerRange = range(self.nPlayers)
else:
playerRange = [row]
N = [['' for m in range(self.nCards)] for n in range(self.nPlayers)]
S = [['' for m in range(self.nCards)] for n in range(self.nPlayers)]
for i in playerRange:
for j in range(self.nCards):
N[i][j] += '['
for m in self.InformationMatrix[i,j,'S']:
N[i][j] += m + ','
N[i][j] = N[i][j][:-1] + ']'
S[i][j] = '['
for m in self.InformationMatrix[i,j,'N']:
S[i][j] += m + ','
S[i][j] = S[i][j][:-1] + ']'
NStrLenList = []
SStrLenList = []
for j in range(self.nCards):
NStrLen = 0
SStrLen = 0
for i in playerRange:
if len(N[i][j]) > NStrLen:
NStrLen = len(N[i][j])
if len(S[i][j]) > SStrLen:
SStrLen = len(S[i][j])
NStrLenList.append(NStrLen)
SStrLenList.append(SStrLen)
for i in playerRange:
for j in range(self.nCards):
print((str(S[i][j]) + ' '*(SStrLenList[j] - len(S[i][j])) +
str(N[i][j]) + ' '*(NStrLenList[j] + 5 - len(N[i][j]))),)
print('')