forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SparseTensorImpl.h
273 lines (239 loc) · 12.1 KB
/
SparseTensorImpl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#pragma once
#include <ATen/Tensor.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/Exception.h>
namespace at {
struct TORCH_API SparseTensorImpl : public TensorImpl {
// Stored in COO format, indices + values.
// INVARIANTS:
// sparse_dim: range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
// dense_dim : range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
// _indices.shape: dimensionality: 2, shape: (sparse_dim, nnz)
// _values.shape: dimensionality: 1 + dense_dim. shape: (nnz, shape[sparse_dim:])
int64_t sparse_dim_ = 0; // number of sparse dimensions
int64_t dense_dim_ = 0; // number of dense dimensions
Tensor indices_; // always a LongTensor
Tensor values_;
// A sparse tensor is 'coalesced' if every index occurs at most once in
// the indices tensor, and the indices are in sorted order. (This means
// that it is very easy to convert a coalesced tensor to CSR format: you
// need only compute CSR format indices.)
//
// Most math operations can only be performed on coalesced sparse tensors,
// because many algorithms proceed by merging two sorted lists (of indices).
bool coalesced_ = false;
// compute_numel with integer multiplication overflow check, see gh-57542
void refresh_numel() {
TensorImpl::safe_refresh_numel();
}
public:
// Public for now...
explicit SparseTensorImpl(at::DispatchKeySet, const caffe2::TypeMeta);
void release_resources() override;
int64_t nnz() const { return values_.size(0); }
int64_t sparse_dim() const { return sparse_dim_; }
int64_t dense_dim() const { return dense_dim_; }
bool coalesced() const { return coalesced_; }
Tensor indices() const { return indices_; }
Tensor values() const { return values_; }
IntArrayRef strides() const override;
int64_t stride(int64_t d) const override;
void set_size(int64_t dim, int64_t new_size) override;
void set_stride(int64_t dim, int64_t new_stride) override;
void set_storage_offset(int64_t storage_offset) override;
#ifdef DEBUG
bool has_storage() const override;
#endif
// WARNING: This function does NOT preserve invariants of sparse_dim/dense_dim with
// respect to indices and values
void raw_resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
TORCH_CHECK(allow_tensor_metadata_change(), "raw_resize_ ", err_msg_tensor_metadata_change_not_allowed);
sizes_and_strides_.set_sizes(size);
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
refresh_numel();
}
// NOTE: This function preserves invariants of sparse_dim/dense_dim with respect to
// indices and values.
//
// NOTE: This function supports the following cases:
// 1. When we keep the number of dense dimensions unchanged, and NOT shrinking the size of
// any of the dense dimensions.
// 2. When we keep the number of sparse dimensions unchanged, and NOT shrinking the size of
// any of the sparse dimensions.
// 3. When the sparse tensor has zero nnz, in which case we are free to change the shapes of
// both its sparse and dense dimensions.
//
// This function DOESN'T support (and will throw an error) the following cases:
// 1. When we attempt to change the number of sparse dimensions on a non-empty sparse tensor
// (such an operation will invalidate the indices stored).
// 2. When we attempt to change the number of dense dimensions on a non-empty sparse tensor
// (such an operation will behave differently from an equivalent dense tensor's resize method,
// and for API consistency we don't support it).
// 3. When we attempt to shrink the size of any of the dense dimensions on a non-empty sparse tensor
// (such an operation will behave differently from an equivalent dense tensor's resize method,
// and for API consistency we don't support it).
// 4. When we attempt to shrink the size of any of the sparse dimensions on a non-empty sparse tensor
// (this could make some of the stored indices out-of-bound and thus unsafe).
void resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
TORCH_CHECK(allow_tensor_metadata_change(), "resize_ ", err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(sparse_dim + dense_dim == static_cast<int64_t>(size.size()), "number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size());
if (nnz() > 0) {
auto alt_options_msg = "You could try the following options:\n\
1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\
2. If you need to resize this tensor, you have the following options:\n\
1. For both sparse and dense dimensions, keep the number of them constant and the size of them non-shrinking, and then try the same call again.\n\
2. Or, create a new sparse tensor with the correct indices and values from this sparse tensor.";
TORCH_CHECK(sparse_dim == sparse_dim_,
"changing the number of sparse dimensions (from ", sparse_dim_, " to ", sparse_dim, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
TORCH_CHECK(dense_dim == dense_dim_,
"changing the number of dense dimensions (from ", dense_dim_, " to ", dense_dim, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
bool shrinking_sparse_dims = false;
bool shrinking_dense_dim = false;
auto sparse_size_original = sizes().slice(0, sparse_dim);
auto sparse_size_new = size.slice(0, sparse_dim);
for (int64_t i = 0; i < sparse_dim; i++) {
if (sparse_size_new[i] < sparse_size_original[i]) {
shrinking_sparse_dims = true;
break;
}
}
auto dense_size_original = sizes().slice(sparse_dim);
auto dense_size_new = size.slice(sparse_dim);
for (int64_t i = 0; i < dense_dim; i++) {
if (dense_size_new[i] < dense_size_original[i]) {
shrinking_dense_dim = true;
break;
}
}
TORCH_CHECK(!shrinking_sparse_dims,
"shrinking the size of sparse dimensions (from ", sparse_size_original, " to ", sparse_size_new, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
TORCH_CHECK(!shrinking_dense_dim,
"shrinking the size of dense dimensions (from ", dense_size_original, " to ", dense_size_new, ") on a non-empty sparse tensor is not supported.\n", alt_options_msg);
}
const bool size_equals_sizes = std::equal(size.begin(), size.end(), sizes_and_strides_.sizes_begin(), sizes_and_strides_.sizes_end());
if ((!size_equals_sizes) || (sparse_dim != sparse_dim_) || (dense_dim != dense_dim_)) {
auto nnz = values().size(0);
std::vector<int64_t> values_size = {nnz};
auto dense_size = size.slice(sparse_dim);
values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
values_.resize_(values_size);
indices_.resize_({sparse_dim, nnz});
}
if (!size_equals_sizes) {
sizes_and_strides_.set_sizes(size);
}
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
refresh_numel();
}
// NOTE: this function will resize the sparse tensor and also set `indices` and `values` to empty.
void resize_and_clear_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
TORCH_CHECK(allow_tensor_metadata_change(), "resize_and_clear_ ", err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(sparse_dim + dense_dim == static_cast<int64_t>(size.size()), "number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size());
sizes_and_strides_.set_sizes(size);
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
auto empty_indices = at::empty({sparse_dim, 0}, indices().options());
std::vector<int64_t> values_size = {0};
auto dense_size = sizes().slice(sparse_dim);
values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
auto empty_values = at::empty(values_size, values().options());
set_indices_and_values_unsafe(empty_indices, empty_values);
refresh_numel();
}
void set_coalesced(bool coalesced) {
TORCH_CHECK(allow_tensor_metadata_change(), "set_coalesced ", err_msg_tensor_metadata_change_not_allowed);
coalesced_ = coalesced;
}
// NOTE: this function is only used internally and not exposed to Python frontend
void set_nnz_and_narrow(int64_t new_nnz) {
TORCH_CHECK(allow_tensor_metadata_change(), "set_nnz_and_narrow ", err_msg_tensor_metadata_change_not_allowed);
AT_ASSERT(new_nnz <= nnz());
indices_ = indices_.narrow(1, 0, new_nnz);
values_ = values_.narrow(0, 0, new_nnz);
}
// Takes indices and values and directly puts them into the sparse tensor, no copy.
// NOTE: this function is unsafe because it doesn't check whether any indices are
// out of boundaries of `sizes`, so it should ONLY be used where we know that the
// indices are guaranteed to be within bounds.
// This used to be called THSTensor_(_move)
// NB: This used to be able to avoid a refcount bump, but I was too lazy to
// make it happen
void set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values);
/**
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const override {
auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/version_counter,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
impl->refresh_numel();
return impl;
}
/**
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const override {
auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/std::move(version_counter),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
impl->refresh_numel();
return impl;
}
/**
* Shallow-copies data from another TensorImpl into this TensorImpl.
*
* For why this function doesn't check this TensorImpl's `allow_tensor_metadata_change_`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
auto sparse_impl = static_cast<const SparseTensorImpl*>(impl.get());
copy_tensor_metadata(
/*src_impl=*/sparse_impl,
/*dest_impl=*/this,
/*version_counter=*/version_counter(),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
refresh_numel();
}
private:
explicit SparseTensorImpl(at::DispatchKeySet, const caffe2::TypeMeta, at::Tensor indices, at::Tensor values);
/**
* Copy the tensor metadata fields (e.g. sizes / strides / storage pointer / storage_offset)
* from one TensorImpl to another TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE [ TensorImpl Shallow-Copying ].
*/
static void copy_tensor_metadata(
const SparseTensorImpl* src_sparse_impl,
SparseTensorImpl* dest_sparse_impl,
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) {
TensorImpl::copy_tensor_metadata(src_sparse_impl, dest_sparse_impl, version_counter, allow_tensor_metadata_change);
// Sparse-specific fields
dest_sparse_impl->sparse_dim_ = src_sparse_impl->sparse_dim();
dest_sparse_impl->dense_dim_ = src_sparse_impl->dense_dim();
dest_sparse_impl->indices_ = src_sparse_impl->indices();
dest_sparse_impl->values_ = src_sparse_impl->values();
dest_sparse_impl->coalesced_ = src_sparse_impl->coalesced();
}
const char* tensorimpl_type_name() const override;
};
} // namespace at