forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AutogradComposite.cpp
27 lines (21 loc) · 1.17 KB
/
AutogradComposite.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <ATen/ATen.h>
namespace at {
namespace native {
/// This function can be used to create a dual Tensor that holds a tangent to compute forward mode gradients.
/// Note that the dual Tensor's primal is a view of the given primal and the given tangent is used as-is.
/// This function is backward differentiable.
at::Tensor _make_dual(const at::Tensor& primal, const at::Tensor& tangent, int64_t level) {
TORCH_CHECK(!primal._fw_grad(level).defined(), "Making a dual Tensor based on a Tensor that "
"already has a forward gradient at the same level ", level, " is not supported.");
auto dual_tensor = primal.view(primal.sizes());
dual_tensor._set_fw_grad(tangent, level, /* is_inplace_op */ false);
return dual_tensor;
}
/// This function can be used to unpack a given dual Tensor to get its primal and tangent. The returned primal
/// is a view of the dual and the tangent is returned as is.
/// This function is backward differentiable.
std::tuple<at::Tensor, at::Tensor> _unpack_dual(const at::Tensor& tensor, int64_t level) {
return std::tuple<at::Tensor, at::Tensor>(tensor._fw_primal(level), tensor._fw_grad(level));
}
} // namespace native
} // namespace at