forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Col2Im.cpp
246 lines (218 loc) · 7.42 KB
/
Col2Im.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/div_rtn.h>
#include <ATen/native/im2col.h>
#include <ATen/native/im2col_shape_check.h>
// Note [im2col/col2im output padding]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Our implementations of im2col and col2im take both the input height/width as
// well as a seemingly redundant output height/width. In principle, you could
// compute the output height/width by using the convolution shape formulas. So,
// what's up with that?
//
// The trouble arises when one runs the backward of a transposed convolution
// with output_padding >= stride. (BTW, output_padding is known as adj inside
// THNN.) Let's consider a simple case where we have kernel=2, dilation=2,
// stride=1, output_padding=1 for a 4x4 input:
//
// Input: X
//
// Output: X.X.
// ....
// X.X.
// ....
//
// If we compute backwards of output with a standard convolution on the output
// with the same parameters, we would end up with a 2x2 grad_input (because you
// can slide the stencil over to the right once and down once). But that is all
// out-of-bounds if you're computing backwards for a 1x1 input.
//
// "Now Edward," you might say, "the real problem is that you set output_padding
// >= stride, surely an error should have been raised in this case." To
// understand why it is useful to handle this case, we have to understand how we
// compute the weight gradient of a convolution. Suppose we have a convolution
// with kernel=2, stride=2 on a 5x5 input. Let us see all the contributions of
// weight[0][0] (which we have labeled w) in the output:
//
// Input: a.b.. Weight: w.
// ..... ..
// c.d..
// .....
// .....
//
// Output: [ aw+... bw+... ]
// [ cw+... dw+... ]
//
// From this diagram, it easy to see that we can compute the weight gradient
// by performing a *dilated* convolution between the input and the
// output gradients with kernel=2, dilation=2, stride=1. But there's a rub: if
// we do a dilated convolution directly, we'll end up with a 3x3 weight
// gradient, when we clearly wanted a 2x2. So how do we avoid going out
// of bounds? We could add a notion of 'output_padding' for non-transposed
// convolution, but another simple and effective fix is to just accept
// the desired output size directly, and compute only within those bounds.
//
//
// ALSO do vol2col
namespace at {
namespace native {
namespace {
static void col2im_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef output_size,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
TORCH_CHECK(
output_size.size() == 2,
"It is expected output_size equals to 2, but got size ",
output_size.size());
TORCH_CHECK(
kernel_size.size() == 2,
"It is expected kernel_size equals to 2, but got size ",
kernel_size.size());
TORCH_CHECK(
dilation.size() == 2,
"It is expected dilation equals to 2, but got size ",
dilation.size());
TORCH_CHECK(
padding.size() == 2,
"It is expected padding equals to 2, but got size ",
padding.size());
TORCH_CHECK(
stride.size() == 2,
"It is expected stride equals to 2, but got size ",
stride.size());
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
int64_t kernel_height = kernel_size[0];
int64_t kernel_width = kernel_size[1];
int64_t dilation_height = dilation[0];
int64_t dilation_width = dilation[1];
int64_t pad_height = padding[0];
int64_t pad_width = padding[1];
int64_t stride_height = stride[0];
int64_t stride_width = stride[1];
col2im_shape_check(
input_,
Tensor(),
output_height,
output_width,
kernel_height,
kernel_width,
dilation_height,
dilation_width,
pad_height,
pad_width,
stride_height,
stride_width);
Tensor input = input_.contiguous();
bool batched_input = true;
if (input.dim() == 2) {
// Force batch
batched_input = false;
input.resize_({1, input.size(0), input.size(1)});
}
int64_t batch_size = input.size(0);
int64_t n_input_plane = input.size(1);
int64_t n_output_plane = n_input_plane / (kernel_width * kernel_height);
output.resize_({batch_size, n_output_plane, output_height, output_width});
output.zero_();
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(kHalf,
input.scalar_type(), "col2im_out_cpu", [&] {
Tensor input_n = Tensor();
Tensor output_n = Tensor();
int64_t height_col = (output_height + 2 * pad_height -
(dilation_height * (kernel_height - 1) + 1)) /
stride_height +
1;
int64_t width_col = (output_width + 2 * pad_width -
(dilation_width * (kernel_width - 1) + 1)) /
stride_width +
1;
for (int64_t elt = 0; elt < batch_size; elt++) {
input_n = input.select(0, elt);
output_n = output.select(0, elt);
col2im<scalar_t>(
input_n.data_ptr<scalar_t>(),
n_output_plane,
output_height,
output_width,
height_col,
width_col,
kernel_height,
kernel_width,
pad_height,
pad_width,
stride_height,
stride_width,
dilation_height,
dilation_width,
output_n.data_ptr<scalar_t>());
}
if (!batched_input) {
output.resize_({n_output_plane, output_height, output_width});
}
});
}
void col2im_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
// im2col_out_cpu checks size of kernel_size, dilation, padding and stride
at::native::im2col_out_cpu(
grad_output, kernel_size, dilation, padding, stride, grad_input);
}
} // namespace
Tensor& col2im_out_cpu(const Tensor& input,
IntArrayRef output_size,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride,
Tensor& output) {
col2im_out_cpu_template(
output, input, output_size, kernel_size, dilation, padding, stride);
return output;
}
Tensor col2im_cpu(
const Tensor& input,
IntArrayRef output_size,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
Tensor output = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
col2im_out_cpu_template(
output, input, output_size, kernel_size, dilation, padding, stride);
return output;
}
Tensor& col2im_backward_out_cpu(const Tensor& grad_output,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride,
Tensor& grad_input) {
col2im_backward_out_cpu_template(
grad_input, grad_output, kernel_size, dilation, padding, stride);
return grad_input;
}
Tensor col2im_backward_cpu(
const Tensor& grad_output,
IntArrayRef kernel_size,
IntArrayRef dilation,
IntArrayRef padding,
IntArrayRef stride) {
Tensor grad_input = at::empty_like(grad_output, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
col2im_backward_out_cpu_template(
grad_input, grad_output, kernel_size, dilation, padding, stride);
return grad_input;
}
} // namespace native
} // namespace at