forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultiTensorApply.cuh
173 lines (149 loc) · 6.92 KB
/
MultiTensorApply.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#pragma once
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/MemoryAccess.cuh>
namespace at { namespace native {
namespace {
static constexpr int64_t kILP = 4;
static constexpr int64_t kChunkSize = 65536;
static constexpr int64_t kBlockSize = 512;
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
return ((uint64_t)p) % (kILP * sizeof(T)) == 0;
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
using LT = at::native::memory::aligned_vector<T, kILP>;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
// TensorListMetadata has to be < 4KB - the limit for kernel launch argument
static constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
static constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
static constexpr int depth_to_max_tensors_scalarlist[5] = {96, 64, 48, 36, 30};
template<int n> struct TensorListMetadata
{
void* addresses[n][depth_to_max_tensors[n-1]];
int numel_for_tensor[depth_to_max_tensors[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
};
template<typename scalar_vals_t, int n> struct TensorListScalarListMetadata
{
void* addresses[n][depth_to_max_tensors_scalarlist[n-1]];
int numel_for_tensor[depth_to_max_tensors_scalarlist[n-1]];
scalar_vals_t scalar_vals[depth_to_max_tensors_scalarlist[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
};
template<typename T, typename U, typename... ArgTypes>
C10_LAUNCH_BOUNDS_1(kBlockSize)
__global__ void
multi_tensor_apply_kernel(
T tensorListMeta,
U callable,
ArgTypes... args) {
// Hand the chunk information to the user-supplied functor to process however it likes.
callable(kChunkSize, tensorListMeta, args...);
}
template<int depth, typename scalar_T, typename T, typename... ArgTypes>
void multi_tensor_apply(
std::vector<std::vector<at::Tensor>>& tensor_lists,
at::ArrayRef<Scalar> scalars,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
size_t n_tensors = tensor_lists[0].size();
using scalar_vals_t = typename T::opmath_t;
TensorListScalarListMetadata<scalar_vals_t, depth> tensorListMeta;
int loc_block_info = 0;
int loc_tensor_info = 0;
for(size_t t = 0; t < n_tensors; t++) {
tensorListMeta.scalar_vals[loc_tensor_info] = scalars[t].to<scalar_T>();
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
for (int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
}
loc_tensor_info++;
int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
for (int chunk = 0; chunk < chunks; chunk++) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
bool tensors_full = (loc_tensor_info == depth_to_max_tensors_scalarlist[depth-1] &&
chunk == chunks - 1);
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);
if (tensors_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if(chunk == chunks - 1) {
loc_tensor_info = 0;
}
else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
tensorListMeta.scalar_vals[0] = tensorListMeta.scalar_vals[loc_tensor_info-1];
for(int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
}
loc_tensor_info = 1;
}
}
}
}
}
template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply(
std::vector<std::vector<at::Tensor>>& tensor_lists,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
size_t n_tensors = tensor_lists[0].size();
TensorListMetadata<depth> tensorListMeta;
int loc_block_info = 0;
int loc_tensor_info = 0;
for(size_t t = 0; t < n_tensors; t++) {
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
for (int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
}
loc_tensor_info++;
int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
for (int chunk = 0; chunk < chunks; chunk++) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth-1] &&
chunk == chunks - 1);
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);
if (tensors_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if(chunk == chunks - 1) {
loc_tensor_info = 0;
}
else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
for(int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
}
loc_tensor_info = 1;
}
}
}
}
}
} // namespace
}} // at::native