forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Normalization.cuh
1701 lines (1491 loc) · 71 KB
/
Normalization.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include <THC/THCDeviceUtils.cuh>
#include <THC/THCGeneral.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/native/cuda/DeviceSqrt.cuh>
#include <ATen/native/cuda/LaunchUtils.h>
#include <c10/macros/Macros.h>
namespace at { namespace native {
// The maximum number of threads in a block
#if defined(__HIP_PLATFORM_HCC__)
constexpr int MAX_BLOCK_SIZE = 256;
#else
constexpr int MAX_BLOCK_SIZE = 512;
#endif
constexpr unsigned MAX_GRID_SIZE = 65535u;
// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
static int getNumThreads(int nElem) {
#if defined(__HIP_PLATFORM_HCC__)
int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
#else
int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
#endif
for (int i = 0; i != 5; ++i) {
if (nElem <= threadSizes[i]) {
return threadSizes[i];
}
}
return MAX_BLOCK_SIZE;
}
// Returns the index of the most significant 1 bit in `val`.
__device__ __forceinline__ int getMSB(int val) {
return 31 - __clz(val);
}
template <typename scalar_t, typename accscalar_t>
struct Float2 {
accscalar_t v1, v2;
__device__ Float2() {}
__device__ Float2(scalar_t v1, scalar_t v2) : v1(static_cast<accscalar_t>(v1)), v2(static_cast<accscalar_t>(v2)) {}
__device__ Float2(int v) : v1(static_cast<accscalar_t>(v)), v2(static_cast<accscalar_t>(v)) {}
__device__ Float2& operator+=(const Float2& a) {
v1 += a.v1;
v2 += a.v2;
return *this;
}
};
template <typename scalar_t, typename accscalar_t, typename PTA>
struct SumOp {
__device__ SumOp(const PTA& t) : tensor(t) {}
__device__ __forceinline__ accscalar_t operator()(int batch, int plane, int n) {
return static_cast<accscalar_t>(tensor[batch][plane][n]);
}
const PTA& tensor;
};
template <typename scalar_t, typename accscalar_t, typename PTA>
struct VarOp {
__device__ VarOp(accscalar_t m, const PTA& t) : mean(m), tensor(t) {}
__device__ __forceinline__ accscalar_t operator()(int batch, int plane, int n) {
accscalar_t val = tensor[batch][plane][n];
return (val - mean) * (val - mean);
}
const accscalar_t mean;
const PTA& tensor;
};
template <typename scalar_t, typename accscalar_t, typename PTA>
struct GradOp {
__device__ GradOp(accscalar_t m, const PTA& i, const PTA& g)
: mean(m), input(i), grad_output(g) {}
__device__ __forceinline__ Float2<scalar_t, accscalar_t> operator()(int batch, int plane, int n) {
accscalar_t g = grad_output[batch][plane][n];
accscalar_t c = static_cast<accscalar_t>(input[batch][plane][n]) - mean;
return Float2<scalar_t, accscalar_t>(g, g * c);
}
const accscalar_t mean;
const PTA& input;
const PTA& grad_output;
};
// Sum across all threads within a warp
template <typename T>
static __device__ __forceinline__ T warpSum(T val) {
for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
val += WARP_SHFL_XOR(val, 1 << i, C10_WARP_SIZE);
}
return val;
}
template <typename scalar_t, typename accscalar_t>
static __device__ __forceinline__ Float2<scalar_t, accscalar_t> warpSum(Float2<scalar_t, accscalar_t> value) {
value.v1 = warpSum(value.v1);
value.v2 = warpSum(value.v2);
return value;
}
// Sum across (batch, x/y/z) applying Op() pointwise
// this works by first having each thread sum it's part
// of the data. Then there is a double-shuffling reduction.
// First each warp (of C10_WARP_SIZE threads) uses warpSum to reduce its
// data to the "warp leader", who writes its value into shared memory.
// Then a single warp reads the remaining (at most C10_WARP_SIZE) items
// and reduces them using another warpSum.
// The implicit assumption is that there are no more
// than C10_WARP_SIZE**2 threads.
template<typename scalar_t, typename Op, typename PTA>
__device__ scalar_t reduce(Op op, PTA tensor, int plane) {
// first the reductions each thread does separately
scalar_t sum = static_cast<scalar_t>(0);
for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) {
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) {
sum += op(batch, plane, x);
}
}
// first warpSum to get one value per thread to
// one value per warp
sum = warpSum(sum);
// this writes each warps item into shared memory
// there are at most C10_WARP_SIZE items left because
// there are at most C10_WARP_SIZE**2 threads at the beginning
__shared__ scalar_t shared[C10_WARP_SIZE];
__syncthreads();
int tid = threadIdx.x + threadIdx.y * blockDim.x;
if (tid % C10_WARP_SIZE == 0) {
shared[tid / C10_WARP_SIZE] = sum;
}
if (tid >= blockDim.x * blockDim.y / C10_WARP_SIZE && tid < C10_WARP_SIZE) {
// zero out the other entries in shared
shared[tid] = (scalar_t)0;
}
__syncthreads();
// now have a second warpSum to reduce the intermediate values
// from shared memory to a single number. The very first
// thread writes it to shared memory.
if (tid / C10_WARP_SIZE == 0) {
sum = warpSum(shared[tid]);
if (tid == 0) {
shared[0] = sum;
}
}
__syncthreads();
// Everyone picks it up, should be broadcast into the whole grad_input
return shared[0];
}
constexpr int ELEMENTS_PER_ITER = 4; // enables concurrency within each thread to hide latency
constexpr int ELEMENTS_PER_THREAD = 16;
constexpr int OPTIMAL_TILE_W = 32;
constexpr int MAX_H_BLOCK = 128;
__host__ void flexible_launch_configs(
const int reduction,
const int stride,
dim3 &block,
dim3 &grid,
const bool coop_flag = false) {
int block_x = std::min(lastPow2(stride), OPTIMAL_TILE_W);
int block_y = std::min(lastPow2(at::cuda::ATenCeilDiv(reduction , ELEMENTS_PER_THREAD)),
MAX_BLOCK_SIZE / block_x);
if (block_x * block_y != MAX_BLOCK_SIZE) {
block_x = std::min(lastPow2(stride), MAX_BLOCK_SIZE / block_y);
}
int grid_x = at::cuda::ATenCeilDiv(stride, block_x);
int grid_y = std::min(at::cuda::ATenCeilDiv(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
if (coop_flag) {
// it's not worth having a grid reduction if the reduction dimension is not big enough
grid_y = grid_y < 8 ? 1 : grid_y;
}
block.x = block_x;
block.y = block_y;
block.z = 1;
grid.x = grid_x;
grid.y = grid_y;
grid.z = 1;
}
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_element(C& count,
T& mean,
T& m2n,
const C& count_new,
const T& mean_new,
const T& m2n_new) {
T factor = T(1.0) / ::max(1, (count + count_new));
T delta0 = mean - mean_new;
mean = (mean_new * count_new + mean * count) * factor;
m2n += m2n_new + delta0 * delta0 * count_new * count * factor;
count += count_new;
}
// merge mean/m2n among threadIdx.y within block
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
T& mean,
T& m2n,
C* shmem_count,
T* shmem_mean,
T* shmem_m2n) {
// write to shared memory
auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
#pragma unroll
for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
if (threadIdx.y < offset*2) {
shmem_mean[address_base] = mean;
shmem_m2n[address_base] = m2n;
shmem_count[address_base] = count;
}
__syncthreads();
if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
auto address = address_base + offset * blockDim.x;
// read shared memory back to register for reduction
auto count_new = shmem_count[address];
auto mean_new = shmem_mean[address];
auto m2n_new = shmem_m2n[address];
welford_merge_element(count, mean, m2n, count_new, mean_new, m2n_new);
}
}
}
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, bool train, typename index_t>
__global__ void batch_norm_transform_input_kernel(
const GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> input,
GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> output,
const GenericPackedTensorAccessor<typename std::conditional<train, stat_accscalar_t, stat_scalar_t>::type, 1, RestrictPtrTraits, index_t> mean_,
const GenericPackedTensorAccessor<typename std::conditional<train, stat_accscalar_t, stat_scalar_t>::type, 1, RestrictPtrTraits, index_t> var_or_invstd,
const GenericPackedTensorAccessor<stat_scalar_t, 1, RestrictPtrTraits, index_t> weight,
const GenericPackedTensorAccessor<stat_scalar_t, 1, RestrictPtrTraits, index_t> bias,
stat_accscalar_t epsilon) {
index_t plane = blockIdx.x;
if (plane >= input.size(1)) {
return;
}
stat_accscalar_t gamma = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : static_cast<stat_accscalar_t>(1);
stat_accscalar_t beta = bias.size(0) > 0 ? static_cast<stat_accscalar_t>(bias[plane]) : static_cast<stat_accscalar_t>(0);
stat_accscalar_t mean = static_cast<stat_accscalar_t>(mean_[plane]);
stat_accscalar_t invstd;
if (train) {
invstd = var_or_invstd[plane];
} else {
invstd = static_cast<stat_accscalar_t>(1) / device_sqrt(static_cast<stat_accscalar_t>(var_or_invstd[plane]) + epsilon);
}
index_t bs = input.size(0);
index_t fs = input.size(2);
index_t bstep = blockDim.y * gridDim.y;
for (index_t batch = threadIdx.y + blockIdx.y * blockDim.y; batch < bs; batch += bstep) {
auto o = output[batch][plane];
auto i = input[batch][plane];
for (index_t feature = threadIdx.x; feature < fs; feature += blockDim.x) {
o[feature] = static_cast<input_scalar_t>(gamma * (i[feature] - mean) * invstd + beta);
}
}
}
struct InvStd {
template <typename T>
__device__ __forceinline__ T operator()(T var, double epsilon) const {
T invstd = 0;
if (var != static_cast<T>(0) || epsilon != static_cast<T>(0)) {
invstd = static_cast<T>(1) / device_sqrt(var + epsilon);
}
return invstd;
}
};
struct Var {
template <typename T>
__device__ __forceinline__ T operator()(T var, double epsilon) const {
return var;
}
};
template <typename VarTransform, typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_collect_statistics_kernel(
const GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> input,
const stat_accscalar_t epsilon,
const stat_accscalar_t momentum,
GenericPackedTensorAccessor<stat_accscalar_t, 1, RestrictPtrTraits, index_t> save_mean,
GenericPackedTensorAccessor<stat_accscalar_t, 1, RestrictPtrTraits, index_t> save_transformed_var) {
__shared__ int shared_n[2 * 2 * C10_WARP_SIZE + C10_WARP_SIZE];
int plane = blockIdx.x;
int N = input.size(0) * input.size(2);
int tid = threadIdx.x + threadIdx.y * blockDim.x;
// Compute the mean and variance across (batch, x/y/z)
// this uses the Welford (in the for loop)/parallel algorithm (to sum across the block)
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_Online_algorithm
// and the parallel algorithm on the same page.
// We use two shuffles to reduce across the entire block.
// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/ has a description.
stat_accscalar_t* shared_avg_var = (stat_accscalar_t*) &shared_n[C10_WARP_SIZE];
// first the reductions each thread does separately
stat_accscalar_t avg = 0;
stat_accscalar_t var_n = 0;
int n = 0;
for (int batch = threadIdx.y; batch < input.size(0); batch += blockDim.y) {
for (int x = threadIdx.x; x < input.size(2); x += blockDim.x) {
stat_accscalar_t v = input[batch][plane][x];
stat_accscalar_t d1 = v - avg;
n++;
avg += d1 / n;
var_n += d1 * (v - avg);
}
}
// first warpSum to get one value per thread to
// one value per warp
for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
stat_accscalar_t o_avg = WARP_SHFL_XOR(avg, 1 << i, C10_WARP_SIZE);
int o_n = WARP_SHFL_XOR(n, 1 << i, C10_WARP_SIZE);
stat_accscalar_t factor = 1.0 / fmaxf(1.0, n+o_n);
var_n += WARP_SHFL_XOR(var_n, 1 << i, C10_WARP_SIZE) + (avg - o_avg) * (avg - o_avg) * n * o_n * factor;
avg = (n * avg + o_n * o_avg) * factor;
n += o_n;
}
// this writes each warps item into shared memory
// there are at most C10_WARP_SIZE items left because
// there are at most C10_WARP_SIZE**2 threads at the beginning
__syncthreads();
if (tid % C10_WARP_SIZE == 0) {
shared_n[tid / C10_WARP_SIZE] = n;
shared_avg_var[tid / C10_WARP_SIZE * 2] = avg;
shared_avg_var[tid / C10_WARP_SIZE * 2 + 1] = var_n;
}
__syncthreads();
// now have a second warpSum to reduce the intermediate values
// from shared memory to a single number. The very first
// thread writes it to shared memory.
if (tid < C10_WARP_SIZE) {
n = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_n[tid] : 0);
avg = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_avg_var[2 * tid] : stat_accscalar_t(0));
var_n = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_avg_var[2 * tid + 1] : stat_accscalar_t(0));
}
for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
stat_accscalar_t o_avg = WARP_SHFL_XOR(avg, 1 << i, C10_WARP_SIZE);
int o_n = WARP_SHFL_XOR(n, 1 << i, C10_WARP_SIZE);
stat_accscalar_t factor = 1.0 / fmaxf(1.0, n+o_n);
var_n += WARP_SHFL_XOR(var_n, 1 << i, C10_WARP_SIZE) + (avg - o_avg) * (avg - o_avg) * n * o_n * factor;
avg = (n * avg + o_n * o_avg) * factor;
n += o_n;
}
// Save the mean, variance, and moving averages
if (tid == 0) {
if (save_mean.data() != NULL) {
save_mean[plane] = avg;
}
if (save_transformed_var.data() != NULL) {
save_transformed_var[plane] = VarTransform{}(var_n / N, epsilon);
}
}
}
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_kernel(
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias,
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> running_mean,
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> running_var,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_mean,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_invstd,
bool train,
stat_accscalar_t epsilon) {
index_t plane = blockIdx.x;
index_t N = grad_output.size(0) * grad_output.size(2);
stat_accscalar_t mean, invstd;
if (train) {
mean = save_mean[plane];
invstd = save_invstd[plane];
} else {
mean = static_cast<stat_accscalar_t>(running_mean[plane]);
invstd = static_cast<stat_accscalar_t>(1) / device_sqrt(static_cast<stat_accscalar_t>(running_var[plane]) + epsilon);
}
stat_accscalar_t weight_val = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : stat_accscalar_t(1);
stat_accscalar_t norm = stat_accscalar_t(1) / N;
// Compute two values across (batch, x/y/z) in one pass:
// 1. Sum(grad_output)
// 2. DotProduct(input - mean, grad_output)
GradOp<input_scalar_t, stat_accscalar_t, GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>> g(mean, input, grad_output);
auto res = reduce<Float2<input_scalar_t, stat_accscalar_t>>(g, grad_output, plane);
stat_accscalar_t grad_output_sum = res.v1;
stat_accscalar_t dot_p = res.v2;
stat_accscalar_t grad_mean = grad_output_sum * norm;
stat_accscalar_t proj_scale = dot_p * norm * invstd * invstd;
stat_accscalar_t grad_scale = invstd * weight_val;
if (grad_input.data() != NULL) {
for (int batch = threadIdx.y; batch < grad_output.size(0); batch += blockDim.y) {
for (int x = threadIdx.x; x < grad_output.size(2); x += blockDim.x) {
input_scalar_t go = grad_output[batch][plane][x];
if (train) {
stat_accscalar_t inp = input[batch][plane][x];
stat_accscalar_t proj = (inp - mean) * proj_scale;
grad_input[batch][plane][x] = static_cast<input_scalar_t>((go - proj - grad_mean) * grad_scale);
} else {
grad_input[batch][plane][x] = static_cast<input_scalar_t>(go * grad_scale);
}
}
}
}
if (grad_weight.size(0) > 0) {
if (threadIdx.x == 0) {
grad_weight[plane] = static_cast<stat_scalar_t>(dot_p * invstd);
}
}
if (grad_bias.size(0) > 0) {
if (threadIdx.x == 0) {
grad_bias[plane] = static_cast<stat_scalar_t>(grad_output_sum);
}
}
}
template <typename scalar_t, typename accscalar_t, typename index_t>
__global__ void batch_norm_reduce_statistics_kernel(
const GenericPackedTensorAccessor<accscalar_t, 2, RestrictPtrTraits, index_t> vec_mean,
const GenericPackedTensorAccessor<accscalar_t, 2, RestrictPtrTraits, index_t> vec_invstd,
GenericPackedTensorAccessor<accscalar_t, 1, RestrictPtrTraits, index_t> mean,
GenericPackedTensorAccessor<accscalar_t, 1, RestrictPtrTraits, index_t> invstd,
GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> running_mean,
GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> running_var,
const accscalar_t epsilon,
const accscalar_t momentum,
const GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> counts) {
int feature_size = vec_mean.size(1);
int world_size = vec_mean.size(0);
int bid = blockIdx.x;
int tid = threadIdx.x;
// first the reductions each thread does separately
for (int i = bid*blockDim.x+tid; i < feature_size; i += gridDim.x*blockDim.x) {
accscalar_t avg = 0;
accscalar_t var_n = 0;
index_t n = 0;
for (int j = 0; j < world_size; j++) {
scalar_t count = counts[j];
accscalar_t m = vec_mean[j][i];
accscalar_t v = accscalar_t(1.0) / (vec_invstd[j][i]);
v = (v * v - epsilon) * count;
accscalar_t factor = 1.0 / (n + count);
var_n += v + (avg - m) * (avg - m) * n * count * factor;
avg = n * factor * avg + count * factor * m;
n += count;
}
mean[i] = avg;
invstd[i] = static_cast<accscalar_t>(1) / device_sqrt(var_n / n + epsilon);
if (running_mean.data() != NULL) {
running_mean[i] = static_cast<scalar_t>((1 - momentum) * running_mean[i] + momentum * avg);
}
accscalar_t unbiasedVar = var_n / (n - 1);
if (running_var.data() != NULL) {
running_var[i] = static_cast<scalar_t>((1 - momentum) * running_var[i] + momentum * unbiasedVar);
}
}
}
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_reduce_kernel(
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias) {
index_t plane = blockIdx.x;
stat_accscalar_t r_mean = mean[plane];
stat_accscalar_t factor = invstd[plane];
GradOp<input_scalar_t, stat_accscalar_t, GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>> g(r_mean, input, grad_output);
auto res = reduce<Float2<input_scalar_t, stat_accscalar_t>>(g, grad_output, plane);
if (threadIdx.x == 0) {
if (grad_weight.size(0) > 0) {
grad_weight[plane] = static_cast<stat_scalar_t>(res.v2 * factor);
}
if (grad_bias.size(0) > 0) {
grad_bias[plane] = static_cast<stat_scalar_t>(res.v1);
}
if (sum_dy.size(0) > 0) {
sum_dy[plane] = static_cast<stat_accscalar_t>(res.v1);
}
if (sum_dy_xmu.size(0) > 0) {
sum_dy_xmu[plane] = static_cast<stat_accscalar_t>(res.v2);
}
}
}
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__device__ __forceinline__ void batch_norm_backward_elemt_kernel_impl(
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
const stat_accscalar_t norm_fct) {
index_t plane = blockIdx.x;
if (plane >= input.size(1)) {
return;
}
stat_accscalar_t m_c = mean[plane];
stat_accscalar_t m_dy_c = sum_dy[plane] * norm_fct;
stat_accscalar_t factor_1_c = invstd[plane];
stat_accscalar_t factor_2_c = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : stat_accscalar_t(1);
factor_2_c *= factor_1_c;
factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[plane] * norm_fct;
index_t bs = input.size(0);
index_t fs = input.size(2);
index_t bstep = blockDim.y * gridDim.y;
for (index_t batch = threadIdx.y + blockIdx.y * blockDim.y; batch < bs; batch += bstep) {
auto g_i = grad_input[batch][plane];
auto g_o = grad_output[batch][plane];
auto i = input[batch][plane];
for (index_t feature = threadIdx.x; feature < fs; feature += blockDim.x) {
g_i[feature] = static_cast<input_scalar_t>((g_o[feature] - m_dy_c - (i[feature] - m_c) * factor_1_c) * factor_2_c);
}
}
}
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_elemt_kernel(
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
const int* __restrict__ numel, const int world_size) {
int64_t total_numel = 0;
for (int i = 0; i < world_size; i ++) {
total_numel += numel[i];
}
const stat_accscalar_t norm_fct =
static_cast<stat_accscalar_t>(1) / static_cast<stat_accscalar_t>(total_numel);
batch_norm_backward_elemt_kernel_impl(
input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
}
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_elemt_kernel(
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
const stat_accscalar_t norm_fct) {
batch_norm_backward_elemt_kernel_impl(
input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
}
template <typename scalar_t, int64_t dim, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
static GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t> packed_accessor_or_dummy(const Tensor& t) {
if (! t.defined()) {
const std::vector<index_t> zeros(dim);
return GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t>(nullptr, zeros.data(), zeros.data());
}
return t.generic_packed_accessor<scalar_t, dim, PtrTraits, index_t>();
}
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cuda_template(const Tensor& grad_out_, const Tensor& input_, const Tensor& weight_,
const Tensor& running_mean_, const Tensor& running_var_, const Tensor& save_mean_, const Tensor& save_invstd_,
bool train, double epsilon, std::array<bool,3> grad_input_mask) {
using accscalar_t = at::acc_type<stat_scalar_t, true>;
Tensor grad_input_;
Tensor grad_input_reshaped;
Tensor grad_weight_;
Tensor grad_bias_;
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1});
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
if (grad_input_mask[0]) {
grad_input_ = at::empty_like(input_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
grad_input_reshaped = grad_input_.view(input_reshaped.sizes());
}
if (grad_input_mask[1]) {
grad_weight_ = at::empty_like(weight_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
}
if (grad_input_mask[2]) {
grad_bias_ = at::empty_like(weight_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
}
auto input = input_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_output = grad_output_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_input = packed_accessor_or_dummy<input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped);
auto weight = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_);
auto grad_weight = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_weight_);
auto grad_bias = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_);
auto running_mean = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(running_mean_);
auto running_var = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(running_var_);
auto save_mean = packed_accessor_or_dummy<accscalar_t, 1, DefaultPtrTraits, index_t>(save_mean_);
auto save_invstd = packed_accessor_or_dummy<accscalar_t, 1, DefaultPtrTraits, index_t>(save_invstd_);
auto stream = at::cuda::getCurrentCUDAStream();
dim3 blocks(input.size(1));
int tf = getNumThreads(input.size(2));
dim3 threads(tf, std::max<int>(1, MAX_BLOCK_SIZE/tf));
batch_norm_backward_kernel<input_scalar_t, stat_scalar_t, accscalar_t, index_t> <<<blocks, threads, 0, stream>>>
(input, grad_output, grad_input, grad_weight, grad_bias, weight, running_mean, running_var,
save_mean, save_invstd, train, epsilon);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return std::make_tuple(grad_input_, grad_weight_, grad_bias_);
}
template<typename scalar_t, typename index_t, typename VarTransform>
void batch_norm_stats_cuda_template(
const Tensor& out_mean, const Tensor& out_invstd, const Tensor& input_, double epsilon) {
using accscalar_t = at::acc_type<scalar_t, true>;
int64_t n_input = input_.size(1);
Tensor dummy_mean_;
Tensor dummy_var_;
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
auto input = input_reshaped.generic_packed_accessor<scalar_t, 3, RestrictPtrTraits, index_t>();
TORCH_INTERNAL_ASSERT(out_invstd.dim() == 1 && out_invstd.is_contiguous() &&
out_invstd.sizes()[0]);
TORCH_INTERNAL_ASSERT(out_mean.dim() == 1 && out_mean.is_contiguous() &&
out_mean.sizes()[0]);
auto mean = packed_accessor_or_dummy<accscalar_t, 1, RestrictPtrTraits, index_t>(out_mean);
auto invstd = packed_accessor_or_dummy<accscalar_t, 1, RestrictPtrTraits, index_t>(out_invstd);
auto stream = at::cuda::getCurrentCUDAStream();
dim3 blocks(input.size(1));
int tf = getNumThreads(input.size(2));
dim3 threads(tf, std::max<int>(1, MAX_BLOCK_SIZE/tf));
batch_norm_collect_statistics_kernel<VarTransform, scalar_t, scalar_t, accscalar_t, index_t> <<<blocks, threads, 0, stream>>>
(input, epsilon, 0.0, mean, invstd);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
void batch_norm_elemt_cuda_template(const Tensor& output_, const Tensor& input_, const Tensor& weight_,
const Tensor& bias_, const Tensor& mean_, const Tensor& invstd_) {
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
int64_t n_input = input_.size(1);
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
auto output_reshaped = output_.view({input_.size(0), input_.size(1), -1});
auto input = input_reshaped.generic_packed_accessor<input_scalar_t, 3, RestrictPtrTraits, index_t>();
auto output = output_reshaped.generic_packed_accessor<input_scalar_t, 3, RestrictPtrTraits, index_t>();
auto weight = packed_accessor_or_dummy<stat_scalar_t, 1, RestrictPtrTraits, index_t>(weight_);
auto bias = packed_accessor_or_dummy<stat_scalar_t, 1, RestrictPtrTraits, index_t>(bias_);
auto mean = packed_accessor_or_dummy<stat_accscalar_t, 1, RestrictPtrTraits, index_t>(mean_);
auto invstd = packed_accessor_or_dummy<stat_accscalar_t, 1, RestrictPtrTraits, index_t>(invstd_);
auto stream = at::cuda::getCurrentCUDAStream();
// NOTE: We use transform_input_kernel in training mode, which ignores epsilon
const double dummy_epsilon = 1e-5;
// The input_transform kernel is pointwise, but we need to balance reading parameters (save_var/mean,
// weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
// and good occupancy. Quiet likely, we could go with even more blocks than 1024.
// The various planes are independent, so we use blocks for them.
int tf = std::max<int>(getNumThreads(input.size(2)/4),
std::min<int>(getNumThreads(input.size(2)), 64));
int tb = std::max<int>(64/tf, 1);
dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
(input.size(0)+tb-1)/tb)));
blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
dim3 threads_trans(tf, tb);
batch_norm_transform_input_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, true, index_t> <<<blocks_trans, threads_trans, 0, stream>>>
(input, output, mean, invstd, weight, bias, dummy_epsilon);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<typename scalar_t, typename accscalar_t, typename index_t>
std::tuple<Tensor, Tensor> batch_norm_gather_stats_cuda_template(const Tensor& mean_, const Tensor& invstd_,
const Tensor& running_mean_, const Tensor& running_var_,
double momentum, double epsilon, const Tensor& counts_) {
Tensor save_mean_;
Tensor save_invstd_;
auto features = mean_.size(1);
auto input_options = mean_.options();
if (mean_.scalar_type() == at::ScalarType::Half || mean_.scalar_type() == at::ScalarType::BFloat16) {
input_options = input_options.dtype(ScalarType::Float);
}
save_mean_ = at::empty({features}, input_options);
save_invstd_ = at::empty({features}, input_options);
auto mean = packed_accessor_or_dummy<accscalar_t, 2, RestrictPtrTraits, index_t>(mean_);
auto invstd = packed_accessor_or_dummy<accscalar_t, 2, RestrictPtrTraits, index_t>(invstd_);
auto running_mean = packed_accessor_or_dummy<scalar_t, 1, RestrictPtrTraits, index_t>(running_mean_);
auto running_var = packed_accessor_or_dummy<scalar_t, 1, RestrictPtrTraits, index_t>(running_var_);
auto counts = packed_accessor_or_dummy<scalar_t, 1, RestrictPtrTraits, index_t>(counts_);
auto save_mean = save_mean_.generic_packed_accessor<accscalar_t, 1, RestrictPtrTraits, index_t>();
auto save_invstd = save_invstd_.generic_packed_accessor<accscalar_t, 1, RestrictPtrTraits, index_t>();
auto stream = at::cuda::getCurrentCUDAStream();
int block = getNumThreads(features);
int grid = std::max<int>(1, features/block);
batch_norm_reduce_statistics_kernel<scalar_t, accscalar_t, index_t> <<<grid, block, 0, stream>>>
(mean, invstd, save_mean, save_invstd, running_mean, running_var, epsilon, momentum, counts);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return std::make_tuple(save_mean_, save_invstd_);
}
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
std::tuple<Tensor, Tensor, Tensor, Tensor> batch_norm_backward_reduce_cuda_template(const Tensor& grad_out_, const Tensor& input_,
const Tensor& mean_, const Tensor& invstd_, const Tensor& weight_,
const bool input_g, const bool weight_g, const bool bias_g) {
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
int64_t n_input = input_.size(1);
Tensor sum_dy_;
Tensor sum_dy_xmu_;
Tensor grad_weight_;
Tensor grad_bias_;
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
if (input_g) {
sum_dy_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
sum_dy_xmu_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
}
if (weight_g) {
grad_weight_ = at::empty({n_input}, weight_.options());
}
if (bias_g) {
grad_bias_ = at::empty({n_input}, weight_.options());
}
auto input = input_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_output = grad_output_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_weight = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_weight_);
auto grad_bias = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_);
auto mean = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_);
auto invstd = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_);
auto sum_dy = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_);
auto sum_dy_xmu = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_);
auto batch_size = input_reshaped.size(0);
auto feature_size = input_reshaped.size(2);
auto stream = at::cuda::getCurrentCUDAStream();
int block_y = std::min<int>(lastPow2(batch_size), MAX_BLOCK_SIZE/C10_WARP_SIZE);
// We want block_x to be at least a warp width
int block_x = std::min<int>(std::max<int>(getNumThreads(feature_size), C10_WARP_SIZE), MAX_BLOCK_SIZE/block_y);
const dim3 block(block_x, block_y);
const dim3 grid(n_input);
batch_norm_backward_reduce_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<grid, block, 0, stream>>>
(input, grad_output, mean, invstd, sum_dy, sum_dy_xmu, grad_weight, grad_bias);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return std::make_tuple(sum_dy_, sum_dy_xmu_, grad_weight_, grad_bias_);
}
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
Tensor batch_norm_backward_elemt_cuda_template(const Tensor& grad_out_, const Tensor& input_,
const Tensor& mean_, const Tensor& invstd_,
const Tensor& weight_, const Tensor& sum_dy_, const Tensor& sum_dy_xmu_) {
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
int64_t n_input = input_.size(1);
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
auto grad_input_reshaped = at::empty_like(input_reshaped, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto input = input_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_input = grad_input_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_output = grad_output_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto mean = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_);
auto invstd = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_);
auto weight = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_);
auto sum_dy = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_);
auto sum_dy_xmu = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_);
auto stream = at::cuda::getCurrentCUDAStream();
// The kernel is pointwise, but we need to balance reading parameters (save_var/mean,
// weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
// and good occupancy. Quiet likely, we could go with even more blocks than 1024.
// The various planes are independent, so we use blocks for them.
int tf = std::max<int>(getNumThreads(input.size(2)/4),
std::min<int>(getNumThreads(input.size(2)), 64));
int tb = std::max<int>(64/tf, 1);
dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
(input.size(0)+tb-1)/tb)));
blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
dim3 threads_trans(tf, tb);
auto reduction_size = input_.numel() / n_input;
auto norm_fct = static_cast<stat_accscalar_t>(1.0 / reduction_size);
batch_norm_backward_elemt_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t>
<<<blocks_trans, threads_trans, 0, stream>>>
(input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return grad_input_reshaped.view(input_.sizes());
}
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
Tensor batch_norm_backward_elemt_cuda_template(const Tensor& grad_out_, const Tensor& input_,
const Tensor& mean_, const Tensor& invstd_,
const Tensor& weight_, const Tensor& sum_dy_, const Tensor& sum_dy_xmu_, const Tensor& count) {
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
int64_t n_input = input_.size(1);
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
auto grad_input_reshaped = at::empty_like(input_reshaped, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto input = input_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_input = grad_input_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto grad_output = grad_output_reshaped.generic_packed_accessor<input_scalar_t, 3, DefaultPtrTraits, index_t>();
auto mean = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_);
auto invstd = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_);
auto weight = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_);
auto sum_dy = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_);
auto sum_dy_xmu = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_);
auto stream = at::cuda::getCurrentCUDAStream();
// The kernel is pointwise, but we need to balance reading parameters (save_var/mean,
// weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
// and good occupancy. Quiet likely, we could go with even more blocks than 1024.
// The various planes are independent, so we use blocks for them.
int tf = std::max<int>(getNumThreads(input.size(2)/4),
std::min<int>(getNumThreads(input.size(2)), 64));
int tb = std::max<int>(64/tf, 1);
dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
(input.size(0)+tb-1)/tb)));
blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
dim3 threads_trans(tf, tb);
batch_norm_backward_elemt_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<blocks_trans, threads_trans, 0, stream>>>
(input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, count.data_ptr<int>(), count.numel());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return grad_input_reshaped.view(input_.sizes());
}
// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
// original apex name: welford_kernel_c_last
template
<typename VarTransform,
typename scalar_t,
typename accscalar_t,
int PARALLEL_LOADS>
__global__ void
batch_norm_collect_statistics_channels_last_kernel(
const scalar_t* __restrict__ input,
accscalar_t* __restrict__ out_mean,
accscalar_t* __restrict__ out_invstd,
volatile accscalar_t* staging_data,
int* semaphores,
const int reduction_size,
const int stride,
accscalar_t epsilon) {
// hide latency with concurrency
accscalar_t x_mean[PARALLEL_LOADS];
accscalar_t m_2_n[PARALLEL_LOADS];
int count[PARALLEL_LOADS];
#pragma unroll
for (int i = 0; i < PARALLEL_LOADS; i++) {
x_mean[i] = accscalar_t(0);
m_2_n[i] = accscalar_t(0);
count[i] = accscalar_t(0);
}
// tensor dimension (m,c)
// loop along m dimension
int inner_loop_stride = blockDim.y * gridDim.y;
// offset along m dimension
int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
int c_offset = blockIdx.x * blockDim.x + threadIdx.x;
int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
int address_base = m_offset * stride + c_offset;
int address_increment = inner_loop_stride * stride;
for (int i = 0; i < loop_count; i++) {
accscalar_t x_math[PARALLEL_LOADS];
accscalar_t x_count_inv[PARALLEL_LOADS];
accscalar_t is_valid[PARALLEL_LOADS];
// load multiple data in
#pragma unroll
for (int j = 0; j < PARALLEL_LOADS; j++) {
if (c_offset < stride && m_offset < reduction_size) {
x_math[j] = input[address_base];
count[j]++;
x_count_inv[j] = accscalar_t(1) / count[j];
is_valid[j] = accscalar_t(1);
} else {
x_math[j] = accscalar_t(0);
x_count_inv[j] = accscalar_t(0);
is_valid[j] = accscalar_t(0);
}
m_offset += inner_loop_stride;
address_base += address_increment;
}
// calculate mean/m2n with welford
#pragma unroll
for (int j = 0; j < PARALLEL_LOADS; j++) {
accscalar_t delta0 = x_math[j] - x_mean[j];
x_mean[j] += delta0 * x_count_inv[j];
accscalar_t delta1 = x_math[j] - x_mean[j];
m_2_n[j] += delta0 * delta1 * is_valid[j];
}
}
// thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
#pragma unroll
for (int j = 1; j < PARALLEL_LOADS; j++) {
welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
}
// release x_mean / m_2_n
auto mean_th = x_mean[0];
auto m2_th = m_2_n[0];
auto count_th = count[0];
// block-wise reduction with shared memory (since reduction cannot be done within a warp)
static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
static __shared__ int shmem_count[MAX_BLOCK_SIZE];
welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
if (gridDim.y > 1) {
volatile accscalar_t* staging_mean = staging_data;
volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);
address_base = c_offset + blockIdx.y * stride;
// write data to staging_data;
if (threadIdx.y == 0 && c_offset < stride) {
staging_mean[address_base] = mean_th;
staging_m2n[address_base] = m2_th;
staging_count[address_base] = count_th;