forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LossCTC.cpp
143 lines (117 loc) · 4.7 KB
/
LossCTC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Config.h>
#include <ATen/cuda/CUDAConfig.h>
#if AT_CUDNN_ENABLED()
#include <ATen/cudnn/Descriptors.h>
#endif
#if (!AT_CUDNN_ENABLED()) || (CUDNN_VERSION < 7600)
namespace at { namespace native {
// See Note [ATen preprocessor philosophy]
bool _use_cudnn_ctc_loss(
const Tensor& log_probs,
const Tensor& targets,
IntArrayRef input_lengths,
IntArrayRef target_lengths,
int64_t BLANK) {
return false;
}
std::tuple<Tensor, Tensor> _cudnn_ctc_loss(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK, bool deterministic, bool zero_infinity) {
AT_ERROR("cudnn_ctc_loss: ATen not compiled with cuDNN >= 7 support");
}
}}
#else // AT_CUDNN_ENABLED
#include <ATen/cudnn/Descriptors.h>
#include <ATen/cudnn/Types.h>
#include <ATen/cudnn/Utils.h>
#include <ATen/TensorUtils.h>
namespace at { namespace native {
bool _use_cudnn_ctc_loss(
const Tensor& log_probs,
const Tensor& targets,
IntArrayRef input_lengths,
IntArrayRef target_lengths,
int64_t BLANK) {
auto& ctx = at::globalContext();
bool use_cudnn = ctx.userEnabledCuDNN() && (BLANK == 0) &&
(targets.dim() == 1) && (log_probs.scalar_type() == at::kFloat) &&
(targets.scalar_type() == at::kInt) &&
(log_probs.device().type() == at::kCUDA);
if (use_cudnn) {
// we don't know that input_lengths and target_lengths have the same size
// (they should, but we didn't check yet)
int64_t max_input_length = log_probs.size(0);
for (size_t b = 0; b < input_lengths.size(); b++) {
use_cudnn &= (input_lengths[b] == max_input_length);
}
for (size_t b = 0; b < target_lengths.size(); b++) {
// target length < 256 is documented, but we see illegal memory accesses
// when target lengths > input lengths for CuDNN
use_cudnn &=
(target_lengths[b] < 256) & (target_lengths[b] <= input_lengths[b]);
}
}
return use_cudnn;
}
std::tuple<Tensor, Tensor> _cudnn_ctc_loss(const Tensor& log_probs_t, const Tensor& targets_t, IntArrayRef input_lengths_, IntArrayRef target_lengths_, int64_t BLANK, bool deterministic, bool zero_infinity) {
(void)zero_infinity; // only used for backward
CheckedFrom c = "cudnn_ctc_loss";
TensorArg log_probs { log_probs_t, "log_probs", 1 };
TensorArg targets { targets_t, "targets", 2 };
checkDim(c, log_probs, 3);
checkScalarType(c, log_probs, kFloat);
checkDim(c, targets, 1);
checkScalarType(c, targets, kInt);
checkContiguous(c, targets); // ?
checkBackend(c, {*log_probs}, Backend::CUDA);
checkBackend(c, {*targets}, Backend::CPU);
int64_t batch_size = log_probs->size(1);
TORCH_CHECK(input_lengths_.size() == batch_size, "input_lengths needs to have size to match batch_size");
TORCH_CHECK(target_lengths_.size() == batch_size, "target_lengths needs to have size to match batch_size");
std::vector<int> input_lengths(input_lengths_.begin(), input_lengths_.end());
std::vector<int> target_lengths(target_lengths_.begin(), target_lengths_.end());
TORCH_CHECK(BLANK == 0, "blank must be label 0 for cudnn_ctc_loss");
// checked in dispatch:
// assert other conditions for cudnnCTCLoss: all label lengths <= 256
// all input lengths = logprob.size(0)
auto handle = getCudnnHandle();
cudnnCTCLossAlgo_t algo = (deterministic ? CUDNN_CTC_LOSS_ALGO_DETERMINISTIC : CUDNN_CTC_LOSS_ALGO_NON_DETERMINISTIC);
CTCLossDescriptor ctc_loss_desc;
// so the CuDNN gradient semantics have changed between 7.1 and 7.6,
// this is CuDNN 7.6 only, see PyTorch 1.2 for older CuDNN.
ctc_loss_desc.setEx(
CUDNN_DATA_FLOAT, CUDNN_LOSS_NORMALIZATION_SOFTMAX, CUDNN_PROPAGATE_NAN);
TensorDescriptor log_probs_desc{log_probs_t};
Tensor grad = at::empty_like(log_probs_t, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
TensorDescriptor grad_desc{grad};
size_t workspace_size;
AT_CUDNN_CHECK(cudnnGetCTCLossWorkspaceSize(
handle,
log_probs_desc.desc(),
grad_desc.desc(),
targets->data_ptr<int>(),
target_lengths.data(),
input_lengths.data(),
algo,
ctc_loss_desc.desc(),
&workspace_size));
Tensor workspace = at::empty(workspace_size, log_probs->options().dtype(kByte));
Tensor costs = at::empty({log_probs->size(1)}, log_probs->options());
AT_CUDNN_CHECK(cudnnCTCLoss(
handle,
log_probs_desc.desc(),
log_probs_t.data_ptr(),
targets->data_ptr<int>(),
target_lengths.data(),
input_lengths.data(),
costs.data_ptr(),
grad_desc.desc(),
grad.data_ptr(),
algo,
ctc_loss_desc.desc(),
workspace.data_ptr(),
workspace_size));
return std::make_tuple(costs, grad);
}
}} // namespace at::native
#endif