forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
THCTensorInfo.cuh
260 lines (214 loc) · 7.43 KB
/
THCTensorInfo.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#ifndef THC_TENSOR_INFO_INC
#define THC_TENSOR_INFO_INC
#include <cuda.h>
#include <assert.h>
#include <THC/THCGeneral.h>
#include <THC/THCIntegerDivider.cuh>
#include <THC/THCTensor.h>
// Maximum number of dimensions allowed for cutorch
#define MAX_CUTORCH_DIMS 25
// Warning string for tensor arguments that are too large or have too
// many dimensions
#define CUTORCH_STR(X) #X
#define CUTORCH_DIM_WARNING "tensor too large or too many (>" \
CUTORCH_STR(MAX_CUTORCH_DIMS) ") dimensions"
// CUDA kernel argument that defines tensor layout
template <typename T, typename IndexType>
struct TensorInfo {
TensorInfo(T* p,
int dim,
IndexType sz[MAX_CUTORCH_DIMS],
IndexType st[MAX_CUTORCH_DIMS]);
// Set the size of the given dimension to 1, as if it were a
// reduction dim (allows you to calculate offsets of the reduction
// slice)
void reduceDim(int dim);
/*
Updates the TensorInfo's dims, sizes, and strides to reflect a "collapse" of
the info, possibly excluding the optional excludeDim. A "collapsed" version
of the info is the fewest dims that order the tensor's elements in the same
way as the original info. If excludeDim is specified, the collapse is the
fewest dims that order the tensor's elements as the original and preserve the
excluded dimension, unless the tensor collapses to a point.
Returns the (new) index of the preserved dimension if excludeDim is
specified. Returns 0 if the tensor is collapsed to a point. Returns -1
otherwise.
*/
int collapseDims(const int excludeDim = -1);
// Contiguous tensors of more than one dimension are collapsed down
// to one tensor
__host__ __device__ inline bool isContiguous() const {
return (dims == 1 && strides[0] == 1);
}
T* data;
IndexType sizes[MAX_CUTORCH_DIMS];
IndexType strides[MAX_CUTORCH_DIMS];
int dims;
};
template <typename T, typename IndexType>
TensorInfo<T, IndexType>::TensorInfo(T* p,
int dim,
IndexType sz[MAX_CUTORCH_DIMS],
IndexType st[MAX_CUTORCH_DIMS]) {
data = p;
dims = dim;
assert(dims > 0 && dims < MAX_CUTORCH_DIMS);
for (int i = 0; i < dim; ++i) {
sizes[i] = sz[i];
strides[i] = st[i];
}
}
template <typename T, typename IndexType>
void
TensorInfo<T, IndexType>::reduceDim(int dim) {
TORCH_INTERNAL_ASSERT(dim < dims && dim >= 0);
sizes[dim] = 1;
}
template <typename T, typename IndexType>
int
TensorInfo<T, IndexType>::collapseDims(const int excludeDim) {
TORCH_INTERNAL_ASSERT(excludeDim >= -1 && excludeDim < dims);
int stopDim = (excludeDim == -1) ? dims : excludeDim;
int newIndex = -1;
int oldIndex = 0;
int remappedExcludedDim = -1;
while (oldIndex < dims) {
// Finds a dimension to collapse into
for (; oldIndex < stopDim; ++oldIndex) {
if (sizes[oldIndex] == 1) {
continue;
}
++newIndex;
sizes[newIndex] = sizes[oldIndex];
strides[newIndex] = strides[oldIndex];
++oldIndex;
break;
}
// Collapses dims
for (; oldIndex < stopDim; ++oldIndex) {
if (sizes[oldIndex] == 1) {
continue;
}
if (strides[newIndex] == sizes[oldIndex] * strides[oldIndex]) {
sizes[newIndex] *= sizes[oldIndex];
strides[newIndex] = strides[oldIndex];
} else {
++newIndex;
sizes[newIndex] = sizes[oldIndex];
strides[newIndex] = strides[oldIndex];
}
}
// Handles excludeDim being set (oldIndex == excludeDim)
if (oldIndex != dims) {
// Preserves excluded dimension
++newIndex;
sizes[newIndex] = sizes[oldIndex];
strides[newIndex] = strides[oldIndex];
remappedExcludedDim = newIndex;
// Restarts iteration after excludeDim
++oldIndex;
stopDim = dims;
}
}
// Handles special case of all dims size 1
if (newIndex == -1 || (newIndex == 0 && sizes[0] == 1)) {
dims = 1;
sizes[0] = 1;
strides[0] = 1;
return 0;
}
dims = newIndex + 1;
return remappedExcludedDim;
}
// Translate a linear index for the apply to a T* offset;
// specialized on `Dims` to reduce nvcc compilation time
template <typename T, typename IndexType, int Dims>
struct IndexToOffset {
static __host__ __device__ IndexType get(
IndexType linearId,
const TensorInfo<T, IndexType>& info) {
IndexType offset = 0;
// Uses static dims
for (int i = Dims - 1; i > 0; --i) {
IndexType curDimIndex = linearId % info.sizes[i];
IndexType curDimOffset = curDimIndex * info.strides[i];
offset += curDimOffset;
linearId /= info.sizes[i];
}
return offset + linearId * info.strides[0];
}
};
template <typename T, typename IndexType>
struct IndexToOffset<T, IndexType, -1> {
static inline __host__ __device__ IndexType get(
IndexType linearId,
const TensorInfo<T, IndexType>& info) {
IndexType offset = 0;
// Uses dynamic dims
for (int i = info.dims - 1; i > 0; --i) {
IndexType curDimIndex = linearId % info.sizes[i];
IndexType curDimOffset = curDimIndex * info.strides[i];
offset += curDimOffset;
linearId /= info.sizes[i];
}
return offset + linearId * info.strides[0];
}
};
// OffsetInfo is a faster implementation of IndexToOffset that uses faster
// integer division: we transform each division into integer multiplication by a
// pre-computed constant. (See IntDivider for details.)
template <typename T, typename IndexType, int Dims>
struct OffsetInfo {
explicit OffsetInfo(const TensorInfo<T, IndexType>& tinfo) {
assert(tinfo.dims == Dims);
data = tinfo.data;
for (int i = 0; i < Dims; ++i) {
sizes[i] = IntDivider<IndexType>(tinfo.sizes[i]);
strides[i] = tinfo.strides[i];
}
}
__host__ __device__ T* get(IndexType linearIndex) const {
IndexType offset = 0;
for (int i = Dims - 1; i > 0; --i) {
DivMod<IndexType> divmod = sizes[i].divmod(linearIndex);
linearIndex = divmod.div;
offset += divmod.mod * strides[i];
}
return &data[offset + linearIndex * strides[0]];
}
T* data;
IntDivider<IndexType> sizes[Dims];
IndexType strides[Dims];
};
// For 1D tensors the offset equals linear index * stride.
template <typename T, typename IndexType>
struct OffsetInfo<T, IndexType, 1> {
explicit OffsetInfo(const TensorInfo<T, IndexType>& tinfo)
: data{tinfo.data}, stride{tinfo.strides[0]} {}
__host__ __device__ T* get(IndexType linearIndex) const {
return &data[linearIndex * stride];
}
T* data;
const IndexType stride;
};
// Dims=-1 is used when the dimension is unknown at compile time.
//
// Unfortunately, pre-computation does not work here, because of a bug in nvcc
// (tested on CUDA 8.0): if a kernel argument contains an array that is
// dynamically accessed, the whole array is first copied into the local memory.
// (That is, every kernel thread makes its own copy of the argument, even if it
// is never updated.) Pre-computation makes it worse because now we have more
// data to copy.
//
// So let's fall back to vanilla division approach.
template <typename T, typename IndexType>
struct OffsetInfo<T, IndexType, -1> {
explicit OffsetInfo(const TensorInfo<T, IndexType>& tinfo)
: tinfo(tinfo) { }
__host__ __device__ T* get(IndexType linearIndex) const {
IndexType offset = IndexToOffset<T, IndexType, -1>::get(linearIndex, tinfo);
return &tinfo.data[offset];
}
TensorInfo<T, IndexType> tinfo;
};
#endif // THC_TENSOR_INFO_INC