forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_ops.cpp
42 lines (34 loc) · 1.18 KB
/
test_ops.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <gtest/gtest.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
#include <torch/torch.h>
using namespace torch::jit::tensorexpr;
using Tensors = std::vector<Tensor*>;
using Args = std::vector<CodeGen::BufferArg>;
std::unique_ptr<SimpleIREvaluator> compile(
const Args& inputs,
const Tensors& outputs) {
LoopNest nest({outputs});
nest.prepareForCodegen();
nest.simplify();
auto join = inputs;
join.insert(join.end(), outputs.begin(), outputs.end());
return std::make_unique<SimpleIREvaluator>(nest.root_stmt(), join);
}
TEST(Ops, Sum) {
KernelScope ks;
std::vector<IntList> testDims = {{0}, {1}, {0, 1}};
for (auto const& dims : testDims) {
constexpr int M = 8;
constexpr int N = 16;
Placeholder a("a", kFloat, {M, N});
Tensor* b = computeSum({a.handle(), dims, false}, c10::kFloat);
auto cg = compile({a}, {b});
auto at = at::arange(M * N, at::kFloat).view({M, N});
auto ref = at::sum(at, dims);
auto bt = at::empty_like(ref);
cg->call({at.data_ptr<float>(), bt.data_ptr<float>()});
ASSERT_TRUE(at::allclose(bt, ref));
}
}