forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_reductions.py
2720 lines (2360 loc) · 128 KB
/
test_reductions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import numpy as np
import scipy.special
import unittest
import math
from typing import Dict, List
import random
from functools import partial
from itertools import product, combinations, permutations
import warnings
from torch._six import inf, nan
from torch.testing._internal.common_utils import (
TestCase, run_tests, TEST_SCIPY, slowTest, torch_to_numpy_dtype_dict,
IS_WINDOWS, make_tensor)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU,
onlyOnCPUAndCUDA, onlyCUDA, largeTensorTest, precisionOverride)
# TODO: replace with make_tensor
def _generate_input(shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
# TODO: replace with make_tensor
def _rand_shape(dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
class TestReductions(TestCase):
def test_var_unbiased(self, device):
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.tensor([1.0, 2.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.tensor([1.0, 2.0, 3.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_stability(self, device):
tensor = torch.tensor([2281.5, 2281.25], device=device)
self.assertEqual(tensor.var(dim=0), 0.03125)
self.assertEqual(tensor.var(), 0.03125)
def test_sum_dim_reduction_uint8_overflow(self, device):
example = [[-1, 2, 1], [5, 3, 6]]
x = torch.tensor(example, dtype=torch.uint8, device=device)
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.tensor([4, 5, 7], dtype=torch.uint8, device=device))
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.tensor([2, 14], dtype=torch.uint8, device=device))
y = torch.tensor(example, dtype=torch.uint8, device=device)
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
def test_dim_reduction_less_than_64(self, device):
sizes = [1] * 65
x = torch.randn(sizes, device=device)
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.amin, torch.amax, torch.norm]
for op in ops:
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, 64)
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, -1)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_logsumexp(self, device):
from scipy.special import logsumexp
a = torch.randn(5, 4, device=device)
a[0, 0] = inf
a[1, :] = -inf
actual = a.logsumexp(1)
expected = logsumexp(a.cpu().numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
# check that out is actually inplace
b = torch.zeros(5, 2, device=device)
c = b[:, 0]
torch.logsumexp(a, 1, out=c)
self.assertEqual(expected, b[:, 0])
@onlyCPU
def test_sum_parallel(self, device):
# To use parallel branches we'll need to compare on tensors
# that are relatively large. Even if this is run on a single
# core machine these tests will still give you signal on
# the correctness
def _run_test(size):
for dim in range(len(size) + 1):
nv = np.round(np.random.rand(*size)) # 0s and 1s
tv = torch.from_numpy(nv)
# Parallelisim is only used if numel is
# larger than grainsize defined in Parallel.h
self.assertTrue(tv.numel() > 32768)
if dim == len(size):
nvs = nv.sum()
tvs = tv.sum()
else:
nvs = nv.sum(dim)
tvs = tv.sum(dim)
diff = np.abs(nvs - tvs.numpy()).sum()
self.assertEqual(diff, 0)
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
_run_test([1, 32 * 8 * 32 * 8])
_run_test([1, 32770])
# TODO: kill map2_ (and similar) uses and update to compare with NumPy
# only works on CPU since this uses map2_, which is only supported on CPU
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, atol=0, rtol=0)
@onlyCPU
def test_max_elementwise(self, device):
self._testCSelection(torch.max, max)
@onlyCPU
def test_min_elementwise(self, device):
self._testCSelection(torch.min, min)
def test_all_any(self, device):
def test(size):
x = torch.ones(*size, device=device).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
x = torch.ones(*size, device=device).bool()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = False
self.assertFalse(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_all_any_with_dim(self, device):
def test(x):
r1 = x.prod(dim=0, keepdim=False).byte()
r2 = x.all(dim=0, keepdim=False)
self.assertEqual(r1.shape, r2.shape)
self.assertTrue((r1 == r2).all())
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
r4 = x.any(dim=1, keepdim=True)
self.assertEqual(r3.shape, r4.shape)
self.assertTrue((r3 == r4).all())
test(torch.tensor([[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1]], device=device, dtype=torch.uint8))
def test_numpy_named_args(self, device):
x1 = torch.randn(10, device=device)
x2 = torch.randn(10, device=device)
res1 = torch.add(input=x1, other=x2)
res2 = torch.add(x1=x1, x2=x2)
self.assertEqual(res1, res2)
x1 = torch.randn(10, 10, 10, device=device)
res1 = x1.sum(dim=(0, 2), keepdim=True)
res2 = x1.sum(axis=(0, 2), keepdims=True)
self.assertEqual(res1, res2)
# TODO: kill this ane replace with common creation ops
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True,
use_complex=False) -> Dict[str, List[torch.Tensor]]:
float_types = [torch.double,
torch.float]
int_types = [torch.int64,
torch.int32,
torch.int16]
complex_types = [torch.complex64,
torch.complex128]
def make_contiguous(shape, dtype) -> torch.Tensor:
if dtype in float_types:
val = torch.randn(shape, dtype=dtype)
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
val = val + ((val_range[1] - val_range[0]) / 2.0)
val = torch.clamp(val, min=val_range[0], max=val_range[1])
return val
result = torch.zeros(shape, dtype=dtype)
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
return result
def make_non_contiguous(shape, dtype) -> torch.Tensor:
contig = make_contiguous(shape, dtype)
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
non_contig = non_contig.select(-1, -1)
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
return non_contig
def make_contiguous_slice(size, dtype) -> torch.Tensor:
contig = make_contiguous((1, size), dtype)
non_contig = contig[:1, 1:size - 1]
self.assertTrue(non_contig.is_contiguous())
return contig
types = []
if use_floating:
types += float_types
if use_integral:
types += int_types
if use_complex:
types += complex_types
tensors: Dict[str, List[torch.Tensor]] = {"cont": [], "noncont": [], "slice": []}
for dtype in types:
tensors["cont"].append(make_contiguous(shape, dtype))
tensors["noncont"].append(make_non_contiguous(shape, dtype))
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
return tensors
# TODO: refactor this to use comparators from common_utils
def _assert_matches_numpy(self, t, n):
self.assertEqual(n.shape, t.shape)
if t.dtype == torch.float:
self.assertEqual(n, t, rtol=1e-03, atol=1e-05, equal_nan=True)
else:
self.assertEqual(n, t, equal_nan=True)
# TODO: update this and tests that use it to use the device argument properly
def _test_dim_ops(self, pytorch_op, numpy_op,
use_floating=True, use_integral=True, use_complex=False):
def do_one(tensors_dict, dim):
for category, tensors in tensors_dict.items():
if category == "slice":
dim = 0
for tensor in tensors:
# we have no control over NumPy warnings...
with warnings.catch_warnings():
warnings.simplefilter("ignore")
expected = numpy_op(tensor.cpu().numpy(), dim)
actual = pytorch_op(tensor, dim)
self._assert_matches_numpy(actual, expected)
if torch.cuda.is_available():
self._assert_matches_numpy(pytorch_op(tensor.cuda(), dim).cpu(), expected)
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((100000, ), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), -1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, -1))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2, 1))
@slowTest
@onlyCPU
def test_sum_dim(self, device):
self._test_dim_ops(
lambda t, d: t.sum(d),
lambda n, d: n.sum(d),
use_floating=True, use_integral=True, use_complex=True)
@onlyCPU
def test_mean_dim(self, device):
self._test_dim_ops(
lambda t, d: t.mean(d),
lambda n, d: n.mean(d),
use_integral=False,
use_complex=True)
@onlyCPU
def test_std_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.std(d, unbiased=unbiased),
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
def test_var_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.var(d, unbiased=unbiased),
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
@unittest.skipIf(not TEST_SCIPY, 'Scipy not found')
def test_logsumexp_dim(self, device):
from scipy.special import logsumexp
self._test_dim_ops(
lambda t, d: t.logsumexp(d),
lambda n, d: logsumexp(n, d),
use_integral=False)
# TODO: update this and tests that use it to handle device properly
def _test_reduce_integer_upcast(self, fn, has_out=True, test_complex=True):
shape = (3, 4, 5)
reduced_shape = fn(torch.ones(shape)).shape
def _test_out(dtype, other_dtype):
out = torch.ones(reduced_shape, dtype=dtype)
result = fn(x, out=out)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
result = fn(x, out=out, dtype=dtype)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
# 'out' is favored over dtype, check error
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
for dtype in [dtype for dtype in torch.testing.get_all_math_dtypes('cpu') if dtype != torch.float16]:
x = torch.ones(shape, dtype=dtype)
expected_dtype = dtype if dtype.is_floating_point or dtype.is_complex else torch.int64
self.assertIs(expected_dtype, fn(x).dtype)
self.assertEqual(fn(x.to(expected_dtype)), fn(x))
if dtype.is_floating_point:
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
elif dtype.is_complex:
other_dtype = torch.complex64 if dtype == torch.complex128 else torch.complex128
else:
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
self.assertEqual(fn(x.to(other_dtype)), fn(x, dtype=other_dtype), exact_dtype=False)
# test mixed int/float/complex
if dtype.is_floating_point:
mixed_dtypes = [torch.int32, torch.complex64]
elif dtype.is_complex:
mixed_dtypes = [torch.int32, torch.float32]
else:
mixed_dtypes = [torch.float32, torch.complex64]
for mixed_dtype in mixed_dtypes:
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
self.assertEqual(fn(x.to(mixed_dtype)), fn(x, dtype=mixed_dtype), exact_dtype=False)
if has_out:
_test_out(dtype, other_dtype)
_test_out(dtype, mixed_dtype)
@onlyCPU
def test_sum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
@onlyCPU
def test_prod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
@onlyCPU
def test_cumsum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
@onlyCPU
def test_cumprod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
def test_mode(self, device):
SIZE = 10
x = torch.arange(1., SIZE * SIZE + 1, device=device).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.ones(SIZE, device=device)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.ones(SIZE, device=device, dtype=torch.long)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# input unchanged
self.assertEqual(x, x0, atol=0, rtol=0)
def _test_mode_intervals(self, shape, intervals, device, v=1):
x = torch.arange(0, shape[0] * shape[1], device=device)
x[v] = x.numel()
x = x.resize_(shape)
# Set the value of each interval to the mode "v"
for (beg, end) in intervals:
x[:, beg:end] = v
values, indices = torch.mode(x, -1, False)
# Check whether the returned indices correspond to the returned values
self.assertTrue((x.gather(1, indices.unsqueeze(1)).t() == values).all())
# Check whether the returned values are the mode
self.assertTrue((values == v).all().item())
@onlyCUDA
def test_mode_large(self, device):
# i should be less than (d - 2) / 2
def testset_for_shape(shape, i):
d = shape[-1]
# Mode only in the middle.
self._test_mode_intervals(shape, [(i, d - i)], device)
# Mode in discontiguous parts of the input.
self._test_mode_intervals(shape, [(0, i), (i + 1, d - i - 1), (d - i, d)], device)
# More than one line of (65535) thread blocks
testset_for_shape((65536, 10), 3)
# Max slice size (2048)
testset_for_shape((10, 2048), 10)
# Naive kernel for big slice sizes (> 2048)
testset_for_shape((10, 4096), 10)
@onlyOnCPUAndCUDA
def test_mode_wrong_dtype(self, device):
def test_for_dtypes(x_ty, v_ty, i_ty, message):
x = torch.ones(10, device=device, dtype=x_ty)
v = torch.ones(10, device=device, dtype=v_ty)
i = torch.ones(10, device=device, dtype=i_ty)
with self.assertRaisesRegex(RuntimeError, message):
torch.mode(x, -1, True, out=(v, i))
err_msg = "expected scalar type .* but got .* for "
values_err = err_msg + "values"
indices_err = err_msg + "indices"
test_for_dtypes(torch.uint8, torch.int8, torch.long, values_err)
test_for_dtypes(torch.int8, torch.int16, torch.long, values_err)
test_for_dtypes(torch.int32, torch.float32, torch.long, values_err)
test_for_dtypes(torch.float32, torch.float64, torch.long, values_err)
test_for_dtypes(torch.uint8, torch.uint8, torch.int8, indices_err)
test_for_dtypes(torch.int8, torch.int8, torch.int16, indices_err)
test_for_dtypes(torch.int32, torch.int32, torch.float32, indices_err)
test_for_dtypes(torch.float32, torch.float32, torch.float64, indices_err)
@onlyCUDA
def test_mode_wrong_device(self, device):
# CPU Input Tensor
x = torch.ones(2)
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for values"):
values = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(values, torch.tensor([], dtype=torch.long)))
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for indices"):
indices = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(torch.tensor([]), indices))
# TODO: make work on CUDA, too
@onlyCPU
def test_accreal_type(self, device) -> None:
x = torch.ones(2, 3, 4)
self.assertIsInstance(x.double().sum().item(), float)
self.assertIsInstance(x.float().sum().item(), float)
self.assertIsInstance(x.long().sum().item(), int)
self.assertIsInstance(x.int().sum().item(), int)
self.assertIsInstance(x.short().sum().item(), int)
self.assertIsInstance(x.char().sum().item(), int)
self.assertIsInstance(x.byte().sum().item(), int)
def test_var_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
# TODO: this should be a generic opinfo test
def test_all_any_empty(self, device):
x = torch.ByteTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
x = torch.BoolTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_max_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.max(a, dim=1).values == inf).item())
self.assertTrue(torch.all(torch.amax(a, dim=1) == inf).item())
self.assertTrue(torch.max(a).item() == inf)
self.assertTrue(torch.amax(a).item() == inf)
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.float, torch.bfloat16, torch.double)
def test_min_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.min(a, dim=1).values == (-inf)).item())
self.assertTrue(torch.all(torch.amin(a, dim=1) == (-inf)).item())
self.assertTrue(torch.min(a).item() == -inf)
self.assertTrue(torch.amin(a).item() == -inf)
def _test_minmax_helper(self, torchfn, reffn, device, dtype, skip_indices=False):
def create_input(shape, device, dtype):
if dtype.is_floating_point:
return torch.randn(*shape, device=device, dtype=dtype)
else:
low = 0 if dtype == torch.bool else -1000
high = 2 if dtype == torch.bool else 1000
return torch.randint(low, high, shape, device=device, dtype=dtype)
x = create_input((100, 100), device, dtype)
self.compare_with_numpy(torchfn, reffn, x)
# non contiguous
x = create_input((10, 10, 10), device, dtype)
x = x[:, 4]
self.compare_with_numpy(torchfn, reffn, x)
def get_values(x):
if isinstance(x, tuple):
return x[0]
return x
# indices
if not skip_indices:
size = 5
x = create_input((size, size), device, dtype)
inputs = (x, x.t())
dims = (0, 1)
for xinp, d in product(inputs, dims):
self.compare_with_numpy(lambda x: get_values(torchfn(x, d, False)), lambda x: reffn(x, d, keepdims=False), xinp)
result = torchfn(xinp, d, False)
if isinstance(result, tuple):
v, i = result
if d == 1:
self.assertEqual(xinp[torch.arange(size), i], v, atol=0, rtol=0)
else:
self.assertEqual(xinp[i, torch.arange(size)], v, atol=0, rtol=0)
# nan
if dtype.is_floating_point:
for index in (0, 4, 99):
x = create_input((100,), device, dtype)
x[index] = nan
if not skip_indices:
result = torchfn(x, 0)
v = get_values(result)
self.assertEqual(v, nan)
if isinstance(result, tuple):
i = result[1]
self.assertEqual(i, index)
self.assertEqual(torchfn(x), nan)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_max(self, device, dtype):
self._test_minmax_helper(torch.max, np.amax, device, dtype)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_min(self, device, dtype):
self._test_minmax_helper(torch.min, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_amin(self, device, dtype):
self._test_minmax_helper(torch.amin, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.float, torch.double)
def test_amax(self, device, dtype):
self._test_minmax_helper(torch.amax, np.amax, device, dtype)
@onlyOnCPUAndCUDA
@dtypesIfCPU(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float)
def test_aminmax(self, device, dtype):
def _amin_wrapper(x, dim=None, keepdims=False):
if dim is None:
return torch._aminmax(x)[0]
else:
return torch._aminmax(x, dim, keepdims)[0]
def _amax_wrapper(x, dim=None, keepdims=False):
if dim is None:
return torch._aminmax(x)[1]
else:
return torch._aminmax(x, dim, keepdims)[1]
self._test_minmax_helper(_amin_wrapper, np.amin, device, dtype)
self._test_minmax_helper(_amax_wrapper, np.amax, device, dtype)
# TODO: bincount isn't a classic reduction -- maybe this test suite is
# reductions and summary ops?
def test_bincount(self, device):
# negative input throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([1, -1], device=device))
# n-d input, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
# floating input type throws
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
torch.bincount(torch.tensor([1., 0.3], device=device))
# minlength < 0 throws
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
torch.bincount(torch.tensor([1, 3], device=device),
torch.tensor([.2, .2], device=device),
minlength=-1)
# input and weights dim mismatch
with self.assertRaisesRegex(RuntimeError, 'same length'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([1., 0.3, 0.5], device=device))
# 1-d input with no elements and default minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
torch.zeros(0, dtype=torch.long, device=device))
# 1-d input with no elements and specified minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
torch.zeros(10, dtype=torch.long, device=device))
# test tensor method without weights
long_counts = torch.tensor(
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
self.assertEqual(
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
long_counts)
# test minlength functionality
int_counts = torch.bincount(
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
self.assertEqual(
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
int_counts)
# test weights
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([.1, .2, .3, .4, .5], device=device))
self.assertEqual(
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
self.assertEqual(
torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.float64), byte_counts)
# test non-contiguous inputs and weights
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
for i in [0, 1]:
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
# inputs are non-contiguous but weights are contiguous
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
# inputs and weights are non-contiguous
self.assertEqual(
inputs[:, 1].bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# weights are non-contiguous but inputs are contiguous
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# test bincount on non-contiguous slices
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
# test large number of bins - global memory use
big_exp = torch.zeros(10000000, device=device)
big_exp[-1] = 50.0
big_w = torch.tensor([.5] * 100, device=device)
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
self.assertEqual(big_exp, big_out)
# test large input size
big_exp = torch.zeros(2, device=device, dtype=torch.int64)
big_exp[1] = 1000000
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
self.assertEqual(big_exp, big_out)
# TODO: how many var stability tests are there?
def test_var_stability2(self, device):
tensor = torch.FloatTensor([2281.5, 2281.25]).to(device)
# Stability for inner dim
self.assertEqual(tensor.var(0), 0.03125)
# General stability
self.assertEqual(tensor.var(), 0.03125)
# Stability for outer dimensions
tensor = tensor.unsqueeze(1)
self.assertEqual(tensor.var(0), 0.03125)
@onlyCPU
@dtypes(torch.bool, torch.double)
def test_sum_all(self, device, dtype) -> None:
def check_sum_all(tensor: torch.Tensor) -> None:
pylist = tensor.reshape(-1).tolist()
self.assertEqual(tensor.sum(), sum(pylist))
if dtype != torch.bool:
check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device))
check_sum_all(torch.randn(200000, dtype=dtype, device=device))
check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0])
else:
check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device))
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
memory_format, compare_data=True, default_is_preserve=False):
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
# xc is a channels last tensor
xc = input_generator_fn(device)
# xc is not memory dense, but looks like channels last
if memory_format == torch.channels_last:
xc = xc[..., ::2, ::2]
else:
xc = xc[..., ::2, ::2, ::2]
clone = transformation_fn(xc, memory_format=torch.preserve_format)
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
self.assertFalse(xc.is_contiguous())
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc)
if default_is_preserve:
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
else:
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
for _ in range(10):
permutation = list(range(len(x.shape)))
random.shuffle(permutation)
x = x.permute(permutation)
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
@onlyCPU
@dtypes(torch.double)
def test_sum_out(self, device, dtype: torch.dtype) -> None:
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.sum(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
x = torch.rand(100, 100, 100, dtype=dtype, device=device)
res1 = x.sum(2).sum(1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, (2, 1), out=res2)
self.assertEqual(res1, res2)
@onlyCUDA
@dtypes(torch.float16, torch.float32)
def test_prod_gpu(self, device, dtype):
x = torch.tensor([2, 3, 6, 9, 8], dtype=dtype, device=device)
# Check all combinations: fp16 input - fp16 output, fp16 input - fp32
# output, fp32 input - fp16 output, fp32 input - fp32 output
for dtype_output in [torch.float16, torch.float32]:
result_expected = torch.tensor(2592, dtype=dtype_output, device=device)
output = torch.prod(x, dtype=dtype_output)
self.assertEqual(output, result_expected)
output = x.prod(dtype=dtype_output)
self.assertEqual(output, result_expected)
@onlyCPU
@dtypes(torch.float)
def test_prod(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.prod(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_prod_bool(self, device):
vals = [[True, True], [True, False], [False, False], []]
for val in vals:
result = torch.prod(torch.tensor(val, device=device), dtype=torch.bool).item()
expect = np.prod(np.array(val), dtype=np.bool)
self.assertEqual(result, expect)
result = torch.prod(torch.tensor(val, device=device)).item()
expect = np.prod(np.array(val))
self.assertEqual(result, expect)
@onlyCPU
def test_max_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.max(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amax(a, 0, out=values))
@onlyCPU
def test_min_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.min(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amin(a, 0, out=values))
# TODO: consider refactoring with bincount test
def test_bucketization(self, device):
values_1d = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9], device=device)
values_3d = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
# regular case 3d boundary and 3d input value
boundaries = torch.tensor([[[1, 2, 3, 4], [3, 4, 5, 6]], [[1, 3, 5, 7], [2, 4, 6, 8]]], device=device)
expected_result = torch.tensor([[[0, 2, 4], [0, 1, 3]], [[0, 1, 1], [1, 2, 2]]], device=device)
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_3d), expected_result)
self.assertEqual(torch.searchsorted(boundaries, values_3d, out=output), expected_result)
expected_result = torch.tensor([[[1, 3, 4], [0, 2, 4]], [[1, 1, 2], [2, 2, 3]]], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True), expected_result)
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True, out=output), expected_result)
# simple 1d boundary and 3d input value
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device)
expected_result = torch.tensor([[[0, 2, 4], [1, 3, 5]], [[0, 1, 2], [3, 4, 5]]], device=device)
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_3d), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output), expected_result)
expected_result = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, right=True), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output, right=True), expected_result)
# simple float 1d boundary and 1d input with output int32 type
values_1d_float = values_1d.to(torch.float32)
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32)
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
self.assertEqual(torch.searchsorted(boundaries, values_1d_float, out_int32=True), expected_result)
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
# multiple dimension input with 0 elements
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device, dtype=torch.int64)
values_0_el = torch.tensor([[[]]], device=device, dtype=torch.int64)
expected_result = values_0_el.to(torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_0_el), expected_result)
self.assertEqual(torch.bucketize(values_0_el, boundaries), expected_result)
# nan input
values_nan = torch.tensor([1.0, float('nan'), 2.0, float('nan')], device=device, dtype=torch.float64)
boundaries = torch.tensor([0.0, 1.0, 2.0, 3.0], device=device, dtype=torch.float64)
expected_result = torch.tensor([1, 4, 2, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan), expected_result)
expected_result = torch.tensor([2, 4, 3, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan, right=True), expected_result)
# type promotion and non contiguous tensors
values_3d_permute = values_3d.permute(2, 1, 0).to(torch.int32)
boundaries_permute = values_3d.permute(2, 1, 0).to(torch.float64)
expected_result = torch.tensor([[[0, 0], [0, 1]], [[2, 0], [0, 1]], [[2, 0], [0, 0]]], device=device)
if self.device_type != 'xla':
self.assertWarnsRegex(
UserWarning, "tensor is non-contiguous",
lambda: self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result))
else:
# All tensors in XLA is contiguous even doing permute, no warning msg will be generate in XLA
self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result)
# scalar type
boundaries = torch.tensor([1.5, 2.5, 3.5], device=device)
expected_result = torch.tensor(1, device=device)
self.assertEqual(torch.searchsorted(boundaries, 2), expected_result)
self.assertEqual(torch.bucketize(torch.tensor(2, device=device), boundaries), expected_result)
expected_result = torch.tensor(3, device=device)
scalar_tensor_nan = torch.tensor(float('nan'), device=device)
self.assertEqual(torch.searchsorted(boundaries, scalar_tensor_nan), expected_result)
self.assertEqual(torch.bucketize(float('nan'), boundaries, right=True), expected_result)
# invalid input dimensions
boundaries = torch.tensor([[1, 2, 3], [4, 5, 6]], device=device)
with self.assertRaisesRegex(
RuntimeError, "first N-1 dimensions of boundaries tensor and input value tensor must match"):
torch.searchsorted(boundaries, values_3d)
with self.assertRaisesRegex(
RuntimeError, "boundaries tensor must be 1 dimension"):
torch.bucketize(values_3d, boundaries)