-
Notifications
You must be signed in to change notification settings - Fork 2
/
01-making-rigorous-conclusions.Rmd
193 lines (143 loc) · 5.15 KB
/
01-making-rigorous-conclusions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Making rigorous conclusions {#making-rigorous-conclusions}
In this part we introduce modelling and statistical inference for making data-based conclusions.
We discuss building, interpreting, and selecting models, visualizing interaction effects, and prediction and model validation.
Statistical inference is introduced from a simulation based perspective, and the Central Limit Theorem is discussed very briefly to lay the foundation for future coursework in statistics.
## Modelling data
::: {.slide-deck}
**Unit 4 - Deck 1: The language of models**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d01-language-of-models/u4-d01-language-of-models.html#1)
:::
::: {.video}
[Video](https://youtu.be/MWkkvDopBKc)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 2: Fitting and interpreting models**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d02-fitting-interpreting-models/u4-d02-fitting-interpreting-models.html#1)
:::
::: {.video}
[Video](https://youtu.be/69U92Q3pwnA)
:::
::: {.reading}
IMS :: [Chp 7 - Linear regression with a single predictor](https://openintro-ims.netlify.app/model-slr.html)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 3: Modelling nonlinear relationships**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d03-modeling-nonlinear-relationships/u4-d03-modeling-nonlinear-relationships.html#1)
:::
::: {.video}
[Video](https://youtu.be/j4MZ6ZdHnHg)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 4: Models with multiple predictors**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d04-model-multiple-predictors/u4-d04-model-multiple-predictors.html#1)
:::
::: {.video}
[Video](https://youtu.be/mjkNabD4oi4)
:::
::: {.reading}
IMS :: [Chp 8 - Linear regression with multiple predictors](https://openintro-ims.netlify.app/model-mlr.html)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 5: More models with multiple predictors**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d05-more-model-multiple-predictors/u4-d05-more-model-multiple-predictors.html#1)
:::
::: {.video}
[Video](https://youtu.be/nJAYRnLPb10)
:::
:::
## Classification and model building
::: {.slide-deck}
**Unit 4 - Deck 6: Logistic regression**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d06-logistic-reg/u4-d06-logistic-reg.html#1)
:::
::: {.video}
[Video](https://youtu.be/AidXFYSYfJg)
:::
::: {.reading}
IMS :: [Chp 9 - Logistic regression](https://openintro-ims.netlify.app/model-logistic.html)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 7: Prediction and overfitting**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d07-prediction-overfitting/u4-d07-prediction-overfitting.html#1)
:::
::: {.video}
[Video](https://youtu.be/Qd4lu_Lmwi0)
:::
::: {.reading}
tidymodels :: [Build a model](https://www.tidymodels.org/start/models/)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 8: Feature engineering**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d08-feature-engineering/u4-d08-feature-engineering.html#1)
:::
::: {.video}
[Video](https://youtu.be/wZt9ab4jBZ4)
:::
::: {.reading}
tidymodels :: [Preprocess your data with recipes](https://www.tidymodels.org/start/recipes/)
:::
:::
## Model validation
::: {.slide-deck}
**Unit 4 - Deck 9: Cross validation**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d09-cross-validation/u4-d09-cross-validation.html#1)
:::
::: {.video}
[Video](https://youtu.be/L1KfIISmUT4)
:::
::: {.reading}
tidymodels :: [Evaluate your model with resampling](https://www.tidymodels.org/start/resampling/)
:::
:::
## Uncertainty quantification
::: {.slide-deck}
**Unit 4 - Deck 10: Quantifying uncertainty**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d10-quantify-uncertainty/u4-d10-quantify-uncertainty.html#1)
:::
::: {.video}
[Video](https://youtu.be/LYpKrtZmQtI)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 11: Bootstrapping**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d11-bootstrap/u4-d11-bootstrap.html#1)
:::
::: {.video}
[Video](https://youtu.be/bdqpI3iVOso)
:::
::: {.reading}
IMS :: [Chp 12 - Confidence intervals with bootstrapping](https://openintro-ims.netlify.app/foundations-bootstrapping.html)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 12: Hypothesis testing**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d12-hypothesis-testing/u4-d12-hypothesis-testing.html#1)
:::
::: {.reading}
[IMS :: Chp 11 - Hypothesis testing with randomization](https://openintro-ims.netlify.app/foundations-randomization.html)
:::
:::
::: {.slide-deck}
**Unit 4 - Deck 13: Inference overview**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u4-d13-inference-overview/u4-d13-inference-overview.html#1)
:::
:::