forked from armankhondker/leetcode-solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DiameterOfBT.java
102 lines (81 loc) · 3.41 KB
/
DiameterOfBT.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
//key is the realize that the diameter will always pass through height left subtree + height right subtree + 1 being root node
//DOESNT necesarrily have to pass through the original root, just some root
// So although the longest path doesn't have to go through the root node, it has to pass the root node of
// some subtree of the tree (because it has to be from one leaf node to another leaf node, otherwise
// we can extend it for free). The longest path that passes a given node as the ROOT node
// is T = left_height+right_height. So you just calculate T for all nodes and output the max T.
//RECURSIVE SOLUTION
//TC: O(N) to go through all the nodes
//SC: O(N) for recursions stack
class Solution {
int max = Integer.Mi;
public int diameterOfBT(Node root){
maxDepth(root);
return max;
}
//calculate total for each node, which is sum of max_lefet + max_right + 1
private int maxDepth(Node root)
{
if(root==null) return 0;
int left = maxDepth(root.left);
int right = maxDepth(root.right);
max=Math.max(max, left+right); //update max
return Math.max(left,right) +1; //THIS ONLY KEEPS TRACK OF HEIGHT OF NODE
//Let's calculate the depth of a node in the usual way: max(depth of node.left, depth of node.right) + 1
}
}
ANOTHER YOUTUBE SOLUTION, uses the following forumla, the diameter will be
Diameter = Max ( leftHeight + rightHeight + 1, Max (leftDiameter, rightDiameter) )
Either the max diameter passes through the root, or it is the max of left, right subtree!!
BAD PERFORMANCE DONT IMPLEMENT AS OPTIMAL!
//O(N*h) where h can be N in skewed tree so O(N^2) performance
public class Solution {
public int diameterOfBinaryTree(TreeNode root) {
if(root == null){
return 0;
}
int dia = depth(root.left) + depth(root.right);
int ldia = diameterOfBinaryTree(root.left);
int rdia = diameterOfBinaryTree(root.right);
return Math.max(dia,Math.max(ldia,rdia));
}
public int depth(TreeNode root){
if(root == null){
return 0;
}
return 1+Math.max(depth(root.left), depth(root.right));
}
}
ITERATIVE SOLUTION - EXACT SAME LOGIC, use POSTORDER traversal!!
//TC: O(N) to visit every node
//SC: O(N)
class Solution {
public int diameterOfBinaryTree(TreeNode root) {
if( root == null){
return 0;
}
if(root == null){
return 0;
}
int overallNodeMax = 0;
Stack<TreeNode> s = new Stack<>();
Map<TreeNode,Integer> nodeCount = new HashMap<>(); //map to remember the nodeMax
s.push(root);
while(!s.isEmpty()){
TreeNode node = s.peek(); //need to peek because we dont wana process node until left/right are processed
if(node.left != null && !nodeCount.containsKey(node.left)){
s.push(node.left);
}else if(node.right!=null && !nodeCount.containsKey(node.right)){
s.push(node.right);
}else {
TreeNode curr = s.pop();
int leftMax = nodeCount.getOrDefault(curr.left,0);
int rightMax = nodeCount.getOrDefault(curr.right,0);
int nodeMax = 1 + Math.max(leftMax,rightMax);
nodeCount.put(curr,nodeMax);
overallNodeMax = Math.max(overallNodeMax,leftMax + rightMax );
}
}
return overallNodeMax;
}
}