Skip to content

Latest commit

 

History

History
165 lines (138 loc) · 8.19 KB

robust_on_angel.md

File metadata and controls

165 lines (138 loc) · 8.19 KB

Robust Regression

鲁棒回归模型(robust regression model)同样是对一个或多个自变量与一个因变量之间的关系进行建模,不同点在于其旨在克服传统参数和非参数方法的一些局限性,如普通最小二乘法的假设条件不成立时会产生误导性结果,而鲁棒回归则旨在不会受到基础数据生成过程违反假设的过度影响。

1. 算法介绍

鲁棒回归模型(robust regression model)是一种对异常值比较健壮的回归模型。给一个随机样本 , 常规的线性回归模型假设回归子和回归量 之间的关系是除了X的影响以外,还存在一个服从正态分布的误差项来捕获除了 之外任何对的影响,但如果误差项是由非正常测量误差或其他违反标准假设引起的,那么常规的线性回归模型的有效性会受到影响。鲁棒回归模型在这方面进行了改进,允许方差取决于自变量X,一个多变量鲁棒回归模型表示为以下的形式:

model

鲁棒回归模型使用Huber损失函数,其对残差进行分段,对不同段的残差使用不同的损失计算方式,目标函数如下所示:

model

其中:为一组样本的预测。该方法结合了平方损失和绝对损失,避免了被特别大的异常值支配。

2. 分布式实现 on Angel

Angel MLLib提供了用Mini-Batch Gradient Descent优化方法求解的Robust Regression算法,其算法逻辑如下,其中

其说明如下:

  • Learning Rate在迭代过程中衰减:

其中, α为衰减系数, T为迭代次数

3. 运行 & 性能

输入格式

  • ml.feature.index.range:特征向量的维度, 即特征index的范围:例如如果index范围为[0, 100000000], 则可以将该参数配置为100000000;这个参数也可以配置为-1,表示index 范围为[Integer.MIN_VALUE, Integer.MAX_VALUE] 或者[Long.MIN_VALUE, Long.MAX_VALUE]
  • ml.model.size: 模型大小, 对于一些稀疏模型, 存在一些无效维度, 即所有样本要这一维度上的取值匀为0. ml.model.size = ml.feature.index.range - number of invalidate indices
  • ml.data.type:支持"dense"、"libsvm"、"dummy"三种数据格式,具体参考:Angel数据格式

参数

  • 算法参数

    • ml.epoch.num:迭代次数
    • ml.minibatch.size:每次迭代选择mini-batch的样本个数
    • ml.data.validate.ratio:每次validation的样本比率,设为0时不做validation
    • ml.learn.rate:初始学习速率
    • ml.learn.decay:学习速率衰减系数
    • ml.reg.l1:L1惩罚项系数
    • ml.reg.l2:L2惩罚项系数
    • ml.robustregression.loss.delta:残差分段点
    • ml.inputlayer.optimizer:优化器类型,可选"adam","ftrl"和"momentum"
    • ml.data.label.trans.class: 是否要对标签进行转换, 默认为"NoTrans", 可选项为"ZeroOneTrans"(转为0-1), "PosNegTrans"(转为正负1), "AddOneTrans"(加1), "SubOneTrans"(减1).
    • ml.data.label.trans.threshold: "ZeroOneTrans"(转为0-1), "PosNegTrans"(转为正负1)这两种转还要以设一个阈值, 大于阈值的为1, 阈值默认为0
    • ml.data.posneg.ratio: 正负样本重采样比例, 对于正负样本相差较大的情况有用(如5倍以上)
  • 输入输出参数

    • ml.feature.index.range:特征向量的维度
    • ml.data.type: 支持"dense"、"libsvm"两种数据格式
    • angel.train.data.path:训练数据的输入路径
    • angel.predict.data.path:预测数据的输入路径
    • angel.save.model.path:训练完成后,模型的保存路径
    • angel.predict.out.path:预测结果存储路径
    • angel.log.path:log文件保存路径
  • 资源参数

    • angel.workergroup.number:Worker个数
    • angel.worker.memory.mb:Worker申请内存大小
    • angel.worker.task.number:每个Worker上的task的个数,默认为1
    • angel.ps.number:PS个数
    • angel.ps.memory.mb:PS申请内存大小
  • 提交命令

    • 向Yarn集群提交RobustRegression算法训练任务:
     ./bin/angel-submit \
         --action.type=train \
         --angel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
         --ml.model.class.name=com.tencent.angel.ml.regression.RobustRegression \
         --angel.train.data.path=$input_path \
         --angel.save.model.path=$model_path \
         --angel.log.path=$log_path \
         --ml.data.is.classification=false \
         --ml.model.is.classification=false \
         --ml.robustregression.loss.delta=1.0 \
         --ml.epoch.num=10 \
         --ml.feature.index.range=$featureNum+1 \
         --ml.data.validate.ratio=0.1 \
         --ml.learn.rate=0.1 \
         --ml.learn.decay=1 \
         --ml.reg.l2=0.001 \
         --ml.data.type=libsvm \
         --ml.model.type=T_FLOAT_DENSE \
         --ml.num.update.per.epoch=10 \
         --ml.worker.thread.num=4 \
         --angel.workergroup.number=2 \
         --angel.worker.memory.mb=5000 \
         --angel.worker.task.number=1 \
         --angel.ps.number=2 \
         --angel.ps.memory.mb=5000 \
         --angel.job.name=robustReg_network \
         --angel.output.path.deleteonexist=true
    • 向Yarn集群提交RobustRegression算法增量训练任务:
     ./bin/angel-submit \
     	--action.type=train \
     	--angel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
     	--ml.model.class.name=com.tencent.angel.ml.regression.RobustRegression \
     	--angel.train.data.path=$input_path \
     	--angel.load.model.path=$model_path \
     	--angel.save.model.path=$model_path \
     	--angel.log.path=$log_path \
     	--ml.data.is.classification=false \
     	--ml.model.is.classification=false \
     	--ml.robustregression.loss.delta=1.0 \
     	--ml.epoch.num=10 \
     	--ml.feature.index.range=$featureNum+1 \
     	--ml.data.validate.ratio=0.1 \
     	--ml.learn.rate=0.1 \
     	--ml.learn.decay=1 \
     	--ml.reg.l2=0.001 \
     	--ml.data.type=libsvm \
     	--ml.model.type=T_FLOAT_DENSE \
     	--ml.num.update.per.epoch=10 \
     	--ml.worker.thread.num=4 \
     	--angel.workergroup.number=2 \
     	--angel.worker.memory.mb=5000 \
     	--angel.worker.task.number=1 \
     	--angel.ps.number=2 \
     	--angel.ps.memory.mb=5000 \
     	--angel.job.name=robustReg_network \
     	--angel.output.path.deleteonexist=true
    • 向Yarn集群提交RobustRegression算法预测任务:
     ./bin/angel-submit \
         --action.type=predict \
         --angel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
         --ml.model.class.name=com.tencent.angel.ml.regression.RobustRegression \
         --angel.predict.data.path=$input_path \
         --angel.load.model.path=$model_path \
         --angel.predict.out.path=$predict_path \
         --angel.log.path=$log_path \
         --ml.feature.index.range=$featureNum+1 \
         --ml.data.type=libsvm \
         --ml.model.type=T_FLOAT_DENSE \
         --ml.worker.thread.num=4 \
         --angel.workergroup.number=2 \
         --angel.worker.memory.mb=5000 \
         --angel.worker.task.number=1 \
         --angel.ps.number=2 \
         --angel.ps.memory.mb=5000 \
         --angel.job.name=robustReg_network \
         --angel.output.path.deleteonexist=true

性能

  • 数据:E2006-tfidf,1.5×10^5 特征,1.6×10^4 样本
  • 资源:
    • Angel:executor:2个,5G内存,1个task;ps:2个,5G内存
  • 迭代100次时间:
    • Angel:22 min