-
Notifications
You must be signed in to change notification settings - Fork 0
/
innodeep.py
227 lines (180 loc) · 8.97 KB
/
innodeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from img_process import *
from utility import *
from iou_metric import iou_metric_threshold
import streamlit as st
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import numpy as np
import tensorflow as tf
from tensorflow import keras
from io import BytesIO
import psutil
def upload_to_cv2(upload):
pil_img = Image.open(upload)
img = np.array(pil_img)
st.write(img.shape)
return img
model_path = "model/model.h5"
model_inverse_path = "model/model_inverse.h5"
model_classification_path = "model/model_classification.h5"
model_ROI_path = "model/model_ROI.h5"
model_ROI_type_path = "model/model_ROI_type.h5"
class TumorSeeker:
def __init__(self, model_path=None, model_inverse_path=None, model_classification_path=None, model_ROI_path=None,
model_ROI_type_path=None):
self.model = None
self.model_inverse = None
self.model_classification = None
self.model_ROI = None
self.model_ROI_type = None
self.data_raw = []
self.data_fullsize = []
self.data = np.zeros((128, 128))
self.prediction_fullsize = []
self.prediction_inverse_fullsize = []
self.prediction = np.zeros((128, 128))
self.prediction_inverse = np.zeros((128, 128))
self.prediction_box = []
self.rois = []
self.predicition_label = 1
self.pred_classification = -1
if model_path:
if model_inverse_path:
self.load_model(model_path, model_inverse_path)
else:
self.load_model(model_path)
else:
print("you need to initialize the model")
if model_classification_path:
self.load_classification(model_classification_path)
if model_ROI_path:
if model_ROI_type_path:
self.load_ROI(model_ROI_path, model_ROI_type_path)
else:
self.load_ROI(model_ROI_path)
def load_data(self, data_path):
self.data_raw = upload_to_cv2(data_path)
print("data_raw shape: ", self.data_raw.shape)
def preprocess_data(self):
# Implement the logic for data preprocessing
self.data, _ = preprocess_pipeline(self.data_raw)
print("preprocess_data shape : ", self.data.shape)
self.data_fullsize = self.data.copy()
self.data = cv2.resize(self.data, (128, 128))
print("resize_data shape : ", self.data.shape)
self.data = np.expand_dims(self.data, 0)
def predict(self):
# Implement the logic to make predictions using the trained tumor detection model
self.preprocess_data()
self.prediction = np.squeeze(self.model.predict(self.data, verbose=0), axis=0)
self.prediction_fullsize = cv2.resize(self.prediction, (self.data_fullsize.shape))
if self.model_inverse:
self.prediction_inverse = np.squeeze(self.model_inverse.predict(self.data, verbose=0), axis=0)
self.prediction_fullsize_inverse = cv2.resize(self.prediction_inverse, (self.data_fullsize.shape))
def predict_label(self):
pred = self.model_classification.predict(np.expand_dims(self.data, axis=-1), verbose=0)[0][0]
self.predicition_label = pred
pred = progress_bar(pred)
return str(pred)
def save_model(self, model_path):
# Implement the logic to save the trained tumor detection model
self.model.save(model_path)
def load_model(self, model_path, model_inverse_path=None):
# Implement the logic to load a saved tumor detection model
self.model = keras.models.load_model(model_path, custom_objects={
'binary_cross_entropy': tf.keras.losses.BinaryCrossentropy(from_logits=False),
'iou': iou_metric_threshold(0.2)})
if model_inverse_path:
self.model_inverse = keras.models.load_model(model_inverse_path, custom_objects={
'binary_cross_entropy': tf.keras.losses.BinaryCrossentropy(from_logits=False),
'iou': iou_metric_threshold(0.2)})
def load_classification(self, model_classification_path):
self.model_classification = keras.models.load_model(model_classification_path, custom_objects={
'categorical_crossentropy': tf.keras.losses.CategoricalCrossentropy()})
def load_ROI(self, model_ROI_path, model_ROI_type_path=None):
self.model_ROI = keras.models.load_model(model_ROI_path, custom_objects={
'binary_crossentropy': tf.keras.losses.BinaryCrossentropy()})
if model_ROI_type_path:
self.model_ROI_type = keras.models.load_model(model_ROI_type_path, custom_objects={
'binary_crossentropy': tf.keras.losses.BinaryCrossentropy()})
def process_bounding_box(self, coef):
mask = np.array(self.prediction * 255, np.uint8)
rois, boxs = extract_rois_from_mask(mask)
img_fullsize = self.data_fullsize.copy()
img_fullsize = cv2.merge((img_fullsize, img_fullsize, img_fullsize))
ratio = img_fullsize.shape[0] / self.prediction.shape[0]
self.rois = []
for box in boxs:
box = [round(i * ratio) for i in box]
self.rois.append(cv2.resize(
np.repeat(self.data_fullsize[box[1]:box[1] + box[3], box[0]:box[0] + box[2]][..., np.newaxis], 3,
axis=2), (128, 128)))
tumour_val = 0
type_val = 0
if self.model_ROI != None:
tumour_val = self.model_ROI.predict(np.expand_dims(self.rois[-1] * 255, axis=0), verbose=0)[0][0] * coef
tumour_val = int(tumour_val * 1000) / 1000
if self.model_ROI_type != None:
type_val = self.model_ROI_type.predict(np.expand_dims(self.rois[-1] * 255, axis=0), verbose=0)[0][0]
img_fullsize = afficher_image_avec_zone_encadree(img_fullsize, box[0], box[1], box[2], box[3],
"TUMOUR " + str(tumour_val), int(tumour_val * 100), -100)
if type_val >= 0.5:
type_val = int(type_val * coef * 1000) / 1000
img_fullsize = afficher_image_avec_zone_encadree(img_fullsize, box[0], box[1], box[2], box[3],
"CALC " + str(type_val), int(tumour_val * 100), 0)
else:
type_val = int((1 - type_val) * coef * 1000) / 1000
img_fullsize = afficher_image_avec_zone_encadree(img_fullsize, box[0], box[1], box[2], box[3],
"MASS " + str(type_val), int(tumour_val * 100), 0)
self.prediction_box = img_fullsize
def show(self, option="normal"):
if self.model_inverse:
fig, ax = plt.subplots(2, 3, figsize=(10, 5))
mult = np.multiply(self.prediction_fullsize, 1 - self.prediction_fullsize_inverse)
ax[1][0].imshow(mult)
ax[1][0].set_title('Multiply')
else:
fig, ax = plt.subplots(2, 2, figsize=(20, 10))
fig.tight_layout(pad=1.0)
ax[0][0].imshow(self.data_fullsize, cmap='gray')
ax[0][0].set_title('Data')
ax[1][1].imshow(np.squeeze(self.data_fullsize), cmap='gray')
ax[1][1].imshow(mult, alpha=0.4, cmap=None)
ax[0][2].imshow(1 - self.prediction_fullsize_inverse, alpha=1, cmap=None)
if option == "treshold":
_, tresh = cv2.threshold(self.prediction_fullsize, 0.9, 1, cv2.THRESH_BINARY)
ax[0][1].imshow(tresh, alpha=1, cmap=None)
if option == "normal":
ax[0][1].imshow(self.prediction_fullsize, alpha=1, cmap=None)
ax[0][1].set_title('Prediction')
ax[0][2].set_title('Prediction Inverse')
ax[1][1].set_title('Mask')
ax[1][2].set_title('Bounding Box')
pred_label = self.predict_label()
self.process_bounding_box(self.predicition_label)
ax[1][2].imshow(self.prediction_box, cmap=None)
# fig.suptitle(self.predict_label(), fontsize=16)
st.text(pred_label)
st.pyplot(fig)
@st.cache_resource(max_entries=1)
def load_models():
seeker = TumorSeeker(model_path, model_inverse_path, model_classification_path, model_ROI_path, model_ROI_type_path)
return seeker
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
seeker = load_models()
st.title("-INNODEEP- TUMOUR DETECTION")
img_upload = st.file_uploader("select", type=['png', 'jpg', 'jpeg'])
if img_upload:
st.text(psutil.virtual_memory()[3] / 1000000000)
with st.spinner('Wait for it...'):
seeker.load_data(img_upload)
seeker.predict()
seeker.show()
st.image(seeker.prediction_box)