Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sheeprl_eval loading model with different keys #305

Closed
belerico opened this issue Jun 25, 2024 · 5 comments
Closed

sheeprl_eval loading model with different keys #305

belerico opened this issue Jun 25, 2024 · 5 comments

Comments

@belerico
Copy link
Member

belerico commented Jun 25, 2024

I cannot sheeprl-eval my trained model, since the keys in the world model's state_dict have different names:

Stacktrace

Error executing job with overrides: ['checkpoint_path=/home/drt/Desktop/sheeprl/sheeprl/logs/runs/dreamer_v3/PyFlyt/2024-06-23_19-34-31_dreamer_v3_PyFlyt_42/version_0/checkpoint/ckpt_730000_0.ckpt', 'fabric.accelerator=gpu', 'env.capture_video=True', 'seed=52']
Traceback (most recent call last):
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/sheeprl/cli.py", line 404, in evaluation
eval_algorithm(ckpt_cfg)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/sheeprl/cli.py", line 267, in eval_algorithm
fabric.launch(command, cfg, state)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/lightning/fabric/fabric.py", line 839, in launch
return self._wrap_and_launch(function, self, *args, **kwargs)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/lightning/fabric/fabric.py", line 925, in _wrap_and_launch
return to_run(*args, **kwargs)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/lightning/fabric/fabric.py", line 930, in _wrap_with_setup
return to_run(*args, **kwargs)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/sheeprl/cli.py", line 262, in wrapper
return func(*args, **kwargs)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/sheeprl/algos/dreamer_v3/evaluate.py", line 47, in evaluate
_, _, _, _, player = build_agent(
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/sheeprl/algos/dreamer_v3/agent.py", line 1186, in build_agent
world_model.load_state_dict(world_model_state)
File "/home/drt/miniconda3/envs/sheeprl/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2189, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for WorldModel:
Missing key(s) in state_dict: "encoder.mlp_encoder.model._model.0.weight", "encoder.mlp_encoder.model._model.1.weight", "encoder.mlp_encoder.model._model.1.bias", "encoder.mlp_encoder.model._model.3.weight", "encoder.mlp_encoder.model._model.4.weight", "encoder.mlp_encoder.model._model.4.bias", "encoder.mlp_encoder.model._model.6.weight", "encoder.mlp_encoder.model._model.7.weight", "encoder.mlp_encoder.model._model.7.bias", "rssm.recurrent_model.mlp._model.0.weight", "rssm.recurrent_model.mlp._model.1.weight", "rssm.recurrent_model.mlp._model.1.bias", "rssm.recurrent_model.rnn.linear.weight", "rssm.recurrent_model.rnn.layer_norm.weight", "rssm.recurrent_model.rnn.layer_norm.bias", "rssm.representation_model._model.0.weight", "rssm.representation_model._model.1.weight", "rssm.representation_model._model.1.bias", "rssm.representation_model._model.3.weight", "rssm.representation_model._model.3.bias", "rssm.transition_model._model.0.weight", "rssm.transition_model._model.1.weight", "rssm.transition_model._model.1.bias", "rssm.transition_model._model.3.weight", "rssm.transition_model._model.3.bias", "observation_model.mlp_decoder.model._model.0.weight", "observation_model.mlp_decoder.model._model.1.weight", "observation_model.mlp_decoder.model._model.1.bias", "observation_model.mlp_decoder.model._model.3.weight", "observation_model.mlp_decoder.model._model.4.weight", "observation_model.mlp_decoder.model._model.4.bias", "observation_model.mlp_decoder.model._model.6.weight", "observation_model.mlp_decoder.model._model.7.weight", "observation_model.mlp_decoder.model._model.7.bias", "observation_model.mlp_decoder.heads.0.weight", "observation_model.mlp_decoder.heads.0.bias", "reward_model._model.0.weight", "reward_model._model.1.weight", "reward_model._model.1.bias", "reward_model._model.3.weight", "reward_model._model.4.weight", "reward_model._model.4.bias", "reward_model._model.6.weight", "reward_model._model.7.weight", "reward_model._model.7.bias", "reward_model._model.9.weight", "reward_model._model.9.bias".
Unexpected key(s) in state_dict: "encoder._orig_mod.mlp_encoder.model._model.0.weight", "encoder._orig_mod.mlp_encoder.model._model.1.weight", "encoder._orig_mod.mlp_encoder.model._model.1.bias", "encoder._orig_mod.mlp_encoder.model._model.3.weight", "encoder._orig_mod.mlp_encoder.model._model.4.weight", "encoder._orig_mod.mlp_encoder.model._model.4.bias", "encoder._orig_mod.mlp_encoder.model._model.6.weight", "encoder._orig_mod.mlp_encoder.model._model.7.weight", "encoder._orig_mod.mlp_encoder.model._model.7.bias", "rssm.recurrent_model._orig_mod.mlp._model.0.weight", "rssm.recurrent_model._orig_mod.mlp._model.1.weight", "rssm.recurrent_model._orig_mod.mlp._model.1.bias", "rssm.recurrent_model._orig_mod.rnn.linear.weight", "rssm.recurrent_model._orig_mod.rnn.layer_norm.weight", "rssm.recurrent_model._orig_mod.rnn.layer_norm.bias", "rssm.representation_model._orig_mod._model.0.weight", "rssm.representation_model._orig_mod._model.1.weight", "rssm.representation_model._orig_mod._model.1.bias", "rssm.representation_model._orig_mod._model.3.weight", "rssm.representation_model._orig_mod._model.3.bias", "rssm.transition_model._orig_mod._model.0.weight", "rssm.transition_model._orig_mod._model.1.weight", "rssm.transition_model._orig_mod._model.1.bias", "rssm.transition_model._orig_mod._model.3.weight", "rssm.transition_model._orig_mod._model.3.bias", "observation_model._orig_mod.mlp_decoder.model._model.0.weight", "observation_model._orig_mod.mlp_decoder.model._model.1.weight", "observation_model._orig_mod.mlp_decoder.model._model.1.bias", "observation_model._orig_mod.mlp_decoder.model._model.3.weight", "observation_model._orig_mod.mlp_decoder.model._model.4.weight", "observation_model._orig_mod.mlp_decoder.model._model.4.bias", "observation_model._orig_mod.mlp_decoder.model._model.6.weight", "observation_model._orig_mod.mlp_decoder.model._model.7.weight", "observation_model._orig_mod.mlp_decoder.model._model.7.bias", "observation_model._orig_mod.mlp_decoder.heads.0.weight", "observation_model._orig_mod.mlp_decoder.heads.0.bias", "reward_model._orig_mod._model.0.weight", "reward_model._orig_mod._model.1.weight", "reward_model._orig_mod._model.1.bias", "reward_model._orig_mod._model.3.weight", "reward_model._orig_mod._model.4.weight", "reward_model._orig_mod._model.4.bias", "reward_model._orig_mod._model.6.weight", "reward_model._orig_mod._model.7.weight", "reward_model._orig_mod._model.7.bias", "reward_model._orig_mod._model.9.weight", "reward_model._orig_mod._model.9.bias".

Originally posted by @defrag-bambino in #261 (comment)

@belerico
Copy link
Member Author

Hi @defrag-bambino, could you please elaborate more on the issue?
Which version of SheepRL are you using?
Which steps have you run before encountering the error?
Thank you

@defrag-bambino
Copy link

It is related to the feature/compile branch. I trained a model using it and afterwards cannot load its state_dict (still using this branch).

@belerico
Copy link
Member Author

I'm trying but i'm not able to replicate: which torch version are you using?

@defrag-bambino
Copy link

pytorch-lightning        2.2.1
torch                    2.3.1
torchmetrics             1.3.2
torchvision              0.18.1

@belerico
Copy link
Member Author

belerico commented Jul 6, 2024

Hi @defrag-bambino, this is a screenshot where you can see that the world_model.encoder, which is a _FabricModule, when the state_dict function is called it returns the correct module:

image

I'm not able to reproduce. Have you maybe trained the model with an older version of sheeprl and/or lightning and you're now trying to resume it with a newer one?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants