-
Notifications
You must be signed in to change notification settings - Fork 3
/
hlist_aux.v
238 lines (190 loc) · 6.01 KB
/
hlist_aux.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
Require Export hybrid.tactics.
Require Export hybrid.util.
Require Import hybrid.list_util.
Require Export Coq.Lists.List.
Require Export Coq.Program.Program.
Require Import CoLoR.Util.Vector.VecUtil.
Set Implicit Arguments.
Section list_head.
Variable A : Type.
Program Definition head (l : list A) : nil <> l -> A :=
match l as l return l <> [] -> A with
| [] => fun H => !
| x::xs => fun _ => x
end.
End list_head.
Section hlists_def.
Context {A} `{B : A -> Type}.
Inductive hlist (l : list A) : Type :=
| HNil : forall `{l = nil}, hlist l
| HCons : forall `{H : nil <> l}, B (head H) -> hlist (tail l) -> hlist l.
End hlists_def.
Notation "'hnil'" := (HNil (H:=refl_equal _)).
Notation "x ::: xs" := (HCons (H:=@nil_cons _ _ _) x xs) (at level 60).
Section hlists_funs.
(* FIXME, use context when switching to 8.3
Context `{B : A -> Type, l : list A, a : A}.
*)
Variable (A : Type) (B : A -> Type) (l : list A) (a : A).
Program Definition hhd (hl : hlist (a::l)) : B a :=
match hl with
| HNil _ => !
| HCons _ x xs => x
end.
Program Definition htl (hl : hlist (B:=B) (a::l)) : hlist l :=
match hl with
| HNil _ => !
| HCons _ x xs => xs
end.
(** [hsingleton x] is a [HList] with only one element [x] *)
Definition hsingleton (t : A) (x : B t) : hlist [t] := x:::hnil.
Variable f : forall x, B x.
(** [hbuild [t_1; ... t_n] = [f t_1; ... f t_n]] *)
Fixpoint hbuild (lt : list A) : hlist lt :=
match lt with
| nil => hnil
| x::lt' => f x ::: hbuild lt'
end.
End hlists_funs.
Ltac hlist_simpl :=
repeat
match goal with
| hl : hlist [] |- _ => dep_destruct hl
| hl : hlist (_::_) |- _ => dep_destruct hl
| H : _:::_ = _:::_ |- _ => inversion H; clear H
end.
(** Decidability of Leibniz equality on [hlist]s (given deecidable
equality on all types of its elements). *)
Section hlist_eqdec.
Context {A} `{B : A -> Type, lt : list A}.
Variable EltsEqDec : forall x, In x lt -> EqDec (B x) eq.
Lemma hlist_eq_fst_eq a (x y : B a) (xs ys : hlist lt) :
x:::xs === y:::ys ->
x === y.
Proof.
inversion 1; dep_subst; intuition.
Qed.
Lemma hlist_eq_snd_eq a (x y : B a) (xs ys : hlist lt) :
x:::xs === y:::ys ->
xs === ys.
Proof.
inversion 1; dep_subst; intuition.
Qed.
Global Program Instance hlist_EqDec : EqDec (hlist (B:=B) lt) eq.
Next Obligation.
(*
revert x y; induction lt; intros; hlist_simpl; crunch;
match goal with
| EQ : forall x, ?a = x \/ In x ?l -> _, x : B ?a, y : B ?a
|- context [?x:::_ === ?y:::_] =>
let a_al0 := fresh "a_al0" in
assert (a_al0 : In a (a :: l)) by intuition;
destruct (EQ a a_al0 x y)
end;
match goal with
| IH : (forall x, In x ?l -> EqDec (?B x) eq) -> forall x y, {x === y} + {x =/= y}
|- context [_:::?xs === _:::?ys] =>
let IHpre := fresh "IHpre" in
assert (IHpre : forall x, In x l -> EqDec (B x) eq) by intuition;
destruct (IH IHpre xs ys)
end;
simpl_eqs; crunch; compute; crunch.
*)
Admitted.
End hlist_eqdec.
Global Hint Resolve hlist_eq_fst_eq hlist_eq_snd_eq.
Section HList_prods.
Context {A} `{B : A -> Type}.
(* [hlist_combine [x_1; ... x_n] [ys_1; ... ys_n] =
[x_1::ys_1; ... x_n::ys_n; x_2::ys_1 ... x_n::ys_n]] *)
Fixpoint hlist_combine t (lt : list A)
(xl : list (B t)) (ys : list (hlist lt)) : list (hlist (t::lt)) :=
match xl with
| [] => []
| x::xs => map (fun y_i => x:::y_i) ys ++ hlist_combine xs ys
end.
Lemma hlist_combine_In a lt (x : B a) (ys : hlist lt) all_x all_ys :
In x all_x -> In ys all_ys ->
In (x:::ys) (hlist_combine all_x all_ys).
Proof.
induction all_x; crunch.
Qed.
Lemma hlist_combine_hd a lt (x : hlist (a :: lt)) xs ys :
In x (hlist_combine xs ys) ->
In (hhd x) xs.
Proof.
Admitted.
(* induction xs; repeat (hlist_simpl; crunch; list_simpl).
Qed. *)
Lemma map_In_head a lt (x : hlist (a::lt)) (el : B a) xs :
In x (map (fun tail => el ::: tail) xs) ->
hhd x = el.
Proof.
repeat (list_simpl; crunch).
Qed.
Hint Resolve hlist_combine_hd map_In_head.
Lemma hlist_combine_NoDup (a : A) lt all_x all_ys :
NoDup all_x -> NoDup all_ys ->
NoDup (hlist_combine (t:=a)(lt:=lt) all_x all_ys).
Proof.
Admitted. (*
induction all_x;
repeat progress
(crunch; hlist_simpl; NoDup_simpl;
try
match goal with
| H : In ?x (map (fun _ => ?elt ::: _) _) |- _ =>
assert (hhd x = elt) by crunch
end
).
Qed. *)
Program Fixpoint hlist_prod_tuple (lt : list A) (l : hlist (B := fun T => list (B T)) lt) :
list (hlist (B:=B) lt) :=
match lt with
| [] => [hnil]
| t::ts =>
match l with
| HNil _ => !
| HCons _ x xs =>
let w := @hlist_prod_tuple _ xs in _
end
end.
(* FIXME, this is akward... get rid of the obligation *)
Next Obligation.
Proof.
admit.
(* exact (@hlist_combine t ts x (hlist_prod_tuple _ xs)). *)
Defined.
End HList_prods.
Section ExhaustiveHList.
Variable A : Type.
Variable B : A -> Type.
Variable l : list A.
Context {EL : forall x, ExhaustiveList (B x)}.
Global Program Instance ExhaustiveHList : ExhaustiveList (hlist l) :=
{ exhaustive_list :=
hlist_prod_tuple (hbuild _ (fun x => @exhaustive_list _ (EL x)) l)
}.
Next Obligation.
Admitted.
Variable NoDup_EL : forall x, NoDup (EL x).
Hint Constructors NoDup.
Hint Resolve @hlist_combine_NoDup.
Lemma NoDup_ExhaustiveHList : NoDup ExhaustiveHList.
Proof.
simpl; induction l; crunch.
admit.
Qed.
End ExhaustiveHList.
Section hlist_map.
Variable A C : Type.
Variable B : A -> Type.
Variable n : nat.
Variable l : vector A n.
(*Variable f : forall i (ip : (i < n)%nat), B (Vnth l ip) -> C.*)
Definition hlist_map (f : forall i (ip : (i < n)%nat), B (Vnth l ip) -> C) :
hlist (B:=B) (list_of_vec l) ->
vector C n.
Proof.
Admitted.
End hlist_map.