-
Notifications
You must be signed in to change notification settings - Fork 3
/
list_util.v
473 lines (415 loc) · 11.1 KB
/
list_util.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
Require Import List.
Require Import util.
Require Import Le.
Require Import Lt.
Set Implicit Arguments.
Section with_eq_dec.
Variables (X: Type) (Xeq: forall x x': X, decision (x = x')).
Lemma remove_incl
(x: X) (l: list X): incl (remove Xeq x l) l.
Proof with auto.
induction l; simpl.
apply incl_refl.
destruct (Xeq x a).
apply incl_tl...
do 2 intro. destruct H.
subst. left...
right...
Qed.
Lemma remove_length_le (x: X) (l: list X): length (remove Xeq x l) <= length l.
Proof with auto.
induction l...
simpl.
destruct (Xeq x a)...
apply le_n_S...
Qed.
Lemma remove_length_lt (x: X) (l: list X): In x l ->
length (remove Xeq x l) < length l.
Proof with auto.
induction l; intros.
inversion H.
simpl.
destruct (Xeq x a).
apply le_n_S.
apply remove_length_le.
destruct H. elimtype False...
apply lt_n_S...
Qed.
Definition intersection (a: list X): list X -> list X :=
filter (fun e => unsumbool (In_dec Xeq e a)).
Definition subtr: list X -> list X -> list X := fold_right (remove Xeq).
(* removes elements in latter list from former list *)
Lemma remove_eq_filter (x: X) (l: list X):
remove Xeq x l = filter (fun y => negb (unsumbool (Xeq x y))) l.
Proof with auto.
induction l...
simpl.
destruct (Xeq x a)...
simpl. rewrite IHl...
Qed.
Definition In_remove (l: list X) (x y: X): (In x l /\ y <> x) <-> In x (remove Xeq y l).
Proof with auto.
intros.
rewrite remove_eq_filter.
destruct (filter_In (fun y0 : X => negb (unsumbool (Xeq y y0))) x l).
split; intro.
apply H0. destruct H1.
destruct (Xeq y x)...
destruct (H H1).
destruct (Xeq y x)...
discriminate.
Qed.
Definition In_remove' (l: list X) (x y: X): In x l -> y <> x -> In x (remove Xeq y l).
(* redundant, but easier to apply and use as hint. *)
Proof. intros. apply (In_remove l x y); auto. Qed.
Lemma incl_filter (p: X -> bool) (l: list X): incl (filter p l) l.
Proof with auto.
unfold incl.
induction l; simpl...
intros.
destruct (p a); firstorder.
Qed.
Definition incl_remove (l: list X) (x: X): incl (remove Xeq x l) l.
Proof. intros. rewrite remove_eq_filter. apply incl_filter. Qed.
Lemma In_subtr a b x: In x (subtr a b) -> (In x a /\ ~ In x b).
Proof with auto.
revert a b x.
induction b...
simpl.
rewrite remove_eq_filter.
intros.
destruct (fst (filter_In _ x (subtr a b)) H).
destruct (IHb _ H0).
split...
intro.
destruct H4...
subst.
destruct (Xeq x x)...
discriminate.
Qed.
Lemma subtr_In a b x: In x a -> ~ In x b -> In x (subtr a b).
Proof with auto.
induction b...
simpl. intros.
apply (In_remove (subtr a b) x a0).
split...
Qed.
Lemma incl_subtr a b: incl (subtr a b) a.
Proof with auto.
induction b.
simpl. apply incl_refl.
simpl.
apply incl_tran with (subtr a b)...
apply incl_remove.
Qed.
Lemma intersection_In' (x: X) a b:
In x a -> In x b -> In x (intersection a b).
Proof with auto.
unfold intersection.
intros.
apply (filter_In (fun e : X => unsumbool (In_dec Xeq e a)) x b).
destruct (In_dec Xeq x a)...
Qed.
Lemma intersection_In (x: X) a b:
In x (intersection a b) -> (In x a /\ In x b).
Proof with auto.
induction a...
unfold intersection.
simpl.
intros.
destruct (filter_In (fun _ => false) x b).
destruct (H0 H). discriminate.
unfold intersection in *.
intros.
destruct (filter_In (fun e : X => unsumbool (In_dec Xeq e (a :: a0))) x b).
set (H0 H). clearbody a1. clear H0 H H1.
destruct a1.
destruct (In_dec Xeq x (a :: a0))...
discriminate.
Qed.
Lemma incl_intersection_left (a b c: list X):
incl a c -> incl (intersection a b) c.
Proof with auto.
repeat intro.
destruct (intersection_In a0 a b H0)...
Qed.
Lemma NoDup_map (A B: Type) (f: A -> B) l:
(forall x y, In x l -> In y l -> f x = f y -> x = y) -> NoDup l -> NoDup (map f l).
Proof with simpl; auto.
induction l...
intros.
apply NoDup_nil.
intros.
simpl.
inversion_clear H0.
apply NoDup_cons...
intro.
apply H1.
destruct (fst (in_map_iff f l (f a)) H0).
destruct H3.
rewrite H with a x...
Qed.
Lemma NoDup_filter (p: X -> bool) (l: list X):
NoDup l -> NoDup (filter p l).
Proof with auto.
induction l...
simpl.
intros.
inversion_clear H.
destruct (p a)...
apply NoDup_cons...
intro.
apply H0...
apply (incl_filter p l)...
Qed.
Lemma NoDup_intersection_right a b: NoDup b -> NoDup (intersection a b).
Proof with auto.
unfold intersection.
intros.
apply NoDup_filter...
Qed.
Lemma not_In_filter (x: X) p l: ~ In x (filter p l) ->
In x l -> p x = false.
Proof with auto.
induction l.
simpl.
intros.
elimtype False...
simpl.
intros.
destruct H0.
subst.
case_eq (p x)...
intros.
rewrite H0 in H.
elimtype False.
apply H. left...
apply IHl...
destruct (p a)...
Qed.
Lemma not_In_filter' (x: X) p l: ~ In x (filter p l) ->
(~ In x l \/ p x = false).
Proof with auto.
intros.
destruct (In_dec Xeq x l).
right. apply not_In_filter with l...
left...
Qed.
Lemma not_in_app (x: X) a b: ~ In x (a ++ b) -> ~ In x a \/ ~ In x b.
Proof with auto.
induction a...
simpl.
intros.
firstorder.
Qed.
Lemma NoDup_app (a b: list X): NoDup a -> NoDup b ->
(forall x, In x a -> ~ In x b) -> NoDup (a ++ b).
Proof with auto.
induction a...
intros.
simpl.
inversion_clear H.
apply NoDup_cons.
intro.
destruct (in_app_or _ _ _ H)...
apply (H1 a)...
apply IHa...
Qed.
Lemma NoDup_subtr a b: NoDup a -> NoDup (subtr a b).
Proof with auto.
induction b...
simpl. intros.
rewrite remove_eq_filter.
apply NoDup_filter...
Qed.
Lemma NoDup_remove a: NoDup a -> forall b, NoDup (remove Xeq b a).
Proof.
intros.
rewrite remove_eq_filter.
apply NoDup_filter.
assumption.
Qed.
Definition NoDup_dec (l: list X): decision (NoDup l).
Proof with auto.
induction l.
left. apply NoDup_nil.
destruct IHl.
destruct (In_dec Xeq a l).
right.
intro.
inversion H. apply (H2 i).
left. apply NoDup_cons; assumption.
right. intro. apply n. inversion H...
Defined.
End with_eq_dec.
Lemma NoDup_flat_map (A B: Type) (f: A -> list B) l:
(forall x a b, In a l -> In b l -> In x (f a) -> In x (f b)
-> a = b) ->
(forall x, In x l -> NoDup (f x)) ->
NoDup l -> NoDup (flat_map f l).
Proof with simpl; auto.
induction l; simpl; intros.
apply NoDup_nil.
inversion_clear H1...
apply NoDup_app...
apply IHl...
intros.
apply H with x...
intros. intro.
destruct (fst (in_flat_map f l x) H4).
destruct H5.
apply H2.
rewrite <- (H x x0 a )...
Qed.
Hint Resolve NoDup_subtr.
Hint Resolve NoDup_filter.
Hint Resolve NoDup_remove.
Hint Resolve NoDup_intersection_right.
Hint Resolve subtr_In.
Hint Resolve In_remove'.
Hint Resolve in_or_app.
Hint Resolve intersection_In'.
Hint Resolve in_eq.
Hint Resolve in_cons.
Hint Resolve NoDup_cons.
Hint Resolve NoDup_nil.
Lemma in_filter (A : Type) (f : A -> bool) (x : A) (l : list A) :
In x l -> f x = true -> In x (filter f l).
Proof.
intros. destruct filter_In with A f x l. firstorder.
Qed.
Lemma existsb_forall :
forall A (l : list A) P x,
existsb P l = false -> In x l -> P x = false.
Proof.
induction l; intros.
contradiction.
destruct (Bool.orb_false_elim _ _ H).
destruct H0.
subst. hyp.
apply IHl; hyp.
Qed.
Lemma filter_app (A : Type) (f : A -> bool) ls ls' :
filter f ls ++ filter f ls' =
filter f (ls ++ ls').
Proof.
induction ls. ref. intros.
simpl. destruct (f a); simpl. rewrite IHls. ref. apply IHls.
Qed.
Section ExhaustivePairList.
Context {A B} {EA: ExhaustiveList A} {EB: ExhaustiveList B}.
Global Instance ExhaustivePairList:
ExhaustiveList (A*B)
:= { exhaustive_list := flat_map (fun i => map (pair i) EB) EA }.
Proof.
intros [a b].
destruct (in_flat_map (fun i => map (pair i) EB) EA (a, b)).
eauto.
Defined.
Lemma NoDup_ExhaustivePairList:
NoDup EA -> NoDup EB -> NoDup ExhaustivePairList.
Proof with auto.
intros H H0.
simpl.
apply NoDup_flat_map; intros...
destruct (fst (in_map_iff (pair a) EB x) H3) as [x0 [C D]].
destruct (fst (in_map_iff (pair b) EB x) H4) as [x1 [E F]].
subst. inversion E...
apply NoDup_map...
intros. inversion H4...
Qed.
End ExhaustivePairList.
Instance decide_exists_in {T} {P} `{forall x: T, decision (P x)} l: decision (exists x, In x l /\ P x).
Proof.
repeat intro.
case_eq (existsb H l); intro.
left.
destruct (fst (existsb_exists _ _) H0).
exists x.
destruct H1.
split. assumption.
apply (decision_true _ H2).
right.
intros [x [H1 H2]].
exact (decision_false _ (existsb_forall l H x H0 H1) H2).
Defined.
Instance decide_exists {T} {P} `{ExhaustiveList T} `{forall x: T, decision (P x)}: decision (exists x, P x).
Proof.
intros. destruct (decide_exists_in H); [left | right]; firstorder.
Defined.
Program Instance overestimate_exists_in
{T} {P} `{H: forall x: T, overestimation (P x)} l: overestimation (exists x, In x l /\ P x) := existsb H l.
Next Obligation.
intros [x [A B]].
rewrite (snd (existsb_exists H l)) in H0.
discriminate.
eauto 20 using overestimation_true.
Defined.
Instance overestimate_exists {T} {P} `{ExhaustiveList T} `{forall x: T, overestimation (P x)}: overestimation (exists x, P x).
Proof.
intros.
exists (overestimate_exists_in H).
intro.
pose proof (overestimation_false _ H1).
firstorder.
Defined.
Instance In_decision {T} `{EquivDec.EqDec T eq} (x: T) y: decision (In x y) := In_dec EquivDec.equiv_dec x y.
Section carts.
Variables (A B: Type) (a: list A) (b: list B).
Definition cart: list (A * B) :=
flat_map (fun x => map (pair x) b) a.
Lemma in_cart (ab: A * B): In (fst ab) a -> In (snd ab) b -> In ab cart.
Proof with auto.
intros.
apply <- in_flat_map.
destruct ab.
eauto.
Qed.
Lemma NoDup_cart: NoDup a -> NoDup b -> NoDup cart.
Proof with auto.
intros.
apply NoDup_flat_map; intros...
destruct (fst (in_map_iff _ _ _) H3).
destruct (fst (in_map_iff _ _ _) H4).
intuition.
congruence.
apply NoDup_map...
congruence.
Qed.
End carts.
Section List_prods.
Variable A : Type.
(* [list_combine [x_1; ... x_n] [y_1; ... y_n] = [x_1::y_1; ... x_n::y_n; x_2::y_1 ... x_n::y_n]] *)
Fixpoint list_combine (l : list A) (l' : list (list A)) : list (list A) :=
match l with
| [] => []
| x::xs => List.map (fun y_i => x::y_i) l' ++ list_combine xs l'
end.
(* list_prod_tuple [xs_1; ... xs_n] gives a list containing every
list of the form [x_1; ... x_n] where [In x_1 xs_1], ... [In x_n xs_n].
*)
Fixpoint list_prod_tuple (elts : list (list A)) : list (list A) :=
match elts with
| [] => [[]]
| x::xs => list_combine x (list_prod_tuple xs)
end.
End List_prods.
(*
Eval vm_compute in list_combine [1; 2] [[3;4]; [5;6]].
Eval vm_compute in list_prod_tuple [[1;2]; [3;4]; [5;6]].
*)
Ltac NoDup_simpl :=
repeat
match goal with
| |- NoDup (_ ++ _) => apply NoDup_app
| |- NoDup (map _ _) => apply NoDup_map
| H : NoDup (_::_) |- _ => inversion H; clear H
end.
Ltac list_simpl :=
repeat
match goal with
| H : In _ (?l ++ ?m) |- _ =>
destruct (in_app_or l m _ H); clear H
| H : In _ (map _ _) |- _ =>
destruct (proj1 (in_map_iff _ _ _) H); clear H
end.