-
Notifications
You must be signed in to change notification settings - Fork 3
/
util.v
415 lines (308 loc) · 12.1 KB
/
util.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
Require Import Coq.Reals.Reals.
Require Import Fourier.
Require Import List.
Require Import Bool.
Require Export Program.
Require Import EquivDec.
Require Import Relation_Definitions.
Require Import Morphisms.
Set Implicit Arguments.
Open Local Scope R_scope.
Ltac hyp := assumption.
Ltac ref := reflexivity.
Ltac destruct_and :=
match goal with
| H: _ /\ _ |- _ => destruct H; destruct_and
| _ => idtac
end.
Section predicate_reflection.
Inductive PredicateType: Type -> Type :=
| PT_Prop: PredicateType Prop
| PT_pred X (T: X -> Type): (forall x, PredicateType (T x)) ->
PredicateType (forall x: X, T x).
(* We would really like PredicateType to be a type class, but unfortunately
we cannot make it one with the way type classes currently work. Hence,
we introduce the following: *)
Class IsPredicateType (T: Type): Type := is_PT: PredicateType T.
Instance PT_Prop_instance: IsPredicateType Prop := PT_Prop.
Instance PT_pred_instance (X: Type) (T: X -> Type) (U: forall x, IsPredicateType (T x)):
IsPredicateType (forall x: X, T x) := PT_pred T U.
Variables
(F: forall T: Type, T -> Type)
(A: forall P: Prop, F P)
(B: forall (U: Type) (R: U -> Type) (p: forall u, R u)
(i: forall u, PredicateType (R u)), (forall u, F (p u)) -> F p).
Definition pred_rect (T: Type) (i: IsPredicateType T) (t: T): F t.
Proof.
induction i.
apply A.
exact (B T t p (fun u => X0 u (t u))).
Defined.
End predicate_reflection.
Existing Instance PT_Prop_instance.
Existing Instance PT_pred_instance.
Class decision (P: Prop): Set := decide: { P } + { ~ P }.
Program Instance decide_conjunction {P Q: Prop} `{Pd: decision P} `{Qd: decision Q}: decision (P /\ Q) :=
match Pd, Qd with
| right _, _ => right _
| _, right _ => right _
| left _, left _ => left _
end.
Next Obligation. firstorder. Qed.
Next Obligation. firstorder. Qed.
Instance decide_equality {A} {R: relation A} `{e: EqDec A R} x y: decision (R x y) := e x y.
Definition decision_to_bool P (dec : decision P) : bool :=
match dec with
| left _ => true
| right _ => false
end.
Ltac dec_eq := unfold decision; decide equality.
Implicit Arguments fst [[A] [B]].
Implicit Arguments snd [[A] [B]].
Notation "g ∘ f" := (compose g f) (at level 40, left associativity).
Definition uncurry A B C (f: A -> B -> C) (ab: A * B): C := f (fst ab) (snd ab).
Definition curry A B C (f: A * B -> C) (a: A) (b: B): C := f (a, b).
Definition curry_eq A B C (f: A * B -> C) a b: f (a, b) = curry f a b := refl_equal _.
Definition conj_pair {A B: Prop} (P: A /\ B): A * B :=
match P with conj a b => (a, b) end.
Coercion conj_pair: and >-> prod.
Definition equivalent_decision (P Q: Prop) (PQ: P <-> Q) (d: decision P): decision Q :=
match d with
| left p => left (fst PQ p)
| right H => right (fun q => H (snd PQ q))
end.
Definition opt_neg_conj (A B: Prop)
(oa: option (~ A)) (ob: option (~ B)): option (~ (A /\ B)) :=
match oa, ob with
| Some na, _ => Some (na ∘ fst ∘ conj_pair)
| _, Some nb => Some (nb ∘ snd ∘ conj_pair)
| None, None => None
end.
Definition opt_neg_impl (P Q: Prop) (i: P -> Q):
option (~ Q) -> option (~ P) :=
option_map (fun x => x ∘ i).
Definition pair_eq_dec (X Y: Type)
(X_eq_dec: forall x x': X, {x=x'}+{x<>x'})
(Y_eq_dec: forall y y': Y, {y=y'}+{y<>y'})
(p: prod X Y) (p': prod X Y): decision (p=p').
Proof with auto.
destruct p. destruct p'. unfold decision.
destruct (X_eq_dec x x0); destruct (Y_eq_dec y y0);
subst; try auto; right; intro; inversion H...
Defined.
Hint Unfold decision.
Definition and_dec (P Q: Prop) (Pdec: decision P) (Qdec: decision Q):
decision (P/\Q).
Proof. unfold decision. destruct Pdec, Qdec; firstorder. Defined.
Hint Resolve and_dec.
Definition list_dec (X: Set) (P: X -> Prop) (d: forall x, decision (P x))
(l: list X): decision (forall x, In x l -> P x).
Proof with auto.
induction l.
left. intros. inversion H.
simpl.
destruct (d a).
destruct IHl; [left | right]...
intros. destruct H... subst...
right...
Defined.
Coercion unsumbool (A B: Prop) (sb: {A}+{B}): bool :=
if sb then true else false.
Lemma Rmax_le x y z: x <= z -> y <= z -> Rmax x y <= z.
Proof with auto.
intros. unfold Rmax. destruct (Rle_dec x y)...
Qed.
Lemma Rmin_le x y z: z <= x -> z <= y -> z <= Rmin x y.
Proof with auto.
intros. unfold Rmin. destruct (Rle_dec x y)...
Qed.
Instance option_eq_dec {B: Type} `(Bdec: EquivDec.EqDec B eq): EquivDec.EqDec (option B) eq.
Proof with auto.
intros o o'.
unfold Equivalence.equiv.
destruct o; destruct o'...
destruct (Bdec b b0).
unfold Equivalence.equiv in *.
subst...
right. intro. inversion H...
right. discriminate.
right. discriminate.
Defined.
Coercion opt_to_bool A (o: option A): bool :=
match o with Some _ => true | None => false end.
Definition opt {A R}: (A -> R) -> R -> option A -> R :=
option_rect (fun _ => R).
Definition flip_opt {A R} (r: R) (o: option A) (f: A -> R): R :=
option_rect (fun _ => R) f r o.
Definition opt_prop A (o: option A) (f: A -> Prop): Prop :=
match o with
| None => True
| Some v => f v
end.
Definition options A (x y: option A): option A :=
match x, y with
| Some a, _ => Some a
| _, Some a => Some a
| None, None => None
end.
Lemma option_eq_inv A (x y: A): Some x = Some y -> x = y.
intros.
inversion H.
reflexivity.
Defined.
Lemma unsumbool_true (P Q: Prop) (sb: {P}+{Q}): unsumbool sb = true -> P.
Proof. destruct sb. auto. intro. discriminate. Qed.
Lemma decision_true (P: Prop) (sb: decision P): unsumbool sb = true -> P.
Proof. destruct sb. auto. intro. discriminate. Qed.
Lemma decision_false (P: Prop) (sb: decision P): unsumbool sb = false -> ~P.
Proof. destruct sb. intro. discriminate. auto. Qed.
Lemma semidec_true (P: Prop) (o: option P): opt_to_bool o = true -> P.
Proof. destruct o. auto. intro. discriminate. Qed.
Lemma show_unsumbool A (b: decision A) (c: bool): (if c then A else ~A) -> unsumbool b = c.
Proof. destruct b; destruct c; intuition. Qed.
Class ExhaustiveList (T: Type): Type :=
{ exhaustive_list: list T
; list_exhaustive: forall x, In x exhaustive_list }.
Hint Resolve @list_exhaustive.
Coercion exhaustive_list: ExhaustiveList >-> list.
Hint Resolve in_map.
Lemma negb_inv b c: b = negb c -> negb b = c.
Proof. intros. subst. apply negb_involutive. Qed.
Definition prod_map A B C D (f: A -> B) (g: C -> D) (p: A*C): B*D :=
(f (fst p), g (snd p)).
Definition flip (A B C: Type) (f: A -> B -> C) (b: B) (a: A): C := f a b.
Definition dep_flip (A B: Type) (C: A -> B -> Type) (f: forall a b, C a b) (b: B) (a: A): C a b := f a b.
Hint Extern 4 => match goal with
|- ?P (@proj1_sig ?T ?P ?x) => destruct x; auto
end.
Class overestimation (P: Prop): Set := overestimate: { b: bool | b = false -> ~ P }.
Definition underestimation (P: Prop): Set := option P.
Coercion overestimation_bool P: overestimation P -> bool := @proj1_sig _ _.
Coercion underestimation_bool P: underestimation P -> bool := @opt_to_bool _.
Program Instance opt_overestimation {A: Type} (P: A -> Prop)
(H: forall a, overestimation (P a)) (o: option A): overestimation (opt_prop o P) :=
match o with
| None => true
| Some v => H v
end.
Program Instance overestimate_conj {P Q: Prop}
(x: overestimation P) (y: overestimation Q): overestimation (P /\ Q) := x && y.
Next Obligation.
intros [A B].
destruct x. destruct y.
simpl in H.
destruct (andb_false_elim _ _ H); intuition.
Qed.
Lemma overestimation_false P (o: overestimation P): (o: bool) = false -> ~ P.
Proof. destruct o. assumption. Qed.
Lemma underestimation_true P (o: underestimation P): (o: bool) = true -> P.
Proof. destruct o. intro. assumption. intro. discriminate. Qed.
Lemma overestimation_true P (o: overestimation P): P -> (o: bool) = true.
Proof. destruct o. destruct x. reflexivity. intros. absurd P; auto. Qed.
Section doers.
Context {T: Type} `{ipt: IsPredicateType T}.
Definition overestimator: T -> Type :=
pred_rect (fun _ _ => Type) overestimation (fun U R p i X => forall x, X x) ipt.
Definition underestimator: T -> Type :=
pred_rect (fun _ _ => Type) underestimation (fun U R p i X => forall x, X x) ipt.
Definition decider: T -> Type :=
pred_rect (fun _ _ => Type) decision (fun U R p i X => forall x, X x) ipt.
End doers.
Program Coercion decision_overestimation (P: Prop) (d: decision P): overestimation P := d: bool.
Next Obligation. destruct d; firstorder. Qed.
(* todo: rename, because we can do the same for underestimation *)
Definition decider_to_overestimator {T: Type} `{ipt: IsPredicateType T} (P: T): decider P -> overestimator P.
unfold decider, overestimator.
unfold IsPredicateType in ipt.
unfold pred_rect.
induction ipt; simpl.
apply decision_overestimation.
intuition.
Defined.
Coercion decider_to_overestimator: decider >-> overestimator.
Definition LazyProp (T: Prop): Prop := () -> T.
Definition force (T: Prop) (l: LazyProp T): T := l ().
Hint Constructors unit.
Require Import Ensembles.
Implicit Arguments Complement [U].
Definition overlap X (A B: Ensembles.Ensemble X): Prop := exists x, A x /\ B x.
Require Import EqdepFacts.
Require Import Eqdep_dec.
Section eq_dep.
Variables (U : Type) (eq_dec : forall x y : U, {x=y}+{~x=y}).
Lemma eq_rect_eq : forall (p : U) Q x h, x = eq_rect p Q x p h.
Proof.
exact (eq_rect_eq_dec eq_dec).
Qed.
Lemma eq_dep_eq : forall P (p : U) x y, eq_dep U P p x p y -> x = y.
Proof.
exact (eq_rect_eq__eq_dep_eq U eq_rect_eq).
Qed.
End eq_dep.
Definition proj1_sig_relation (T: Type) (P: T -> Prop) (R: relation T): relation (sig P) :=
fun x y => R (`x) (`y).
Definition product_conj_relation (T T': Type) (R: relation T) (R': relation T'): relation (T * T') :=
fun p p' => R (fst p) (fst p') /\ R' (snd p) (snd p').
Definition morpher A B: relation (A -> B) -> Type := @sig _ ∘ Proper.
(* A more general version would be:
Definition morpher A: relation A -> Type := @sig _ ∘ Morphism.
However, we need the hard-coded implication to be able to declare the
coercion below. *)
Let morpher_to_func A B (R: relation (A -> B)): morpher R -> (A -> B) := @proj1_sig _ _.
Coercion morpher_to_func: morpher >-> Funclass.
Instance morpher_morphism A B (R: relation (A -> B)) (f: morpher R):
Proper R f := proj2_sig f.
Ltac prove_NoDup := simpl;
match goal with
| |- NoDup [] => constructor 1
| |- NoDup _ => constructor 2; [vm_compute; intuition; discriminate | prove_NoDup ]
end.
Ltac prove_exhaustive_list :=
destruct 0; vm_compute; tauto.
Definition decision_decider_to_EqDec X (R: relation X) (e: Equivalence R)
(d: forall x y, decision (R x y)): EquivDec.EqDec X R := d.
Ltac equiv_dec := apply decision_decider_to_EqDec; dec_eq.
Instance bools: ExhaustiveList bool := { exhaustive_list := true :: false :: [] }.
Proof. prove_exhaustive_list. Defined.
Lemma NoDup_bools: NoDup bools.
Proof. prove_NoDup. Qed.
Instance Bool_eq_dec: EquivDec.EqDec bool eq := bool_dec.
Module trans_refl_closure.
Section contents.
Variables (T: Type) (TR: relation T).
Inductive R: relation T :=
| refl' s: R s s
| step a b c: R a b -> TR b c -> R a c.
Hint Constructors R.
Instance trans: Transitive R.
Proof. repeat intro. induction H0; eauto. Qed.
Lemma flip (P: T -> Prop) (Pdec: forall s, decision (P s))
(a b: T): R a b -> P a -> ~ P b ->
exists c, exists d, P c /\ ~ P d /\ TR c d.
Proof.
intros r.
induction r. firstorder.
destruct (Pdec b); eauto.
Qed.
Lemma flip_inv (P: T -> Prop) (Pdec: forall s, decision (P s))
(a b: T): R a b -> ~ P a -> P b ->
exists c, exists d, ~ P c /\ P d /\ TR c d.
Proof.
intros r.
induction r. firstorder.
destruct (Pdec b); eauto.
Qed.
End contents.
End trans_refl_closure.
Hint Constructors trans_refl_closure.R.
Section alternate.
Variables (T: Type) (R: bool -> relation T).
Inductive end_with: bool -> relation T :=
| end_with_refl b s: end_with b s s
| end_with_next b x y:
end_with (negb b) x y -> forall z, R b y z -> end_with b x z.
Definition alternate: relation T :=
fun s s' => exists b, end_with b s s'.
End alternate.
Hint Constructors end_with.
Notation "[= e =]" := (exist _ e _).