forked from Chenkehan21/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
estimators.py
171 lines (137 loc) · 6.77 KB
/
estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
import tensorflow as tf
def build_shared_network(X, add_summaries=False):
"""
Builds a 3-layer network conv -> conv -> fc as described
in the A3C paper. This network is shared by both the policy and value net.
Args:
X: Inputs
add_summaries: If true, add layer summaries to Tensorboard.
Returns:
Final layer activations.
"""
# Three convolutional layers
conv1 = tf.contrib.layers.conv2d(
X, 16, 8, 4, activation_fn=tf.nn.relu, scope="conv1")
conv2 = tf.contrib.layers.conv2d(
conv1, 32, 4, 2, activation_fn=tf.nn.relu, scope="conv2")
# Fully connected layer
fc1 = tf.contrib.layers.fully_connected(
inputs=tf.contrib.layers.flatten(conv2),
num_outputs=256,
scope="fc1")
if add_summaries:
tf.contrib.layers.summarize_activation(conv1)
tf.contrib.layers.summarize_activation(conv2)
tf.contrib.layers.summarize_activation(fc1)
return fc1
class PolicyEstimator():
"""
Policy Function approximator. Given a observation, returns probabilities
over all possible actions.
Args:
num_outputs: Size of the action space.
reuse: If true, an existing shared network will be re-used.
trainable: If true we add train ops to the network.
Actor threads that don't update their local models and don't need
train ops would set this to false.
"""
def __init__(self, num_outputs, reuse=False, trainable=True):
self.num_outputs = num_outputs
# Placeholders for our input
# Our input are 4 RGB frames of shape 160, 160 each
self.states = tf.placeholder(shape=[None, 84, 84, 4], dtype=tf.uint8, name="X")
# The TD target value
self.targets = tf.placeholder(shape=[None], dtype=tf.float32, name="y")
# Integer id of which action was selected
self.actions = tf.placeholder(shape=[None], dtype=tf.int32, name="actions")
# Normalize
X = tf.to_float(self.states) / 255.0
batch_size = tf.shape(self.states)[0]
# Graph shared with Value Net
with tf.variable_scope("shared", reuse=reuse):
fc1 = build_shared_network(X, add_summaries=(not reuse))
with tf.variable_scope("policy_net"):
self.logits = tf.contrib.layers.fully_connected(fc1, num_outputs, activation_fn=None)
self.probs = tf.nn.softmax(self.logits) + 1e-8
self.predictions = {
"logits": self.logits,
"probs": self.probs
}
# We add entropy to the loss to encourage exploration
self.entropy = -tf.reduce_sum(self.probs * tf.log(self.probs), 1, name="entropy")
self.entropy_mean = tf.reduce_mean(self.entropy, name="entropy_mean")
# Get the predictions for the chosen actions only
gather_indices = tf.range(batch_size) * tf.shape(self.probs)[1] + self.actions
self.picked_action_probs = tf.gather(tf.reshape(self.probs, [-1]), gather_indices)
self.losses = - (tf.log(self.picked_action_probs) * self.targets + 0.01 * self.entropy)
self.loss = tf.reduce_sum(self.losses, name="loss")
tf.summary.scalar(self.loss.op.name, self.loss)
tf.summary.scalar(self.entropy_mean.op.name, self.entropy_mean)
tf.summary.histogram(self.entropy.op.name, self.entropy)
if trainable:
# self.optimizer = tf.train.AdamOptimizer(1e-4)
self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6)
self.grads_and_vars = self.optimizer.compute_gradients(self.loss)
self.grads_and_vars = [[grad, var] for grad, var in self.grads_and_vars if grad is not None]
self.train_op = self.optimizer.apply_gradients(self.grads_and_vars,
global_step=tf.contrib.framework.get_global_step())
# Merge summaries from this network and the shared network (but not the value net)
var_scope_name = tf.get_variable_scope().name
summary_ops = tf.get_collection(tf.GraphKeys.SUMMARIES)
sumaries = [s for s in summary_ops if "policy_net" in s.name or "shared" in s.name]
sumaries = [s for s in summary_ops if var_scope_name in s.name]
self.summaries = tf.summary.merge(sumaries)
class ValueEstimator():
"""
Value Function approximator. Returns a value estimator for a batch of observations.
Args:
reuse: If true, an existing shared network will be re-used.
trainable: If true we add train ops to the network.
Actor threads that don't update their local models and don't need
train ops would set this to false.
"""
def __init__(self, reuse=False, trainable=True):
# Placeholders for our input
# Our input are 4 RGB frames of shape 160, 160 each
self.states = tf.placeholder(shape=[None, 84, 84, 4], dtype=tf.uint8, name="X")
# The TD target value
self.targets = tf.placeholder(shape=[None], dtype=tf.float32, name="y")
X = tf.to_float(self.states) / 255.0
# Graph shared with Value Net
with tf.variable_scope("shared", reuse=reuse):
fc1 = build_shared_network(X, add_summaries=(not reuse))
with tf.variable_scope("value_net"):
self.logits = tf.contrib.layers.fully_connected(
inputs=fc1,
num_outputs=1,
activation_fn=None)
self.logits = tf.squeeze(self.logits, squeeze_dims=[1], name="logits")
self.losses = tf.squared_difference(self.logits, self.targets)
self.loss = tf.reduce_sum(self.losses, name="loss")
self.predictions = {
"logits": self.logits
}
# Summaries
prefix = tf.get_variable_scope().name
tf.summary.scalar(self.loss.name, self.loss)
tf.summary.scalar("{}/max_value".format(prefix), tf.reduce_max(self.logits))
tf.summary.scalar("{}/min_value".format(prefix), tf.reduce_min(self.logits))
tf.summary.scalar("{}/mean_value".format(prefix), tf.reduce_mean(self.logits))
tf.summary.scalar("{}/reward_max".format(prefix), tf.reduce_max(self.targets))
tf.summary.scalar("{}/reward_min".format(prefix), tf.reduce_min(self.targets))
tf.summary.scalar("{}/reward_mean".format(prefix), tf.reduce_mean(self.targets))
tf.summary.histogram("{}/reward_targets".format(prefix), self.targets)
tf.summary.histogram("{}/values".format(prefix), self.logits)
if trainable:
# self.optimizer = tf.train.AdamOptimizer(1e-4)
self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6)
self.grads_and_vars = self.optimizer.compute_gradients(self.loss)
self.grads_and_vars = [[grad, var] for grad, var in self.grads_and_vars if grad is not None]
self.train_op = self.optimizer.apply_gradients(self.grads_and_vars,
global_step=tf.contrib.framework.get_global_step())
var_scope_name = tf.get_variable_scope().name
summary_ops = tf.get_collection(tf.GraphKeys.SUMMARIES)
sumaries = [s for s in summary_ops if "policy_net" in s.name or "shared" in s.name]
sumaries = [s for s in summary_ops if var_scope_name in s.name]
self.summaries = tf.summary.merge(sumaries)