-
Notifications
You must be signed in to change notification settings - Fork 0
/
Logis_Reg.py
281 lines (209 loc) · 8.65 KB
/
Logis_Reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 29 12:20:22 2018
@author: Esmaeil Seraj <[email protected]>
@website: https://github.com/EsiSeraj/
Logistic Regression
- All required helper functions
- Sigmoid output for binary classification
- A comprehensive logistic regression model generator
Reguired Packages
- numpy
# NOTE: this function gets regular updats; for now, it only includes equations
and computations for sigmoid non-linearity, additional non-linearities are
to be added in the future
Copyright (C) <2018> <Esmaeil Seraj>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
"""
# The main steps for building a Neural Network are:
1. Define the model structure (such as number of input features)
2. Initialize the model's parameters
3. Loop:
- Calculate current loss (forward propagation)
- Calculate current gradient (backward propagation)
- Update parameters (gradient descent)
4. Use learnt parameters to predict the labels on train data
5. Use learnt parameters to predict the labels on test data
"""
# In[0]: loading packages
import numpy as np
# In[1]: sigmoid function
def sigmoid(z):
"""
This function Computes the sigmoid activation of z in numpy
Arguments:
z -- A scalar or numpy array of any shape
Return:
a -- sigmoid (or activation) of z
"""
a = 1/(1 + np.exp(-z))
assert(a.shape == z.shape)
return a
# In[2]: parameter initialization
def initialize_params(dim, case = "zero" ):
"""
This function creates a vector of zeros or random values of shape (dim, 1)
for w and initializes b to 0.
Argument:
dim -- size of the w vector we want (or number of parameters in this case)
case -- specify whether you want to initialize with 'zero' or 'random'
Returns:
w -- initialized weights vector of shape (dim, 1)
b -- initialized bias scalar
NOTE: unlike DNN, for logistic regression it is OK to initialize with zeros
"""
if case == "zero":
w = np.zeros((dim, 1), dtype=float)
b = 0
elif case == "random":
w = np.random.randn(dim, 1)*0.01
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
# In[3]: forward and backward propagations
def propagate(w, b, X, Y):
"""
This function Implements the cost function (forward) and its gradients
(backward)
Arguments:
w -- weights, a numpy array of size (dim, 1)
b -- bias, a scalar
X -- data of size (dim, number of examples)
Y -- true "label" vector (0/1 binary) of size (1, number of examples)
Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b
"""
m = X.shape[1]
# forward propagation (from X to Cost)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = (-1/m)*np.sum(Y*np.log(A) + (1-Y)*np.log(1-A), axis=1) # cost func
# backward propagation (calculate grads)
dw = (1/m)*np.dot(X, (A-Y).T)
db = (1/m)*np.sum(A-Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
# In[4]: optimization (gradient descent)
def optimize(w, b, X, Y, num_iter, learning_rate = 0.005, print_cost = True):
"""
This function optimizes w and b by running a gradient descent algorithm
Arguments:
w -- weights, a numpy array of size (dim, 1)
b -- bias, a scalar
X -- data of shape (dim, number of examples)
Y -- true "label" vector (0/1 binary), of shape (1, number of examples)
num_iter -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule,
(default = 0.005)
print_cost -- True to print the loss every 100 steps
Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with
respect to the cost function
costs -- list of all the costs computed during the optimization, this will
be used to plot the learning curve.
"""
costs = []
for i in range(num_iter):
# compute gradiantes
grads, cost = propagate(w, b, X, Y)
dw = grads["dw"]
db = grads["db"]
# update parameters
w = w - learning_rate*dw
b = b - learning_rate*db
# Record the cost value every 100 iterations
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 iterations
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
# In[5]: prediction
def predict(w, b, X):
'''
This function Predicts whether the label is 0 or 1 using learned logistic
regression parameters (w, b)
Arguments:
w -- weights, a numpy array of size (dim, 1)
b -- bias, a scalar
X -- data of size (dim, number of examples)
Returns:
Y_prediction -- a numpy array (vector) containing all predictions (0/1) for
the examples in X
NOTE: the threshold for output probabilities is <th=0.5> where any
prediction with a greater value will be labled as '1' and vice versa
'''
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b) # compute probabilities
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
zero_index = np.where(A >= .5, A, 0)
one_index = np.where(zero_index < .5, zero_index, 1)
Y_prediction = one_index
assert(Y_prediction.shape == (1, m))
return Y_prediction
# In[6]: logistic regression model
def logis_reg_model(X_train, Y_train, X_test, Y_test, init_case = "zero",
num_iter = 2000, learning_rate = 0.005, print_cost = True):
"""
This function Builds a logistic regression model based upon your train data
Arguments:
X_train -- training set represented by an array of shape (dim, m_train)
Y_train -- training labels represented by an array of shape (1, m_train)
X_test -- test set represented by an array of shape (dim, m_test)
Y_test -- test labels represented by an array of shape (1, m_test)
num_iter -- hyperparameter: number of iterations for optimization,
(default = 2000)
learning_rate -- hyperparameter: used in updating stage, (default = 0.005)
print_cost -- Set to true to print the cost every 100 iterations, (default
= True)
Returns:
lr_mdl -- dictionary containing information about the model
NOTE: in addition to the model information, this function also prints the
accuracies for train and test data
"""
# initialize parameters with zeros
w, b = initialize_params(X_train.shape[0], init_case)
# Gradient descent
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iter, learning_rate, print_cost)
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train))*100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test))*100))
lr_mdl = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iter": num_iter}
return lr_mdl
# In[]: