forked from okankop/Efficient-3DCNNs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
speed_gpu.py
49 lines (41 loc) · 2.51 KB
/
speed_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import pdb
from utils import AverageMeter, calculate_accuracy
from models import squeezenet, shufflenetv2, shufflenet, mobilenet, mobilenetv2, c3d, resnet, resnext
# model = shufflenet.get_model(groups=3, width_mult=0.5, num_classes=600)#1
# model = shufflenetv2.get_model( width_mult=0.25, num_classes=600, sample_size = 112)#2
# model = mobilenet.get_model( width_mult=0.5, num_classes=600, sample_size = 112)#3
# model = mobilenetv2.get_model( width_mult=0.2, num_classes=600, sample_size = 112)#4
# model = shufflenet.get_model(groups=3, width_mult=1.0, num_classes=600)#5
# model = shufflenetv2.get_model( width_mult=1.0, num_classes=600, sample_size = 112)#6
# model = mobilenet.get_model( width_mult=1.0, num_classes=600, sample_size = 112)#7
# model = mobilenetv2.get_model( width_mult=0.45, num_classes=600, sample_size = 112)#8
# model = shufflenet.get_model(groups=3, width_mult=1.5, num_classes=600)#9
# model = shufflenetv2.get_model( width_mult=1.5, num_classes=600, sample_size = 112)#10
# model = mobilenet.get_model( width_mult=1.5, num_classes=600, sample_size = 112)#11
# model = mobilenetv2.get_model( width_mult=0.7, num_classes=600, sample_size = 112)#12
# model = shufflenet.get_model(groups=3, width_mult=2.0, num_classes=600)#13
# model = shufflenetv2.get_model( width_mult=2.0, num_classes=600, sample_size = 112)#14
# model = mobilenet.get_model( width_mult=2.0, num_classes=600, sample_size = 112)#15
# model = mobilenetv2.get_model( width_mult=1.0, num_classes=600, sample_size = 112)#16
# model = squeezenet.get_model( version=1.1, num_classes=600, sample_size = 112, sample_duration = 8)
# model = resnet.resnet18(sample_size = 112, sample_duration = 8, num_classes=600)
# model = resnet.resnet50(sample_size = 112, sample_duration = 8, num_classes=600)
# model = resnet.resnet101(sample_size = 112, sample_duration = 8, num_classes=600)
model = resnext.resnext101(sample_size = 112, sample_duration = 8, num_classes=600)
model = model.cuda()
model = nn.DataParallel(model, device_ids=None)
print(model)
batch_time = AverageMeter()
input_var = Variable(torch.randn(8, 3, 16, 112, 112))
end_time = time.time()
for i in range(1000):
output = model(input_var)
batch_time.update(time.time() - end_time)
end_time = time.time()
print("Current average time: ", batch_time.avg, "Speed (vps): ", 1 / (batch_time.avg / 8.0) )
print("Average time for CPU: ", batch_time.avg, "Speed (vps): ", 1 / (batch_time.avg / 8.0))