-
Notifications
You must be signed in to change notification settings - Fork 5
/
Forecasting-4-2---ETS-Seasonality.html
413 lines (325 loc) · 16.7 KB
/
Forecasting-4-2---ETS-Seasonality.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Forecasting-4-2---ETS-Seasonality.utf8</title>
<meta charset="utf-8" />
<link rel="stylesheet" href="my-theme.css" type="text/css" />
</head>
<body>
<textarea id="source">
layout: true
.hheader[<a href="index.html"><svg style="height:0.8em;top:.04em;position:relative;fill:steelblue;" viewBox="0 0 576 512"><path d="M280.37 148.26L96 300.11V464a16 16 0 0 0 16 16l112.06-.29a16 16 0 0 0 15.92-16V368a16 16 0 0 1 16-16h64a16 16 0 0 1 16 16v95.64a16 16 0 0 0 16 16.05L464 480a16 16 0 0 0 16-16V300L295.67 148.26a12.19 12.19 0 0 0-15.3 0zM571.6 251.47L488 182.56V44.05a12 12 0 0 0-12-12h-56a12 12 0 0 0-12 12v72.61L318.47 43a48 48 0 0 0-61 0L4.34 251.47a12 12 0 0 0-1.6 16.9l25.5 31A12 12 0 0 0 45.15 301l235.22-193.74a12.19 12.19 0 0 1 15.3 0L530.9 301a12 12 0 0 0 16.9-1.6l25.5-31a12 12 0 0 0-1.7-16.93z"/></svg></a>]
---
class: center, middle, inverse
# Forecasting Time Series
## Seasonal Exponential Smoothing Models
.futnote[Eli Holmes, UW SAFS]
.citation[[email protected]]
---
To make your introduction to time-series modeling in R a little gentler, I started with non-seasonal models.
To work with seasonal data, we need to turn our data into a ts object, which is a "time-series" object in R. This will allow us to specify the seasonality. It is important that we do not leave out any data in our time series. You data should look like so
```
Year Month metric.tons
2018 1 1
2018 2 2
2018 3 3
...
2019 1 4
2019 2 6
2019 3 NA
```
The months are in order and the years are in order.
---
## Load the chinook salmon data set
```r
load("chinook.RData")
head(chinook)
```
<table class="huxtable" style="border-collapse: collapse; margin-bottom: 2em; margin-top: 2em; width: 38.8888888888889%; margin-left: 0%; margin-right: auto; ">
<col><col><col><col><col><tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0.4pt 0pt 0.4pt 0.4pt; padding: 4pt 4pt 4pt 4pt; font-weight: bold;">Year</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; border-style: solid solid solid solid; border-width: 0.4pt 0pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt; font-weight: bold;">Month</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; border-style: solid solid solid solid; border-width: 0.4pt 0pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt; font-weight: bold;">Species</td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0.4pt 0pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt; font-weight: bold;">log.metric.tons</td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0.4pt 0.4pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt; font-weight: bold;">metric.tons</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0pt 0.4pt; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">1990</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">Jan</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">Chinook</td>
<td style="vertical-align: top; text-align: right; white-space: normal; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">3.4 </td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0.4pt 0pt 0pt; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">29.9</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0pt 0.4pt; padding: 4pt 4pt 4pt 4pt;">1990</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt;">Feb</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt;">Chinook</td>
<td style="vertical-align: top; text-align: right; white-space: normal; padding: 4pt 4pt 4pt 4pt;">3.81</td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0.4pt 0pt 0pt; padding: 4pt 4pt 4pt 4pt;">45.1</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0pt 0.4pt; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">1990</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">Mar</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">Chinook</td>
<td style="vertical-align: top; text-align: right; white-space: normal; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">3.51</td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0.4pt 0pt 0pt; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">33.5</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0pt 0.4pt; padding: 4pt 4pt 4pt 4pt;">1990</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt;">Apr</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt;">Chinook</td>
<td style="vertical-align: top; text-align: right; white-space: normal; padding: 4pt 4pt 4pt 4pt;">4.25</td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0.4pt 0pt 0pt; padding: 4pt 4pt 4pt 4pt;">70 </td>
</tr>
<tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0pt 0.4pt; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">1990</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">May</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">Chinook</td>
<td style="vertical-align: top; text-align: right; white-space: normal; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">5.2 </td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0.4pt 0pt 0pt; padding: 4pt 4pt 4pt 4pt; background-color: rgb(242, 242, 242);">181 </td>
</tr>
<tr>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0.4pt 0.4pt; padding: 4pt 4pt 4pt 4pt;">1990</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt;">Jun</td>
<td style="vertical-align: top; text-align: left; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt;">Chinook</td>
<td style="vertical-align: top; text-align: right; white-space: normal; border-style: solid solid solid solid; border-width: 0pt 0pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt;">4.37</td>
<td style="vertical-align: top; text-align: right; white-space: nowrap; border-style: solid solid solid solid; border-width: 0pt 0.4pt 0.4pt 0pt; padding: 4pt 4pt 4pt 4pt;">79.2</td>
</tr>
</table>
---
The data are monthly and start in January 1990. To make this into a ts object do
```r
chinookts <- ts(chinook$log.metric.tons, start=c(1990,1), frequency=12)
```
`start` is the year and month and frequency is the number of months in the year. If we had quarterly data that started in 2nd quarter of 1990, our call would be
```
ts(chinook, start=c(1990,2), frequency=4)
```
If we had daily data starting on hour 5 of day 10 and each row was an hour, our call would be
```
ts(chinook, start=c(10,5), frequency=24)
```
Use `?ts` to see more examples of how to set up ts objects.
---
## Plot seasonal data
Now that we have specified our seasonal data as a ts object, it is easy to plot because R knows what the season is.
```r
plot(chinookts)
```
<img src="Forecasting-4-2---ETS-Seasonality_files/figure-html/unnamed-chunk-3-1.png" style="display: block; margin: auto;" />
---
## Seasonal Exponential Smoothing Model
Now we add a few more lines to our ETS table of models:
model | "ZZZ" | alternate function |
------------- | ------------- | --------- |
exponential smoothing no trend | "ANN" | `ses()` |
exponential smoothing with trend | "AAN" | `holt()` |
exponential smoothing with season no trend | "ANA" | NA |
exponential smoothing with season and trend | "AAA" | NA |
estimate best trend and season model | "ZZZ" | NA |
Unfortunately `ets()` will not handle missing values and will find the longest continuous piece of our data and use that.
---
```r
library(forecast)
traindat <- window(chinookts, c(1990,1), c(1999,12))
fit <- ets(traindat, model="AAA")
```
```
## Warning in ets(traindat, model = "AAA"): Missing values encountered. Using
## longest contiguous portion of time series
```
```r
fr <- forecast(fit, h=24)
plot(fr)
points(window(chinookts, c(1996,1), c(1996,12)))
```
<img src="Forecasting-4-2---ETS-Seasonality_files/figure-html/unnamed-chunk-4-1.png" style="display: block; margin: auto;" />
---
## Decompose
If we plot the decomposition, we see the the seasonal component is not changing over time, unlike the actual data. The bar on the right, alerts us that the scale on the 3rd panel is much smaller.
```r
autoplot(fit)
```
<img src="Forecasting-4-2---ETS-Seasonality_files/figure-html/unnamed-chunk-5-1.png" style="display: block; margin: auto;" />
---
## Force seasonality to evolve more
Pass in a high `gamma` (the season weighting) to force the seasonality to evolve.
```r
fit <- ets(traindat, model="AAA", gamma=0.4)
```
```
## Warning in ets(traindat, model = "AAA", gamma = 0.4): Missing values
## encountered. Using longest contiguous portion of time series
```
```r
autoplot(fit)
```
<img src="Forecasting-4-2---ETS-Seasonality_files/figure-html/unnamed-chunk-6-1.png" style="display: block; margin: auto;" />
---
## Compare to a seasonal ARIMA model
`auto.arima()` will recognize that our data has season and fit a seasonal ARIMA model to our data. Let's use the data that `ets()` used. This is shorter than our training data. The data used by `ets()` is returned in `fit$x`.
---
```r
no_miss_dat <- fit$x
fit <- auto.arima(no_miss_dat)
fr <- forecast(fit, h=12)
plot(fr)
points(window(chinookts, c(1996,1), c(1996,12)))
```
<img src="Forecasting-4-2---ETS-Seasonality_files/figure-html/unnamed-chunk-7-1.png" style="display: block; margin: auto;" />
---
## Missing values are ok when fitting a seasonal ARIMA model
```r
fit <- auto.arima(traindat)
fr <- forecast(fit, h=12)
plot(fr)
```
<img src="Forecasting-4-2---ETS-Seasonality_files/figure-html/unnamed-chunk-8-1.png" style="display: block; margin: auto;" />
---
## Forecast evaluation
We can compute the forecast performance metrics as usual.
```r
fit <- ets(traindat, model="AAA", gamma=0.4)
```
```
## Warning in ets(traindat, model = "AAA", gamma = 0.4): Missing values
## encountered. Using longest contiguous portion of time series
```
```r
fr <- forecast(fit, h=12)
```
Look at the forecast so you know what years and months to include in your test data. Pull those 12 months out of your data using the `window()` function.
```r
testdat <- window(traindat, c(1996,1), c(1996,12))
```
Use `accuracy()` to get the forecast error metrics.
```r
accuracy(fr, testdat)
```
```
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01190635 0.6193794 0.4787154 -5.578132 30.03221 0.7939463
## Test set -0.08549288 0.5549696 0.4466604 106.497418 120.76501 0.7407832
## ACF1 Theil's U
## Training set 0.003452392 NA
## Test set -0.015140843 0.2057023
```
---
We can do the same for the ARIMA model.
```r
no_miss_dat <- fit$x
fit <- auto.arima(no_miss_dat)
fr <- forecast(fit, h=12)
accuracy(fr, testdat)
```
```
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01076412 0.5643352 0.3966735 -1.219729 26.91589 0.6578803
## Test set 0.79665978 0.9180939 0.7966598 19.587692 53.48599 1.3212549
## ACF1 Theil's U
## Training set -0.05991122 NA
## Test set -0.12306276 0.5993699
```
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>