forked from rb643/fieldtrip_restingState
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rb_EEG_Conn.m
161 lines (132 loc) · 5.8 KB
/
rb_EEG_Conn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
%% standard functions to load preprocessed fieldtrip mat-files and create WPLI matrices
function [] = rb_EEG_Conn(directory, Example_figure)
epochLength = 4;
cd(directory);
subs = ls('*.mat');
nsubs = size(subs,1);
if exist('subids.mat','file')==2
disp('Output folder exists');
load('subids.mat')
else
disp('Creating subject IDs file');
subids = subs;
save('subids.mat','subs');
end
donedir = fullfile(directory,'done')
if exist(donedir,'dir')
disp('Output folder exists');
else
disp('Creating output folder');
mkdir(donedir);
end
h = waitbar(0,'Running Network Analysis');
for i = 1:nsubs
waitbar(i/nsubs);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% LOAD THE DATA
[path, filename, extension] = fileparts(subs(i,:));
load(strcat(fullfile(directory,subs(i,:))));
disp(strcat('Working on file ', filename));
%% Segment and reset timeline
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% redefine segments
cfg_cut = [];
cfg_cut.length = epochLength;
cfg_cut.overlap = 0;
data_iccleaned = rmfield(data_iccleaned,'trialinfo'); % clear the original trialinfo to be able to redefine
data_iccleaned = ft_redefinetrial(cfg_cut, data_iccleaned); % cut it into little pieces
%% reset the time-axis for the segmented epochs to avoid issues later on
stepSize = 1/data_iccleaned.fsample;
timeVector = 0:stepSize:(epochLength-stepSize);
for j = 1:size(data_iccleaned.time,2)
data_iccleaned.time{:,j} = timeVector;
end
%% Set up frequency split using wavelet
cfg_freq = [];
cfg_freq.method = 'mtmfft';
cfg_freq.output = 'powandcsd';
cfg_freq.channel = 1:64;
cfg_freq.keeptrials ='yes'; %do not return an average of all trials for subsequent wpli analysis
cfg_freq.taper = 'hanning';
%delta
%cfg_freq.tapsmofrq = 0.25;
cfg_freq.foilim = [2 4];
%cfg_freq.foi = exp(linspace(log(2),log(4),20));
[freq_data.delta] = ft_freqanalysis(cfg_freq, data_iccleaned);
%theta
%cfg_freq.foi = exp(linspace(log(4),log(7),10));
cfg_freq.foilim = [4 7];
[freq_data.theta] = ft_freqanalysis(cfg_freq, data_iccleaned);
cfg_freq.taper = 'dpss';
cfg_freq.tapsmofrq = 1;
%alpha
%cfg_freq.foi = exp(linspace(log(7),log(13),10));
cfg_freq.foilim = [7 13];
[freq_data.alpha] = ft_freqanalysis(cfg_freq, data_iccleaned);
cfg_freq.tapsmofrq = 2;
%beta
%cfg_freq.foi = exp(linspace(log(13),log(30),10));
cfg_freq.foilim = [13 30];
[freq_data.beta] = ft_freqanalysis(cfg_freq, data_iccleaned);
cfg_freq.tapsmofrq = 4;
%gamma
%cfg_freq.foi = exp(linspace(log(30),log(60),10));
cfg_freq.foilim = [30 60];
[freq_data.gamma] = ft_freqanalysis(cfg_freq, data_iccleaned);
%all
%cfg_freq.foi = exp(linspace(log(2),log(60),10));
cfg_freq.foilim = [2 60];
[freq_data.all] = ft_freqanalysis(cfg_freq, data_iccleaned);
if Example_figure == 1
figure;
cfg = [];
cfg.layout = 'biosemi64.lay';
%cfg.xlim = [9 11];
subplot(2,3,1); ft_topoplotER(cfg, freq_data.delta);colorbar;
title('delta')
subplot(2,3,2); ft_topoplotER(cfg, freq_data.theta);colorbar;
title('theta')
subplot(2,3,3); ft_topoplotER(cfg, freq_data.alpha);colorbar;
title('alpha')
subplot(2,3,4); ft_topoplotER(cfg, freq_data.beta);colorbar;
title('beta')
subplot(2,3,5); ft_topoplotER(cfg, freq_data.gamma);colorbar;
title('gamma')
subplot(2,3,6); ft_topoplotER(cfg, freq_data.all);colorbar;
title('all')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% connectivity analysis
%% this is not the most elegant way, but it seems to work... Once we have the subject*freq matrices, just use the BCT
cfg_conn = [];
cfg_conn.method = 'wpli';
conn.delta = ft_connectivityanalysis(cfg_conn, freq_data.delta);
conn.delta = ft_checkdata(conn.delta, 'cmbrepresentation', 'full','datatype','freq');
network_delta(i,:,:) = squeeze(nanmean(conn.delta.wplispctrm,3));
conn.theta = ft_connectivityanalysis(cfg_conn, freq_data.theta);
conn.theta = ft_checkdata(conn.theta, 'cmbrepresentation', 'full','datatype','freq');
network_theta(i,:,:) = squeeze(nanmean(conn.theta.wplispctrm,3));
conn.alpha = ft_connectivityanalysis(cfg_conn, freq_data.alpha);
conn.alpha = ft_checkdata(conn.alpha, 'cmbrepresentation', 'full','datatype','freq');
network_alpha(i,:,:) = squeeze(nanmean(conn.alpha.wplispctrm,3));
conn.beta = ft_connectivityanalysis(cfg_conn, freq_data.beta);
conn.beta = ft_checkdata(conn.beta, 'cmbrepresentation', 'full','datatype','freq');
network_beta(i,:,:) = squeeze(nanmean(conn.beta.wplispctrm,3));
conn.gamma = ft_connectivityanalysis(cfg_conn, freq_data.gamma);
conn.gamma = ft_checkdata(conn.gamma, 'cmbrepresentation', 'full','datatype','freq');
network_gamma(i,:,:) = squeeze(nanmean(conn.gamma.wplispctrm,3));
conn.all = ft_connectivityanalysis(cfg_conn, freq_data.all);
conn.all = ft_checkdata(conn.all, 'cmbrepresentation', 'full','datatype','freq');
network_all(i,:,:) = squeeze(nanmean(conn.all.wplispctrm,3));
%% Do some clean-up and save
savename = strcat('w_',filename,'.mat');
savename2 = strcat('pow_',filename,'.mat');
save(savename, 'conn');
save(savename2, 'freq_data');
movefile(savename, fullfile(donedir,savename));
movefile(savename2, fullfile(donedir,savename2));
movefile(subs(i,:), fullfile(donedir));
end
close(h)
save(fullfile(donedir,'Results2.mat'), 'network_all', 'network_alpha', 'network_beta', 'network_delta', 'network_gamma', 'network_theta','subs');
end