-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_network_baseline.py
357 lines (303 loc) · 13.4 KB
/
train_network_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import argparse
import datetime
import json
import logging
import os
import sys
import cv2
import numpy as np
import tensorboardX
import torch
import torch.optim as optim
import torch.utils.data
from torchsummary import summary
# from hardware.device import get_device
from inference.models import get_network
from inference.post_process import post_process_output
from utils.data import get_dataset
from utils.dataset_processing import evaluation
from utils.visualisation.gridshow import gridshow
def parse_args():
parser = argparse.ArgumentParser(description='Train network')
# Network
parser.add_argument('--network', type=str, default='grconvnet3',
help='Network name in inference/models')
parser.add_argument('--input-size', type=int, default=224,
help='Input image size for the network')
parser.add_argument('--use-depth', type=int, default=1,
help='Use Depth image for training (1/0)')
parser.add_argument('--use-rgb', type=int, default=1,
help='Use RGB image for training (1/0)')
parser.add_argument('--use-dropout', type=int, default=1,
help='Use dropout for training (1/0)')
parser.add_argument('--dropout-prob', type=float, default=0.1,
help='Dropout prob for training (0-1)')
parser.add_argument('--channel-size', type=int, default=32,
help='Internal channel size for the network')
parser.add_argument('--iou-threshold', type=float, default=0.25,
help='Threshold for IOU matching')
# Datasets
parser.add_argument('--dataset', type=str,
help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str,
help='Path to dataset')
parser.add_argument('--split', type=float, default=0.9,
help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-shuffle', action='store_true', default=False,
help='Shuffle the dataset')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split')
parser.add_argument('--num-workers', type=int, default=8,
help='Dataset workers')
# Training
parser.add_argument('--batch-size', type=int, default=8,
help='Batch size')
parser.add_argument('--epochs', type=int, default=50,
help='Training epochs')
parser.add_argument('--batches-per-epoch', type=int, default=1000,
help='Batches per Epoch')
parser.add_argument('--optim', type=str, default='adam',
help='Optmizer for the training. (adam or SGD)')
parser.add_argument('--lr-step-size', type=int, default=10,
help='learning rate decay')
# Logging etc.
parser.add_argument('--description', type=str, default='',
help='Training description')
parser.add_argument('--logdir', type=str, default='logs/',
help='Log directory')
parser.add_argument('--vis', action='store_true',
help='Visualise the training process')
parser.add_argument('--cpu', dest='force_cpu', action='store_true', default=False,
help='Force code to run in CPU mode')
parser.add_argument('--random-seed', type=int, default=123,
help='Random seed for numpy')
parser.add_argument('--seen', type=int, default=1,
help='Flag for using seen classes, only work for Grasp-Anything dataset')
args = parser.parse_args()
return args
def validate(net, device, val_data, iou_threshold):
"""
Run validation.
:param net: Network
:param device: Torch device
:param val_data: Validation Dataset
:param iou_threshold: IoU threshold
:return: Successes, Failures and Losses
"""
net.eval()
results = {
'correct': 0,
'failed': 0,
'loss': 0,
'losses': {
}
}
ld = len(val_data)
with torch.no_grad():
for x, y, didx, rot, zoom_factor in val_data:
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
results['loss'] += loss.item() / ld
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item() / ld
q_out, ang_out, w_out = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
s = evaluation.calculate_iou_match(q_out,
ang_out,
val_data.dataset.get_gtbb(didx.item(), rot.item(), zoom_factor.item()),
no_grasps=1,
grasp_width=w_out,
threshold=iou_threshold
)
if s:
results['correct'] += 1
else:
results['failed'] += 1
return results
def train(epoch, net, device, train_data, optimizer, batches_per_epoch, vis=False):
"""
Run one training epoch
:param epoch: Current epoch
:param net: Network
:param device: Torch device
:param train_data: Training Dataset
:param optimizer: Optimizer
:param batches_per_epoch: Data batches to train on
:param vis: Visualise training progress
:return: Average Losses for Epoch
"""
results = {
'loss': 0,
'losses': {
}
}
net.train()
batch_idx = 0
# Use batches per epoch to make training on different sized datasets (cornell/jacquard) more equivalent.
while batch_idx <= batches_per_epoch:
logging.info('Epoch: {}, Batch: {}/{}'.format(epoch, batch_idx, batches_per_epoch))
for x, y, idx, _, _ in train_data:
batch_idx += 1
if batch_idx >= batches_per_epoch:
break
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
if batch_idx % 20 == 0:
logging.info('Epoch: {}, Batch: {}, Loss: {:0.4f}'.format(epoch, batch_idx, loss.item()))
results['loss'] += loss.item()
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Display the images
if vis:
imgs = []
n_img = min(4, x.shape[0])
for idx in range(n_img):
imgs.extend([x[idx,].numpy().squeeze()] + [yi[idx,].numpy().squeeze() for yi in y] + [
x[idx,].numpy().squeeze()] + [pc[idx,].detach().cpu().numpy().squeeze() for pc in
lossd['pred'].values()])
gridshow('Display', imgs,
[(xc.min().item(), xc.max().item()), (0.0, 1.0), (0.0, 1.0), (-1.0, 1.0),
(0.0, 1.0)] * 2 * n_img,
[cv2.COLORMAP_BONE] * 10 * n_img, 10)
cv2.waitKey(2)
results['loss'] /= batch_idx
for l in results['losses']:
results['losses'][l] /= batch_idx
return results
def run():
args = parse_args()
# Set-up output directories
dt = datetime.datetime.now().strftime('%y%m%d_%H%M')
net_desc = '{}_{}'.format(dt, '_'.join(args.description.split()))
save_folder = os.path.join(args.logdir, net_desc)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
tb = tensorboardX.SummaryWriter(save_folder)
# Save commandline args
if args is not None:
params_path = os.path.join(save_folder, 'commandline_args.json')
with open(params_path, 'w') as f:
json.dump(vars(args), f)
# Initialize logging
logging.root.handlers = []
logging.basicConfig(
level=logging.INFO,
filename="{0}/{1}.log".format(save_folder, 'log'),
format='[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s',
datefmt='%H:%M:%S'
)
# set up logging to console
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
# set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
# Get the compute device
# device = get_device(args.force_cpu)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info('Using device {}'.format(device))
# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
dataset = Dataset(args.dataset_path,
output_size=args.input_size,
ds_rotate=args.ds_rotate,
random_rotate=True,
random_zoom=True,
include_depth=args.use_depth,
include_rgb=args.use_rgb,
seen=args.seen)
logging.info('Dataset size is {}'.format(dataset.length))
# Creating data indices for training and validation splits
indices = list(range(dataset.length))
split = int(np.floor(args.split * dataset.length))
if args.ds_shuffle:
np.random.seed(args.random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[:split], indices[split:]
logging.info('Training size: {}'.format(len(train_indices)))
logging.info('Validation size: {}'.format(len(val_indices)))
# Creating data samplers and loaders
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indices)
val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)
train_data = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
sampler=train_sampler
)
val_data = torch.utils.data.DataLoader(
dataset,
batch_size=1,
num_workers=args.num_workers,
sampler=val_sampler
)
logging.info('Done')
# Load the network
logging.info('Loading Network...')
input_channels = 1 * args.use_depth + 3 * args.use_rgb
network = get_network(args.network)
net = network(
input_channels=input_channels,
dropout=args.use_dropout,
prob=args.dropout_prob,
channel_size=args.channel_size
)
net = net.to(device)
logging.info('Done')
if args.optim.lower() == 'adam':
optimizer = optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.98))
elif args.optim.lower() == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
else:
raise NotImplementedError('Optimizer {} is not implemented'.format(args.optim))
scheduler = optim.lr_scheduler.StepLR(optimizer, args.lr_step_size, 0.5)
# Print model architecture.
# summary(net, (input_channels, args.input_size, args.input_size))
# f = open(os.path.join(save_folder, 'arch.txt'), 'w')
# sys.stdout = f
# summary(net, (input_channels, args.input_size, args.input_size))
# sys.stdout = sys.__stdout__
# f.close()
best_iou = 0.0
for epoch in range(args.epochs):
logging.info('Beginning Epoch {:02d}'.format(epoch))
train_results = train(epoch, net, device, train_data, optimizer, args.batches_per_epoch, vis=args.vis)
# Log training losses to tensorboard
tb.add_scalar('loss/train_loss', train_results['loss'], epoch)
for n, l in train_results['losses'].items():
tb.add_scalar('train_loss/' + n, l, epoch)
# Run Validation
logging.info('Validating...')
test_results = validate(net, device, val_data, args.iou_threshold)
logging.info('%d/%d = %f' % (test_results['correct'], test_results['correct'] + test_results['failed'],
test_results['correct'] / (test_results['correct'] + test_results['failed'])))
scheduler.step()
lr = optimizer.param_groups[0]['lr']
logging.info('lr={}'.format(lr))
tb.add_scalar('lr', lr, epoch)
# Log validation results to tensorbaord
tb.add_scalar('loss/IOU', test_results['correct'] / (test_results['correct'] + test_results['failed']), epoch)
tb.add_scalar('loss/val_loss', test_results['loss'], epoch)
for n, l in test_results['losses'].items():
tb.add_scalar('val_loss/' + n, l, epoch)
# Save best performing network
iou = test_results['correct'] / (test_results['correct'] + test_results['failed'])
if iou > best_iou or epoch == 0 or (epoch % 10) == 0:
torch.save(net, os.path.join(save_folder, 'epoch_%02d_iou_%0.2f' % (epoch, iou)))
best_iou = iou
if __name__ == '__main__':
run()