-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
215 lines (185 loc) · 7.59 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Adapted from Nakata, S., Mori, Y. & Tanaka, S.
End-to-end protein–ligand complex structure generation with diffusion-based generative models.
BMC Bioinformatics 24, 233 (2023).
https://doi.org/10.1186/s12859-023-05354-5
Repository: https://github.com/shuyana/DiffusionProteinLigand
"""
import dataclasses
import itertools
import warnings
import os
from argparse import ArgumentParser
from operator import itemgetter
from pathlib import Path
from typing import Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from rdkit import Chem
from torch.utils.data import DataLoader
from ProteinReDiff.data import RepeatDataset, collate_fn, ligand_to_data, protein_to_data
from ProteinReDiff.model import ProteinReDiffModel
from ProteinReDiff.mol import get_mol_positions, mol_from_file, update_mol_positions
from ProteinReDiff.protein import (
RESIDUE_TYPES,
RESIDUE_TYPE_INDEX,
Protein,
protein_from_pdb_file,
protein_from_sequence,
proteins_to_pdb_file,
)
from ProteinReDiff.tmalign import run_tmalign
RESIDUE_TYPES_MASK = RESIDUE_TYPES + ["<mask>"]
def compute_residue_esm(protein: Protein) -> torch.Tensor:
esm_model, esm_alphabet = torch.hub.load(
"facebookresearch/esm:main", "esm2_t33_650M_UR50D"
)
esm_model.cuda().eval()
esm_batch_converter = esm_alphabet.get_batch_converter()
data = []
for chain, _ in itertools.groupby(protein.chain_index):
sequence = "".join(
[RESIDUE_TYPES_MASK[aa] for aa in protein.aatype[protein.chain_index == chain]]
)
data.append(("", sequence))
batch_tokens = esm_batch_converter(data)[2].cuda()
with torch.inference_mode():
results = esm_model(batch_tokens, repr_layers=[esm_model.num_layers])
token_representations = results["representations"][esm_model.num_layers].cpu()
residue_representations = []
for i, (_, sequence) in enumerate(data):
residue_representations.append(token_representations[i, 1 : len(protein.aatype) + 1])
residue_esm = torch.cat(residue_representations, dim=0)
assert residue_esm.size(0) == len(protein.aatype)
return residue_esm
def update_pos(
protein: Protein, ligand: Chem.Mol, pos: np.ndarray
) -> Tuple[Protein, Chem.Mol]:
atom_pos = np.zeros_like(protein.atom_pos)
atom_pos[:, 1] = pos[ligand.GetNumAtoms() :]
atom_mask = np.zeros_like(protein.atom_mask)
atom_mask[:, 1] = 1.0
protein = dataclasses.replace(protein, atom_pos=atom_pos, atom_mask=atom_mask)
ligand = update_mol_positions(ligand, pos[: ligand.GetNumAtoms()])
return protein, ligand
def predict_seq(
proba: torch.Tensor
) -> list :
tokens = torch.argmax(torch.softmax((torch.tensor(proba)), dim = -1), dim = -1)
RESIDUE_TYPES_NEW = ["X"] + RESIDUE_TYPES
return list(map(lambda i : RESIDUE_TYPES_NEW[i], tokens))
def update_seq(
protein: Protein, proba: torch.Tensor
) -> Protein:
tokens = torch.argmax(torch.softmax((torch.tensor(proba)), dim = -1), dim = -1)
RESIDUE_TYPES_NEW = ["X"] + RESIDUE_TYPES
sequence = "".join(map(lambda i : RESIDUE_TYPES_NEW[i], tokens)).lstrip("X").rstrip("X")
aatype = np.array([RESIDUE_TYPES.index(s) for s in sequence], dtype=np.int64)
protein = dataclasses.replace(protein, aatype = aatype)
return protein
def main(args):
pl.seed_everything(args.seed, workers=True)
# Check if the directory exists
if os.path.exists(args.output_dir):
# Remove the existing directory
os.rmdir(args.output_dir)
args.output_dir.mkdir(parents=True)
# Model
model = ProteinReDiffModel.load_from_checkpoint(
args.ckpt_path, num_steps=args.num_steps
)
model.training_mode = False
args.num_gpus = 1
model.mask_prob = args.mask_prob
# Inputs
if args.protein.endswith(".pdb"):
protein = protein_from_pdb_file(args.protein)
else:
protein = protein_from_sequence(args.protein)
if args.ligand.endswith(".sdf") or args.ligand.endswith(".mol2"):
ligand = mol_from_file(args.ligand)
else:
ligand = Chem.MolFromSmiles(args.ligand)
ligand = update_mol_positions(ligand, np.zeros((ligand.GetNumAtoms(), 3)))
total_num_atoms = len(protein.aatype) + ligand.GetNumAtoms()
print(f"Total number of atoms: {total_num_atoms}")
if total_num_atoms > 384:
warnings.warn("Too many atoms. May take a long time for sample generation.")
data = {
**ligand_to_data(ligand),
**protein_to_data(protein, residue_esm=compute_residue_esm(protein)),
}
ref_protein = protein_from_pdb_file(args.ref_path) if args.ref_path else None
# Generate samples
trainer = pl.Trainer.from_argparse_args(
args,
accelerator="auto",
gpus = args.num_gpus,
default_root_dir=args.output_dir,
max_epochs=-1,
)
results = trainer.predict( ## (NN)
model,
dataloaders=DataLoader(
RepeatDataset(data, args.num_samples),
batch_size=args.batch_size,
num_workers=args.num_workers,
collate_fn=collate_fn,
),
)
positions = [p[0] for p in results]
sequences = [s[1] for s in results]
positions = torch.cat(positions, dim=0).detach().cpu().numpy()
probabilities = torch.cat(sequences, dim=0).detach().cpu().numpy()
#torch.save(probabilities, "sampled_seq_gvp.pt") # can save embedding
# Save samples
sample_proteins, sample_ligands = [], []
tmscores = []
for pos, seq_prob in zip(positions, probabilities):
sample_protein, sample_ligand = update_pos(protein, ligand, pos)
sample_protein = update_seq(sample_protein, seq_prob)
if ref_protein is None:
warnings.warn(
"Using the first sample as a reference. The resulting structures may be mirror images."
)
ref_protein = sample_protein
tmscore, t, R = max(
run_tmalign(sample_protein, ref_protein),
run_tmalign(sample_protein, ref_protein, mirror=True),
key=itemgetter(0),
)
sample_proteins.append(
dataclasses.replace(
sample_protein, atom_pos=t + sample_protein.atom_pos @ R
)
)
sample_ligands.append(
update_mol_positions(
sample_ligand, t + get_mol_positions(sample_ligand) @ R
)
)
tmscores.append(tmscore)
proteins_to_pdb_file(sample_proteins, args.output_dir / "sample_protein.pdb")
with Chem.SDWriter(str(args.output_dir / "sample_ligand.sdf")) as w:
for sample_ligand in sample_ligands:
w.write(sample_ligand)
with open(args.output_dir / "sample_tmscores.txt", "w") as f:
for tmscore in tmscores:
f.write(str(tmscore) + "\n")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--seed", type=int, default=1234)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--num_steps", type=int, default=64)
parser.add_argument("--mask_prob", type=float, default=0.3)
parser.add_argument("--training_mode", action="store_true")
parser.add_argument("-c", "--ckpt_path", type=Path, required=True)
parser.add_argument("-o", "--output_dir", type=Path, required=True)
parser.add_argument("-p", "--protein", type=str, required=True)
parser.add_argument("-l", "--ligand", type=str, required=True)
parser.add_argument("-n", "--num_samples", type=int, required=True)
parser.add_argument("-r", "--ref_path", type=Path)
args = parser.parse_args()
main(args)