forked from ramananbalakrishnan/nus-thesis-latex-template
-
Notifications
You must be signed in to change notification settings - Fork 3
/
thesis.tex
247 lines (206 loc) · 8.82 KB
/
thesis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
\documentclass[openright=true,
title={This is my title}%
]{nus-thesis}
% --------------------------------------------------
% Basic information
% --------------------------------------------------
%\title{Quad Polarization Wideband Sinuous Antenna Elements and Arrays}
%\author{Ramanan Balakrishnan}
\date{\today}
\ThesisSetup{
author = Ramanan Balakrishnan,
% qualification = {Bachelor of Science, MIT},
university = National University of Singapore,
candidacy = {Bachelor of Science},
department = Biological Sciences
}
\usepackage{libertine}
\usepackage[libertine]{newtxmath}
\begin{document}
% --------------------------------------------------
% Build the cover page, title page, declaration,
% dedication and acknowledgement pages
% --------------------------------------------------
\frontmatter
\maketitle
\declarationpage{}
\newpage
\thispagestyle{empty}
\begin{flalign*}
&&\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0 \nonumber}\\
&&\nabla \cdot \mathbf{B} &= 0 \nonumber \\
&&\nabla \times \mathbf{E} &= - \frac{\partial B}{\partial t} \nonumber \\
&&\nabla \times \mathbf{B} &= \mu_{0}\mathbf{J} + \mu_{0}\epsilon_{0}\frac{\partial E}{\partial t} \nonumber
\end{flalign*}
\hfill \emph{and there was light}
\newpage
\acknowledgment{
Let's thank some people here.
}
% --------------------------------------------------
% Table of contents, abstract,
% lists of tables, figures and symbols
% --------------------------------------------------
\tableofcontents{}
\newpage
\abstract{
A section to summarize the main contributions of this thesis.
}
\listoftables
\listoffigures
\listofsymbolsnabbrev
% --------------------------------------------------
% Main content of thesis organized into chapters
% --------------------------------------------------
\mainmatter
\chapter{The basics}
\label{chap:introduction}
And so it begins ...
\section{A simple section}
\label{sec:asimplesection}
A citation \cite{Hofstadter1979}. Here is another citation \cite{Balakrishnan2013}.
\subsection{A sub-section}
\label{ssec:asubsection}
Some more text here.
\chapter{Figures, sub-figures and more}
\label{chap:figures}
A simple figure called \cref{fig:example_fig} is shown below.
\begin{figure}[!htbp]
\centering\includegraphics[width=0.5\textwidth]{fig}
\caption{Captions are also possible for figures.}
\label{fig:example_fig}
\end{figure}
\newpage
More complicated layouts of multiple figures using \texttt{subfloat} are also
possible as shown in \cref{fig:example_subfig}. Reference a subfigure directly
as \cref{subfig:subfig_1}.
\begin{figure}[!ht]
\subfloat[ \label{subfig:subfig_1}]{%
\includegraphics[width=0.3\textwidth]{small_fig}
}
\hfill
\subfloat[ \label{subfig:subfig_2}]{%
\includegraphics[width=0.3\textwidth]{small_fig}
}
\caption{A common caption is shown for both. Use (a) and (b) to refer to the
subfigures.}
\label{fig:example_subfig}
\end{figure}
Finally, a full page of figures with a possible layout is shown in \cref{fig:full_page_fig}.
\begin{figure}[!htbp]
\subfloat[]{ \includegraphics[width=0.4\textwidth]{small_fig} }
\hfill
\subfloat[]{ \includegraphics[width=0.4\textwidth]{small_fig} } \\
\subfloat[]{ \includegraphics[width=0.4\textwidth]{small_fig} }
\hfill
\subfloat[]{ \includegraphics[width=0.4\textwidth]{small_fig} } \\
\subfloat[]{ \includegraphics[width=0.4\textwidth]{small_fig} }
\hfill
\subfloat[]{ \includegraphics[width=0.4\textwidth]{small_fig} }\\
\caption{A full page of figures!}
\label{fig:full_page_fig}
\end{figure}
\chapter{Let's talk tables}
\label{chap:tables}
A simple table, with my personal tastes on borders and widths is shown below.
\begin{table}[!htbp]
\begin{center}
\caption{Sequential modes in four-arm sinuous antennas.}
\label{table:4sinuous_modes}
\def\arraystretch{1.5}
\begin{tabular}{|c | c | c | c | c |}
\hline
Mode number & Port 1 & Port 2 & Port 3 & Port 4 \\
\hline
$M_{-2}$ & $0^\circ$ & $-180^\circ$ & $0^\circ$ & $-180^\circ$ \\ \hline
$M_{-1}$ & $0^\circ$ & $-90^\circ$ & $-180^\circ$ & $-270^\circ$ \\ \hline
$M_{+1}$ & $0^\circ$ & $90^\circ$ & $180^\circ$ & $270^\circ$ \\ \hline
$M_{+2}$ & $0^\circ$ & $180^\circ$ & $0^\circ$ & $180^\circ$ \\ \hline
\end{tabular}
\end{center}
\end{table}
\newpage
All the usual features of \LaTeX are possible, such as merging cells, wrapping / aligning text etc ...
\begin{table}[!h]
\begin{center}
\caption{Role of design parameters in sinuous antennas.}
\label{table:sinuous_design_roles}
\def\arraystretch{1.5}
\begin{tabular}{ | c | l | l | p{4cm} |}
\hline
Parameter & Denotes & Typical values & Role \\ \hline
$N$ & Number of arms & $4$, $6$, $8$ & \parbox{4cm}{\vspace{1.5ex} Determines the number of modes obtainable.\vspace{1.5ex}} \\ \hline
$R_1$ & Outer radius & $\frac{\lambda_L}{2\pi}$ to $\frac{\lambda_L}{3\pi/4}$ & \parbox{4cm}{\vspace{1.5ex} Sets the lower frequency limit.\vspace{1.5ex}}\\ \hline
$\tau$ & Growth factor & 0.6 to 0.9 & \parbox{4cm}{\vspace{1.5ex} Controls the ratio between adjacent cells and number of cells given a fixed size. \vspace{1.5ex}} \\ \hline
\multirow{2}{*}{$\alpha$} & \multirow{2}{*}{Angular span} & \multirow{2}{*}{$22.5^\circ$ to $90^\circ$} & \\
& & & \\ \cline{1-3}
\multirow{2}{*}{$\delta$} & \multirow{2}{*}{Angular spacing} & \multirow{2}{*}{$11.25^\circ$ to $45^\circ$ } & \multirow{-3}{4cm}{\strut These two parameters together control the angular span, interleaving and input impedance of the antenna.\vspace{1.5ex}} \\
& & & \\ \hline
\end{tabular}
\end{center}
\end{table}
Finally, a large table, represented in landscape mode is shown in the next page.
\clearpage
\begin{landscape}
\begin{table}[!htbp]
\begin{center}
\caption{Review of performances of various broadband antennas.}
\label{table:ant_summary}
\def\arraystretch{1.5}
\begin{tabular}{| l | p{4cm} | p{4cm} | p{4cm} | p{4cm} |}
\hline
\multicolumn{1}{|c|}{Aspect} & \multicolumn{1}{c|}{\pbox{4cm}{\vspace{1.5ex} Dipole-based designs (biconical, discone, ...)\vspace{1.5ex}} } & \multicolumn{1}{c|}{LPDA} & \multicolumn{1}{c|}{Spiral} & \multicolumn{1}{c|}{Sinuous} \\
\hline
Frequency bandwidth & Typically max at around two octaves. & Comparable to dipole-based designs, extendable by increasing elements. & Ratios of up to $40:1$ are possible. & Ratios comparable to spiral designs. \\ \hline
Multiple Polarization & Only possible if crossed elements are added. & Only possible if crossed elements are added. & Possible with cavity-backing. & Possible with reconfigurable feed network. \\ \hline
Planar & Planar versions possible with maximum extents of order $\lambda/2$. & 3-D array of dipole ($\lambda/2$) sized elements with maximum extent determined by required bandwidth. & Planar versions possible with extent of order of $\lambda$ & Planar versions possible with extent of order of $\lambda$ \\ \hline
Radiation pattern & Cavity required for unidirectional radiation. & Cavity not required for unidirectional radiation. & Cavity required for unidirectional radiation. & Cavity required for unidirectional radiation. \\ \hline
\end{tabular}
\end{center}
\end{table}
\end{landscape}
\chapter{Equations and code}
\label{chap:equationsandcode}
The \texttt{equation} environment is the answer to all your complex greek formatting requirements.
\begin{equation}
\label{eq:sinuous}
\phi = (-1)^p\alpha_p\sin{\left[\frac{180^\circ\log{\left(r/R_p\right)}}{\log{\tau_p}}\right]}, \quad R_{p+1} \le r \le R_{p}
\end{equation}
I prefer to use the simple \texttt{verbatim} environment for capturing my code segments.
\begin{Verbatim}[frame=single]
r_total = zeros(0,0);
phi_total = zeros(0,0);
for p=1:length(R)-1
r = linspace(R(p),R(p+1)+eps,10000);
phi = ((-1)^p) * alpha *(sin(pi*log(r/R(p))/log(tau)));
r_total = horzcat(r_total,r);
phi_total = horzcat(phi_total,phi);
end
\end{Verbatim}
% --------------------------------------------------
% End of chapters
% --------------------------------------------------
% To add a symbol (no checking of repeated symbol)
\addsymbol{$\lambda$}{wavelength}
\addsymbol{$\epsilon_r$}{relative dielectric constant}
\addsymbol{$k$}{wave number, defined as $2\pi/\lambda$}
% To add an abbreviation, which will be named at least once in the full
\addabbrev{IEEE}{Institute of Electrical and Electronics Engineers}
\addabbrev{PASS}{Phased Array System Simulator}
\addabbrev{RF}{Radio Frequency}
% --------------------------------------------------
% Bibliography
% --------------------------------------------------
\bibliographystyle{abbrv}
\bibliography{refs}
% --------------------------------------------------
% Appendix A
% --------------------------------------------------
\begin{appendices}
\crefalias{chapter}{appsec}
\chapter{Some additional data that might be useful}
\label{chap:appendixa}
Appendices, if required, are added here.
\end{appendices}
\backmatter
\end{document}