-
Notifications
You must be signed in to change notification settings - Fork 0
/
CreateDataset.py
144 lines (100 loc) · 4.51 KB
/
CreateDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from StoryKG_generator import *
#from Queries4Text import *
from Queries4LinearizedGraph import *
import Queries4Text
from collections import Counter
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from rephrasingModule import rephrase
def clear1(story):
result = ""
for i in story:
s = i[0]
p = i[1]
o = i[2]
triples_clean = ""
triples_clean += (
(str(s).split('/')[-1] + " - " + str(p).split("/")[-1] + " - " + str(o).split("/")[-1] + " | "))
triples_clean = re.sub('22-rdf-syntax-ns#', '', triples_clean)
triples_clean = re.sub('rdf-schema##', '', triples_clean)
triples_clean = re.sub('owl#', '', triples_clean)
triples_clean = re.sub('rdf-schema#', '', triples_clean)
triples_clean = re.sub('XMLSchema#', '', triples_clean)
result += triples_clean
return result
def random_formulation(story,tokenizer,model):
texto = ""
choice = []
for e in range(1, 7):
r = random.randint(1, 3)
f = getattr(Queries4Text, f'textGeneration_Event{e}_{r}')
combination = str(e)+str(r)
choice.append(combination)
result = f(story)
#print(result)
paraphrased_result=random.choice(rephrase(result,tokenizer,model)) #PHARAPHRASING MDOEL MAKES 2 POSSIBLE SENTENCES, WE PICK 1
#print(paraphrased_result)
if result == "":
raise "Excpetion event story text failed check testin.ttl"
if e<6:
paraphrased_result+=" "
texto += paraphrased_result
return texto,choice
def main(argv, arc):
if arc!=4:
raise ValueError("nr of Parameters is incorrect! NOTE FOR TERESA THERE IS ALSO NAME OF THE OUTPUT FOLDER TO ADD")
if argv[1] not in ["community","relation","random"] :
raise ValueError("Error! Please enter a (valid) charachter picking method. (community,relation,random)")
method = argv[1]
what = argv[2]
outputfolder=argv[3]
if what == 'train':
n_kg_generated = 1000
if what =='test':
n_kg_generated = 100
if what =='val':
n_kg_generated = 100
if what =='try':
n_kg_generated = 1
directory = outputfolder
# Parent Directory path
parent_dir = "generated_output"
path = os.path.join(parent_dir, directory)
if os.path.exists(path)==False:
os.mkdir(path)
heros = []
choices = []
tokenizer = AutoTokenizer.from_pretrained("./models/tokenizer/")
model = AutoModelForSeq2SeqLM.from_pretrained("./models/T5_Paraphrase_Paws")
with open(f'generated_output/{directory}/{method}_{what}.json', 'w', encoding='utf-8') as f:
f.write('[')
for i in range(n_kg_generated):
current_graph = {}
story,hero = gen_story(method)
heros.append(hero)
story = story.serialize("./TESTING.ttl")
#Generates the text
label,choice = random_formulation(story,tokenizer,model)
choices.append(choice)
current_graph["story"]=label
#Creating the linearizations
current_graph['Instances Knowledge Graph'] = clear1(Graph_Generator_baseline_instances(story))
current_graph['Class Knowledge Graph'] = clear1(Graph_Generator_baseline_class(story))
current_graph['Types Knowledge Graph'] = clear1(Graph_Generator_types(story))
current_graph['Range Knowledge Graph'] = clear1(Graph_Generator_range(story))
current_graph['Event Knowledge Graph'] = clear1(Graph_Generator_event(story))
#current_graph['Ontology Knowledge Graph'] = clear1(Graph_Generator_baseline_class(story)) + clear1(Graph_Generator_baseline_instances(story)) + clear1(Graph_Generator_types(story))
current_graph['Ontology Knowledge Graph'] = clear1(Graph_Generator_baseline_class(story)) + clear1(Graph_Generator_types(story))
json.dump(current_graph, f, ensure_ascii=False, indent="")
if i != n_kg_generated-1:
f.write(',')
f.write(']')
f.close()
with open(f'generated_output/{directory}/{method}_{what}_choice.txt', 'a', encoding='utf-8') as s:
s.write(str(choices))
herostats = Counter(heros)
with open(f'generated_output/{directory}/herocounter_{what}.json', 'w', encoding='utf-8') as f:
f.write(str(herostats))
#print(herostats)
print(f"Everything generated in generated_output/{directory}/{method}_{what}")
if __name__ == '__main__':
main(sys.argv, len(sys.argv))