Skip to content

10X single cell Nanopore reads simulation workflow. Complete documentation avialable at: https://GenomiqueENS.github.io/AsaruSim/

License

Notifications You must be signed in to change notification settings

GenomiqueENS/AsaruSim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

version - AsaruSim dependency - Nextflow Made with Docker

License: GPL v3 DOI Twitter Follow

Asaru Sim Documentation

AsaruSim is an automated Nextflow workflow designed for simulating 10x single-cell Nanopore reads. This workflow aims to generate a gold standard dataset for the objective assessment and optimization of single-cell long-read methods. Full documentation is avialable here.

Prerequisites

Before starting, ensure the following tools are installed and properly set up on your system:

Installation

Clone the AsaruSim GitHub repository:

git clone https://github.com/alihamraoui/AsaruSim.git
cd AsaruSim

Test

To test your installation, we provide an automated script to download reference annotations and simulate a subset of human PBMC dataset run_test.sh.

bash run_test.sh

Configuration

Customize runs by editing the nextflow.config file and/or specifying parameters at the command line.

Pipeline Input Parameters

Here are the primary input parameters for configuring the workflow:

Parameter Description Default Value
matrix Path to the count matrix csv file (required) test_data/matrix.csv
bc_counts Path to the barcode count file test_data/test_bc.csv
transcriptome Path to the reference transcriptome file (required) test_data/transcriptome.fa
features Matrix feature counts transcript_id
gtf Path to transcriptom annotation .gtf file null
cell_types_annotation Path to cell type annotation .csv file null

Error/Qscore Parameters

Configuration for error model:

Parameter Description Default Value
trained_model Badread pre-trained error/Qscore model name nanopore2023
badread_identity Comma-separated values for Badread identity parameters "98,2,99"
error_model Custom error model file (optional) null
qscore_model Custom Q-score model file (optional) null
build_model to build your own error/Qscor model false
fastq_model reference real read (.fastq) to train error model (optional) false
ref_genome reference genome .fasta file (optional) false

Additional Parameters

Parameter Description Default Value
amp Amplification factor 1
outdir Output directory for results "results"
projectName Name of the project "test_project"

Run Parameters

Configuration for running the workflow:

Parameter Description Default Value
threads Number of threads to use 4
container Docker container for the workflow 'hamraouii/wf-SLSim'
docker.runOptions Docker run options to use '-u $(id -u):$(id -g)'

Usage

User can choose among 4 ways to simulate template reads.

  • use a real count matrix
  • estimated the parameter from a real count matrix to simulate synthetic count matrix
  • specified by his/her own the input parameter
  • a combination of the above options

We use SPARSIM tools to simulate count matrix. for more information a bout synthetic count matrix, please read SPARSIM documentaion.

EXAMPLES

Sample data

A demonstration dataset to initiate this workflow is accessible on zenodo DOI : 10.5281/zenodo.12731408. This dataset is a subsample from a Nanopore run of the 10X 5k human pbmcs.

The human GRCh38 reference transcriptome, gtf annotation and fasta referance genome can be downloaded from Ensembl.

You can use the run_test.sh script to automatically download all required datasets.

BASIC WORKFLOW
 nextflow run main.nf --matrix dataset/sub_pbmc_matrice.csv \
                      --transcriptome dataset/Homo_sapiens.GRCh38.cdna.all.fa \
                      --features gene_name \
                      --gtf dataset/GRCh38-2020-A-genes.gtf
WITH PCR AMPLIFICTION
 nextflow run main.nf --matrix dataset/sub_pbmc_matrice.csv \
                      --transcriptome dataset/Homo_sapiens.GRCh38.cdna.all.fa \
                      --features gene_name \
                      --gtf dataset/GRCh38-2020-A-genes.gtf \
                      --pcr_cycles 2 \
                      --pcr_dup_rate 0.7 \
                      --pcr_error_rate 0.00003
WITH SIMULATED CELL TYPE COUNTS
 nextflow run main.nf --matrix dataset/sub_pbmc_matrice.csv \
                      --transcriptome dataset/Homo_sapiens.GRCh38.cdna.all.fa \
                      --features gene_name \
                      --gtf dataset/GRCh38-2020-A-genes.gtf \
                      --sim_celltypes true \
                      --cell_types_annotation dataset/sub_pbmc_cell_type.csv
USING A SPARSIM PRESET MATRIX (e.g Chu et al. 10X Genomics datasets)
nextflow run main.nf --matrix Chu_param_preset \
                      --transcriptome datasets/Homo_sapiens.GRCh38.cdna.all.fa \
                      --features gene_name \
                      --gtf datasets/Homo_sapiens.GRCh38.112.gtf
WITH PERSONALIZED ERROR MODEL
nextflow run main.nf --matrix dataset/sub_pbmc_matrice.csv \
                     --transcriptome dataset/Homo_sapiens.GRCh38.cdna.all.fa \
                     --features gene_name \
                     --gtf dataset/GRCh38-2020-A-genes.gtf \
                     --build_model true \
                     --fastq_model dataset/sub_pbmc_reads.fq \
                     --ref_genome dataset/GRCh38-2020-A-genome.fa 
COMPLETE WORKFLOW
 nextflow run main.nf --matrix dataset/sub_pbmc_matrice.csv \
                      --transcriptome dataset/Homo_sapiens.GRCh38.cdna.all.fa \
                      --features gene_name \
                      --gtf dataset/GRCh38-2020-A-genes.gtf \
                      --sim_celltypes true \
                      --cell_types_annotation dataset/sub_pbmc_cell_type.csv \
                      --build_model true \
                      --fastq_model dataset/sub_pbmc_reads.fq \
                      --ref_genome dataset/GRCh38-2020-A-genome.fa \
                      --pcr_cycles 2 \
                      --pcr_dup_rate 0.7 \
                      --pcr_error_rate 0.00003

Results

After execution, results will be available in the specified --outdir. This includes simulated Nanopore reads .fastq, along with log files and QC report.

Cleaning Up

To clean up temporary files generated by Nextflow:

nextflow clean -f

Workflow

Workflow Schema

Acknowledgements

  • We would like to express our gratitude to Youyupei for the development of SLSim, which has been helpful to the AsaruSim workflow.
  • Additionally, our thanks go to the teams behind Badread and SPARSim, whose tools are integral to the AsaruSim workflow.

Support and Contributions

For support, please open an issue in the repository's "Issues" section. Contributions via Pull Requests are welcome. Follow the contribution guidelines specified in CONTRIBUTING.md.

License

AsaruSim is distributed under a specific license. Check the LICENSE file in the GitHub repository for details.

Citation

If you use AsaruSim in your research, please cite this manuscript:

Ali Hamraoui, Laurent Jourdren and Morgane Thomas-Chollier. AsaruSim: a single-cell and spatial RNA-Seq Nanopore long-reads simulation workflow. bioRxiv 2024.09.20.613625; doi: https://doi.org/10.1101/2024.09.20.613625