diff --git a/Real_world_examples/Forecasting_vegetation_condition.ipynb b/Real_world_examples/Forecasting_vegetation_condition.ipynb new file mode 100644 index 000000000..8593eb340 --- /dev/null +++ b/Real_world_examples/Forecasting_vegetation_condition.ipynb @@ -0,0 +1,1844 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Forecasting vegetation condition \n", + "\n", + "* [**Sign up to the DEA Sandbox**](https://docs.dea.ga.gov.au/setup/sandbox.html) to run this notebook interactively from a browser\n", + "* **Compatibility:** Notebook currently compatible with both the `NCI` and `DEA Sandbox` environments\n", + "* **Products used:** \n", + "[ga_s2am_ard_3](https://explorer.sandbox.dea.ga.gov.au/ga_s2am_ard_3), \n", + "[ga_s2bm_ard_3](https://explorer.sandbox.dea.ga.gov.au/ga_s2bm_ard_3)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Background\n", + "\n", + "This notebook conducts time-series forecasting of vegetation condition (NDVI) using SARIMAX, a variation on [autoregressive-moving-average (ARMA)](https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model#ARMAX) models which includes an integrated (I) component to difference the timeseries so it becomes stationary, a seasonal (S) component, and has the capacity to consider exogenous (X) variables. \n", + "\n", + "In this example, we will conduct a forecast on a univariate NDVI timeseries. That is, our forecast will be built on temporal patterns in NDVI. Conversely, multivariate approaches can account for influences of variables such as soil moisture and rainfall.\n", + "\n", + "## Description\n", + "\n", + "In this notebook, we generate a NDVI timeseries from [Digital Earth Austalia's Sentinel-2 surface reflectance data](../DEA_products/DEA_Sentinel2_Surface_Reflectance.ipynb), then use it develop a forecasting algorithm.\n", + "\n", + "The following steps are taken:\n", + "\n", + "1. Load Sentinel-2 data and calculate NDVI.\n", + "2. Iterate through SARIMAX parameters and conduct model selection based on cross-validation.\n", + "3. Inspect model diagnostics\n", + "4. Forecast NDVI into the future and visualise the result.\n", + "\n", + "***" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load packages\n", + "Import Python packages that are used for the analysis.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import datacube\n", + "import xarray as xr\n", + "import pandas as pd\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "from tqdm.notebook import tqdm\n", + "from itertools import product\n", + "from statsmodels.tsa.api import SARIMAX\n", + "from statsmodels.tools.eval_measures import rmse\n", + "\n", + "from datacube import Datacube\n", + "\n", + "import sys\n", + "\n", + "sys.path.insert(1, \"../Tools/\")\n", + "from dea_tools.datahandling import load_ard\n", + "from dea_tools.plotting import display_map\n", + "from dea_tools.bandindices import calculate_indices\n", + "from dea_tools.dask import create_local_dask_cluster" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set up a Dask cluster\n", + "\n", + "Dask can be used to better manage memory use down and conduct the analysis in parallel. \n", + "For an introduction to using Dask with Digital Earth Africa, see the [Dask notebook](../Beginners_guide/08_Parallel_processing_with_dask.ipynb).\n", + "\n", + ">**Note**: We recommend opening the Dask processing window to view the different computations that are being executed; to do this, see the *Dask dashboard in DE Africa* section of the [Dask notebook](../Beginners_guide/08_parallel_processing_with_dask.ipynb).\n", + "\n", + "To use Dask, set up the local computing cluster using the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-1620909f-716d-11ee-81a0-66e207f94d07

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", + " Dashboard: /user/robbi.bishoptaylor@ga.gov.au/proxy/8787/status\n", + "
\n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LocalCluster

\n", + "

38aaf70d

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + "
\n", + " Dashboard: /user/robbi.bishoptaylor@ga.gov.au/proxy/8787/status\n", + " \n", + " Workers: 1\n", + "
\n", + " Total threads: 2\n", + " \n", + " Total memory: 12.21 GiB\n", + "
Status: runningUsing processes: True
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-9cb1453e-76b6-4dbd-862a-d16442fb60bc

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tcp://127.0.0.1:43641\n", + " \n", + " Workers: 1\n", + "
\n", + " Dashboard: /user/robbi.bishoptaylor@ga.gov.au/proxy/8787/status\n", + " \n", + " Total threads: 2\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 12.21 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:34379\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: /user/robbi.bishoptaylor@ga.gov.au/proxy/41051/status\n", + " \n", + " Memory: 12.21 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:34979\n", + "
\n", + " Local directory: /tmp/dask-scratch-space/worker-hzmfste0\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "create_local_dask_cluster()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Connect to the datacube" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "dc = datacube.Datacube(app=\"Forecasting_vegetation_condition\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analysis parameters\n", + "\n", + "* `lat`, `lon`: The central latitude and longitude to analyse. In this example we'll use an agricultural field near Esperance, WA.\n", + "* `buffer`: The number of square degrees to load around the central latitude and longitude. For reasonable loading times, set this as 0.1 or lower.\n", + "* `products`: The satellite data to load, in the example we will use Sentinel-2\n", + "* `time_range`: The date range to analyse. The longer the date-range, the more data the model have to derive patterns in the NDVI timeseries.\n", + "* `freq`: The frequency we want to resample the time-series to e.g. for monthly time steps use `'1M'`, for fortinightly use `'2W'`.\n", + "* `forecast_length`: The length of time beyond the latest observation in the dataset that we want the model to forecast, expressed in units of resample frequency `freq`. A longer `forecast_length` means greater forecast uncertainty. \n", + "* `resolution`: The pixel resolution (in metres) to use for loading Sentinel-2\n", + "* `dask_chunks`: How to chunk the datasets to work with dask." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Define the analysis region (Lat-Lon box)\n", + "lat, lon = -33.463, 121.472\n", + "buffer = 0.005\n", + "\n", + "# The satellite product(s) to load\n", + "products = [\"ga_s2am_ard_3\"]\n", + "\n", + "# Define the time window for defining the model\n", + "time_range = (\"2019-01\", \"2022-08\")\n", + "\n", + "# The minimum cloud-free percentage for a satellite image to be\n", + "# included in the analysis\n", + "min_gooddata = 0.9\n", + "\n", + "# Resample frequency\n", + "freq = \"1M\"\n", + "\n", + "# Number of time-steps to forecast (in units of `freq`)\n", + "forecast_length = 6\n", + "\n", + "# Resolution of Sentinel-2 pixels\n", + "resolution = (-20, 20)\n", + "\n", + "# Dask chunk sizes\n", + "dask_chunks = {\"x\": 2048, \"y\": 2048, \"time\": -1}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Display analysis area on an interactive map" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lon = (lon - buffer, lon + buffer)\n", + "lat = (lat - buffer, lat + buffer)\n", + "\n", + "display_map(lon, lat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load the satellite data\n", + "\n", + "Using the parameters we defined above." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Set up a datcube query object\n", + "query = {\n", + " \"x\": lon,\n", + " \"y\": lat,\n", + " \"time\": time_range,\n", + " \"measurements\": [\"nbart_red\", \"nbart_nir_1\"],\n", + " \"output_crs\": \"EPSG:3577\",\n", + " \"resolution\": resolution,\n", + " \"resampling\": {\"fmask\": \"nearest\", \"*\": \"bilinear\"},\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finding datasets\n", + " ga_s2am_ard_3\n", + "Counting good quality pixels for each time step using fmask\n", + "Filtering to 280 out of 540 time steps with at least 90.0% good quality pixels\n", + "Applying fmask pixel quality/cloud mask\n", + "Returning 280 time steps as a dask array\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 280, y: 60, x: 52)\n",
+       "Coordinates:\n",
+       "  * time         (time) datetime64[ns] 2019-01-01T02:06:37.098000 ... 2022-08...\n",
+       "  * y            (y) float64 -3.69e+06 -3.69e+06 ... -3.691e+06 -3.691e+06\n",
+       "  * x            (x) float64 -9.719e+05 -9.719e+05 ... -9.709e+05 -9.709e+05\n",
+       "    spatial_ref  int32 3577\n",
+       "Data variables:\n",
+       "    nbart_red    (time, y, x) float32 dask.array<chunksize=(280, 60, 52), meta=np.ndarray>\n",
+       "    nbart_nir_1  (time, y, x) float32 dask.array<chunksize=(280, 60, 52), meta=np.ndarray>\n",
+       "Attributes:\n",
+       "    crs:           EPSG:3577\n",
+       "    grid_mapping:  spatial_ref
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 280, y: 60, x: 52)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2019-01-01T02:06:37.098000 ... 2022-08...\n", + " * y (y) float64 -3.69e+06 -3.69e+06 ... -3.691e+06 -3.691e+06\n", + " * x (x) float64 -9.719e+05 -9.719e+05 ... -9.709e+05 -9.709e+05\n", + " spatial_ref int32 3577\n", + "Data variables:\n", + " nbart_red (time, y, x) float32 dask.array\n", + " nbart_nir_1 (time, y, x) float32 dask.array\n", + "Attributes:\n", + " crs: EPSG:3577\n", + " grid_mapping: spatial_ref" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# load the satellite data\n", + "ds = load_ard(\n", + " dc=dc,\n", + " dask_chunks=dask_chunks,\n", + " products=products,\n", + " min_gooddata=min_gooddata,\n", + " **query\n", + ")\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculate NDVI and clean the time-series\n", + "\n", + "\n", + "Afrter calculating NDVI, we will smooth and interpolate the data to ensure we working with a consistent time-series. This is a very important step in the workflow and there are many ways to smooth, interpolate, gap-fill, remove outliers, or curve-fit the data to ensure a consistent time-series. If not using the default example, you may have to define additional methods to those used here.\n", + "\n", + "To do this we take two steps:\n", + "\n", + "1. Resample the data to monthly time-steps using the mean\n", + "2. Calculate a rolling mean with a window of 4 steps" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dropping bands ['nbart_red', 'nbart_nir_1']\n" + ] + } + ], + "source": [ + "# Calculate NDVI\n", + "ndvi = calculate_indices(ds, \"NDVI\", drop=True, collection=\"ga_s2_3\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Resample and smooth\n", + "window = 4\n", + "\n", + "ndvi = (\n", + " ndvi.resample(time=freq)\n", + " .mean()\n", + " .rolling(time=window, min_periods=1, center=True)\n", + " .mean()\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Reduce the time-series to one dimension\n", + "\n", + "In this example, we're generating a forecast on a simple 1D timeseries. This time-series represents the spatially averaged NDVI at each time-step in the series. \n", + "\n", + "In this step, all the calculations above are triggered and the dataset is brought into memory so this step can take a few minutes to complete." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ndvi = ndvi.mean([\"x\", \"y\"])\n", + "ndvi = ndvi.NDVI.compute()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Plot the NDVI timeseries" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAHvCAYAAADaR8vuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACblUlEQVR4nOzdeXhTZdo/8O9J2jRd030vbSllKQVKy74ji+iIqDPu4jiiDi4zKjOj8sN5EZ2Rcd55HZ0FRh13XNBxRRkEFWQpe1u2spZCS0l3mq5pm+T8/khTKW2hS5InJ/l+rqvXjGma3CU9ybnPcz/3LcmyLIOIiIiIiIjIjlSiAyAiIiIiIiL3w2STiIiIiIiI7I7JJhEREREREdkdk00iIiIiIiKyOyabREREREREZHdMNomIiIiIiMjumGwSERERERGR3THZJCIiIiIiIrtjsklERERERER2x2STiIjITt566y1IkgStVouzZ892+v6MGTOQnp7e/t9JSUmQJAmSJEGlUkGn02HYsGG4++67sXHjxg4/+/jjj0OSJBw7dqzb51+2bBkkSUJOTk7741933XV2+u2IiIh6h8kmERGRnTU3N+Ppp5/u0X0nT56MnTt3Ijs7G5988gkeeeQRFBYW4uqrr8bPfvYztLa2AgAWLVoEAHjjjTe6fByLxYJ33nkHGRkZyMzMtM8vQkRE1A9MNomIiOxs3rx5eP/993HgwIEr3jc4OBgTJkzAhAkTMHv2bDz88MPYtm0bli9fjk8++aQ9aU1PT8e4cePw7rvvwmQydXqcjRs34ty5c+1JKRERkWhMNomIiOzsiSeeQFhYGJ588sk+P8YzzzyD4cOH4x//+AeMRiMA6+pmaWkp/vvf/3a6/5tvvgkfHx/ceeedfX5OIiIie2KySUREZGeBgYF4+umn8c033+D777/v8+PMnz8fjY2N2LdvHwDg9ttvh5+fX6dS2gsXLuCLL77AjTfeiJCQkH7FTkREZC9MNomIiBxg8eLFGDhwIJ588knIstynx0hMTAQAnD9/HoA1ib355pvx9ddfo7y8vP1+7733Hpqbm1lCS0RELoXJJhERkQNoNBr84Q9/wL59+/DRRx/16TG6SlIXLVqE1tZWvPvuu+23vfnmm0hMTMSsWbP6HC8REZG9MdkkIiJykNtuuw2ZmZlYtmxZe1fZ3rCNT4mNjW2/berUqRg8eDDefPNNAMDBgweRk5ODX/ziF5AkyT6BExER2QGTTSIiIgeRJAkvvPACCgoK8Oqrr/bqZ2VZxrp16+Dv748xY8Z0+N69996LI0eOYM+ePXjjjTegUqlwzz332DFyIiKi/mOySURE5ECzZ8/GnDlz8Oyzz6K+vr7HP7dixQrk5+fj0UcfhVar7fC9n//85/Dy8sIrr7yC9957D7NmzWrf30lEROQqvEQHQERE5O5eeOEFZGVloby8HMOHD+/wvZqaGuzatQsA0NDQgOPHj+PDDz/Etm3bcMstt2DFihWdHi86OhrXXnst3nzzTciyzMZARETkkriySURE5GCjR4/G7bff3uX3duzYgYkTJ2LSpEm44YYb8Le//Q1JSUn45ptvsHbtWnh5dX1deNGiRZBlGaGhobjhhhscGD0REVHfSHJf+7ETERERERERdYMrm0RERERERGR3TDaJiIiIiIjI7phsEhERERERkd0x2SQiIiIiIiK7Y7JJREREREREdsdkk4iIiIiIiOyu6+FdbsxiseD8+fMIDAyEJEmiwyEiIiIiIlIUWZZRV1eH2NhYqFTdr196XLJ5/vx5JCQkiA6DiIiIiIhI0YqLixEfH9/t9z0u2QwMDARg/YcJCgoSHA0REREREZGy1NbWIiEhoT236o7HJZu20tmgoCAmm0RERERERH10pW2JbBBEREREREREdsdkk4iIiIiIiOyOySYRERERERHZHZNNIiIiIiIisjsmm0RERERERGR3TDaJiIiIiIjI7phsEhERERERkd0x2SQiIiIiIiK7Y7JJREREREREdsdkk4iIiIiIiOyOySYRERERERHZHZNNIiIiIiIisjsmm0RERERERGR3TDaJiIiIiIjI7phsEhERERERkd0JTzZXrVqF5ORkaLVaZGVlYdu2bd3e95577oEkSZ2+hg8f7sSIiYiIiIiI6EqEJptr167FY489hmXLliE3NxdTp07FNddcg6Kioi7v//LLL0Ov17d/FRcXIzQ0FDfffLOTIyciIiIiIqLLkWRZlkU9+fjx45GZmYnVq1e33zZs2DDccMMNWLly5RV//vPPP8dNN92EwsJCJCYm9ug5a2trodPpYDAYEBQU1OfYiVyJ2SJjT2E1yuuMiAzUYlxyKNQqSXRYREREROSGeppTeTkxpg5aWlqwf/9+PPXUUx1unzt3LrKzs3v0GK+//jpmz5592USzubkZzc3N7f9dW1vbt4CJXNSGw3qsWJcPvcHYfluMTovl89MwLz1GYGRERERE5MmEldFWVlbCbDYjKiqqw+1RUVEoLS294s/r9Xr897//xX333XfZ+61cuRI6na79KyEhoV9xE7mSDYf1eHBNTodEEwBKDUY8uCYHGw7rBUVGRERERJ5OeIMgSepY6ifLcqfbuvLWW28hODgYN9xww2Xvt3TpUhgMhvav4uLi/oRL5DLMFhkr1uWjqzp4220r1uXDbBFWKU9EREREHkxYGW14eDjUanWnVczy8vJOq52XkmUZb7zxBhYuXAiNRnPZ+/r4+MDHx6ff8RK5mj2F1Z1WNC8mA9AbjNhTWI2JKWHOC4yIiIiICAJXNjUaDbKysrBp06YOt2/atAmTJk267M/+8MMPOHXqFBYtWuTIEIlcWnld94lmX+5HRERERGRPwlY2AWDJkiVYuHAhxowZg4kTJ+LVV19FUVERFi9eDMBaAltSUoJ33nmnw8+9/vrrGD9+PNLT00WETeQSIgO1dr0fEREREZE9CU02b731VlRVVeHZZ5+FXq9Heno61q9f395dVq/Xd5q5aTAY8Mknn+Dll18WETKRyxiXHIoYnbbbUloJQLTOOgaFiIiIiMjZhM7ZFIFzNsmd2LrRAujQKMjWYmv1XZkcf0JEREREdtXTnEp4N1oi6rt56TFYfVcmonUdS2WjdVommkREREQklNAyWiLqH72hCdMGR2D7k1dh9ZZTOF3ZgMmDwnFDRhzUqiuPECIiIiIichQmm0QK9uy6fPxwogIrbxqBR65KFR0OEREREVE7JptEClVnbMV3x8rRYrIgJSJAdDhERERERB0w2SRSqE35ZWgxWTAwwh/DY60bswsq6pFz9gJGDwjBoEgmoERE5PrMFhl7CqtRXmdEZKC1izq3gpCnc5fjgskmkUJ9eeA8AOD6UbGQJOubz/9tPI71h0rx1DVDmWwSEZHL23BYjxXr8juM8YrRabF8fhqb3JHHcqfjgt1oiRSouqEF209WAgDmj4ptv31kfDAA4NA5g4iwiIiIesw2vuvSedGlBiMeXJODDYf1giIjEsfdjgsmm0QK9N/DepgsMobHBnXYrzkyTgcAOFhSIygyIiLyFGaLjJ0FVfgirwQ7C6pgtvR8dLvZImPFunx09RO221asy+/VYxIpnTseFyyjJVKgL/N+LKG9WHq8Ndksrm5CdUMLQv01To+NiIjcX3/K/GRZxvdHyzqt3HS4DwC9wYg9hdWYmBJmr7CJXNqewmq3Oy6YbBIp0P/+bBTWHTzfoYQWAIK03hgY7o/TlQ04VGLA9MERgiIkIiJ3ZSvzu3RtxVbmt/quTMwYEolzFxphssgYGm1tYmcyW7DgnztQVNWIumZTj56rvK77E28id9PTv3clHRdMNokUaECYHx6eOajL742I1+F0ZQMOFtcw2SQiIrvqSZnfQ+/lwFblN2FgKD58YCIAwEutQmV9c48TTQCIDNT2L2AiBenp37uSjgvu2SRyM7YmQQdL2CSIiIjs60plfgDaE80AHy9ovdUdvrfqzkx8u2Qajqy4GjE6Lbob5CDBWpY7Ljm0/0ETKcS45FC3Oy64skmkIGerGvDcV/m4YXQcrhsZ2+V95qZFYWC4P0a07d8kIiKyl56W7z1/YzpuHzegfTSXTVbijyfJy+en4cE1OZCADiul0kXfV+JcQaK+UqskLJ+fhsVrcjp9T6nHBVc2iRRk3YHz+PZoOdbuLe72Pgmhfpg5NBLhAT5OjIyIiDxBT8v3ksMDOiWal5qXHoPVd2UiWtfxMaN1Wqy+K1Nx8wSJ7GFeegyuSY/udLtSjwuubBIpyJcHrF1oL20MRERE5Ay2Mr9Sg7HLfZsSrCfFPS3zm5cegzlp0diUX9q+mvPFw5MRGaScPWlE9mSxyDjYNi/9V1cNwqDIAEQGWo8pJa1o2nBlk0ghjpfW4URZPTRqFa4e3vmK18UOlxjwl2+O49Occ06KjoiIPIGtzK+7RBPofZmfWiVhXnoMhkYHAgD2nKnuf6BECnX4vAElNU0I1Hrh4ZmDsCAjDhNTwhSZaAJMNokU48sDJQCA6UMioPP1vux9c4su4B+bT7WvhBIREdmLo8r8Jg8KBwDsOFXZr/iIlGxkfDB++N0MvHhLRqcGW0rEMloiBZBlGesO6AEA1/eghHaErSPtOQNkWb7ivhkiIqLeKKlpAgAsnjYQw2KD7FLmN3lQGF7fXogdp6rsFSaRIiWG+SMxzF90GHbBZJNIAQ6cM6CouhG+3mrMGhZ5xfsPiwmEt1pCdUMLSmqaEB/i54QoiYjIE1Q3tOBQ23ite6ck221/5bjkMHipJBRVN6K4uhEJofzsIs9ischQKbRctjssoyVSgBaTBZkDgjF3eBT8NFe+RuTjpcaQtr0vtk3mRERE9rDtZAVkGRgaHWjXRj4BPl7ISAgGwFJa8kz3vr0X97+zD6fK60SHYjdMNokUYFxyKD59aDL+7+ZRPf6ZkReV0hIREdnL1hPWRHD64Ai7P7Zt3yabBJGnOV/ThB9OVGBTfhl8vJS/V9OGZbRECuKl7vn1oZFxOrwP4FBJjcPiISIizyLLMnadtu6pnOaAZPPmMfGYMSQCI+J0dn9sIlf2WW4JZBmYMDDUrUrImWwSubg9hdUYHBWAYD9Nr37OtrJ5prKRTYKIiMguJEnCN49Pw66CKoxJCrH748eH+LHPAHkcWZbxyX7ruLqfZsYLjsa+mGwSubBWswUPvLsP9UYTvnhkMobH9vxK7+CoAHz/m+lICvNnoklERHYT4OOF2WlRosMgchu5xTU4XdkAX281rhnRt9FBrorJJpEL236yEjWNrQgP8MHQ6KBe/ayXWoWBEQEOioyIiMgxTpXX49/bTkOSgJU3jRQdDpHD2VY156VHI8DHvdIzNggicmHrDpwHAFw3MqZfs8uIiIj6q7HFhBtX7cD/fnMMLSaLw56nxWTBh3uL8UXeeYc+D5ErMLaa28/33K2EFmCySeSyjK1mfHOkFAAwf1TfSipOltXhkfdz8OsPcu0ZGhEReaBdp6uQW1SDL/LOw1vtuAugQ6MDEeqvQWOLGQfO1TjseYhcgSwDv5k7BLOGRmJiSpjocOyOySaRi/r+WDkaWsyIC/ZF5oC+N2H46qAem/LLYDLz6jAREfWdbeTJtMERDu0FoFJJ7Sfd209y3ia5N1+NGj+flITX7xnrllVsTDaJXFR7Ce2omD5/qA+MCIC/Ro2mVjMKKhrsGR4REXmYH05UAHDMfM1LTWmbt5ldwGSTSMmYbBK5IGOruf1D/fpRsX1+HLVKwvC2WWUsRSIior4qrm5EYWUDvFQSJjmh1G9yijXZzC2qQUOzyeHPRyTC+kN6fLCnCIamVtGhOAyTTSIXpPVWY+sTM/GXm0chLaZ3XWgvNSremmweOmewR2hEROSBbBdAMweEIFDr7fDnGxDmh4RQX5gsMvYUVjv8+YhE+Pv3p7D000P4Mq9EdCgOw2STyEWFB/jgZ1nx/d4XMyI+GABwkCubRETUR1vbks1pg8Od9pyTU8KREuGPZpPZac9J5Cz552txVF8LjVqF+f2oYnN17jXIhYg6sa1sHtXXocVkgcaL15iIiKh3wgN9EOLnjWlO2K9p89wN6fBW8zOL3NMnOdbZmrOGRSLYTyM4GsfhEUzkYt7fXYRbX9nZPvakvwaE+iE8QIPUqABU1jfb5TGJiMizPH/jCOx/eg5GtPUBcAYmmuSuWs0WfNFWOuuOszUvxpVNIhfzeV4J9hRWY9awSLs8niRJ2LV0Frz4oU1ERP2gEjSWocVkQUOzCSH+7rv6Q55l64kKVNa3IMxfg+lDnFctIALPPolciN7QhL1nrI0QfjLSfvX7TDSJiKivzlQ2QJZlIc/9wZ4ijFqxES9sOCbk+YkcwVZCuyAjzu1X8N37tyNSmK8P6iHLwNikEMQF+9r98U1mi90fk4iI3FdVfTNm/t8WTPrT92hscf4IkmidFk2tZuzgvE1yE7Iso9UsQyUBP82KEx2Ow7GMlsiFrDtwHgDs3pWsztiKO/+9GyfL6pH7P3Og9Vbb9fGJiMg9bT9VCVkGgv008NM4/7RxXFIovFQSiqubUFTViAFhfk6PgcieJEnCa3ePQUVdMyICfUSH43Bc2SRyEWcqG3DgnAEqCbh2RIxdHzvAxwvna5rQ1GpGvr7Wro9NRETu6wcBI08u5u/jhcwBIQDA1U1yK56QaAJMNolcxlcHrauakweFIzzAvm9AkiRhpG3eZnGNXR+biIjck8UiY+sJa4I3PVVcE5NJg8IAWFdZiZSsoq4ZekOT6DCciskmkYsYFhOE6YMjcONox9Tv29rVHywxOOTxiYjIvRwtrUVlfTN8vdXISgoRFsfkQdZV1Z0FVbBYxDQqIrKHt7ILMelP3+PFjcdFh+I0wpPNVatWITk5GVqtFllZWdi2bdtl79/c3Ixly5YhMTERPj4+SElJwRtvvOGkaIkcZ9awKLx97zjc5KB5SyPj25LNc0w2iYjoymyrmpNSwuDjJW6vf0ZCMPw1alQ3tOBoKbeCkDJZLDI+yymBLANDooNEh+M0QhsErV27Fo899hhWrVqFyZMn45VXXsE111yD/Px8DBgwoMufueWWW1BWVobXX38dgwYNQnl5OUwm53dHI1KaEW3JZkFFPeqbTQjwYX8wIiLq3tb2/Zpi5wB6q1X4xeRk+PmoEebvGfvcyP3sPF2F8wYjgrRedpulrgRCzzZffPFFLFq0CPfddx8A4KWXXsI333yD1atXY+XKlZ3uv2HDBvzwww84ffo0QkNDAQBJSUnODJnIrswWGXsKq/BpbglmDI7AvPQYqB00NDsyUIsYnRZ6gxGHSwyYMDDMIc9DRETu4VdXDcLw2CDMHCL+xPi3Vw8RHQJRv3yy3zpb87pRsR41FUBYstnS0oL9+/fjqaee6nD73LlzkZ2d3eXPfPnllxgzZgz+/Oc/491334W/vz+uv/56PPfcc/D17XomYXNzM5qbm9v/u7aW5RfkGjYc1mPFunzoDUYAwMf7ziE6KB/PXD8c89Lt243WZk5aFKrqWzzqTY6IiPpm0qBwTBokpgstkTupbzbhv4dLAQA/ddB2KVclLNmsrKyE2WxGVFRUh9ujoqJQWlra5c+cPn0a27dvh1arxWeffYbKyko89NBDqK6u7nbf5sqVK7FixQq7x0/UHxsO6/Hgmhxc2uagrLYZD67Jweq7Mh2ScD67IN3uj0lEROQMFXXNyC6oxPDYIAyKDBQdDlGP/feQHk2tZiSH+yNzQLDocJxKeIMgSepYMijLcqfbbCwWCyRJwnvvvYdx48bh2muvxYsvvoi33noLTU1dtxFeunQpDAZD+1dxcbHdfwei3jBbZKxYl98p0QTQftuKdfkws+MeEREJ8o/vT2LbyQq0mi2iQ2n33Ff5ePTDPHyZd150KES9su6gHgDw08y4bvMcdyUs2QwPD4dare60illeXt5ptdMmJiYGcXFx0Ol07bcNGzYMsizj3LlzXf6Mj48PgoKCOnwRibSnsLq9dLYrMgC9wYg9hdUOeX5ZlnGmsgFNLWaHPD4RESlbUVUj/rLxBH7x5l4YW13ns2Jy27zNHQVVgiMh6p1/3jEaf/7ZSPw0y7NKaAGByaZGo0FWVhY2bdrU4fZNmzZh0qRJXf7M5MmTcf78edTX17ffduLECahUKsTHe96LR8pUXtd9otmX+/XW/H9sx4y/bMG+s45JZomISNl+OGntQpuZGIJArbfgaH40KcW6fzSvuAZ1xlbB0RD1XKDWG7eMSUCMruseM+5MaBntkiVL8O9//xtvvPEGjh49iscffxxFRUVYvHgxAGsJ7N13391+/zvuuANhYWH4xS9+gfz8fGzduhW/+93vcO+993bbIIjI1UQGau16v95KCvMHwHmbRETUNdvIk+mCR55cKiHUD4lhfm2d3HnBlFyfLHNLlNBk89Zbb8VLL72EZ599FhkZGdi6dSvWr1+PxMREAIBer0dRUVH7/QMCArBp0ybU1NRgzJgxuPPOOzF//nz87W9/E/UrEPXauORQxOi06K5iXwIQo9NiXHKoQ55/ZNu8zUNMNomI6BItJguyT1UCAKalulayCfy4urnjFEtpyfXlFF3AtS9vw3u7z4oORRjhU90feughPPTQQ11+76233up029ChQzuV3hIpiVolYfn8NDy4JgcS0KFRkC0BXT4/zWHzNkfGBwMADp6rccjjExGRcuUUXUBDixlh/hoMj3W9PhdTBoXjgz1F2NGWEBO5sv/sL0G+vhb7z17AneMTRYcjhPButESeaF56DFbflYloXcdS2Wid1mFjT2yGxwZBkoDzBiMq6pqv/ANEROQxbCW0U1LDoXLQRc/+mJhibRJ0vKwO1Q0tgqMh6p6x1YyvDlo7J//Mw2ZrXkz4yiaRp5qXHoM5adHYU1iN8jojIgOtpbOOWtG0CdR6Y2C4PwoqGnCopAZXDe26+zMREXmew+drAbhmCS0AhPpr8NrdYzAyXodQf43ocIi6tSm/DHVGE+KCfTFhYJjocIRhskkkQJ2xFfe8uRfjk0OxZM5geKmdW2QwKj4YBRUNOHjOwGSTiIjavf2LsThWWofYYNdtvDgnjZ9b5LpsDaxWbTkFAFiQEeuSVQLOwmSTSIA9hdXYf/YCKuub8cS8oU5//qvToxGl02LKoHCnPzcREbkuSZIwLMb19moSKcGGw3qsWJffYZ76x/uKMTJe59AtUq6MezaJBNjZNpB6UoqYsoqrh0fjyXlDMSbJMR1vidyJ2SJjZ0EVvsgrwc6CKpgtbGVPJNob2wux8PXdOFPZIDoUIgDWRPPBNTkdEk0AqKxvwYNrcrDhsF5QZGJxZZNIgOy2ZHNiClcWiVxZV1epY3RaLJ+f5rFXqck9WSwyrv3bNgyNDsTT16UhPMBHdEiXteFIKfYUVmP7qUokhfuLDoc8nNkiY8W6fHR1KVKGddrAinX5mJMW7fDeHK6GK5tETlbT2IKjpdYGDBMGiltZrGlswdYTFThVXi8sBiJX1t1V6lKD0aOvUpN7ytfX4lhpHTbmlyFI6y06nCuybQPJLuAIFBJvT2F1p8+Ki8kA9AYj9hRWOy8oF8Fkk8jJdp2uhiwDqZEBiAzUXvkHHGTl+mO4+409+Cz3nLAYiFzVla5SA9ar1CypJXex9aR15MmklDBovFz/9HDyIOs2lOyCKlh4HJJg5XXdJ5p9uZ87cf13EyI3s7PtKuxEQfs1bUbE6wAAB88ZhMZB5Ip4lZo8jW2+5rTBrjny5FIj44MR4OOFmsZW5OtrRYdDHq6niwciFxlEYbJJ5GQ+3mqE+HkLaw5kMyo+GIA12ZRlXhUmuhivUpMnaWg2Yf/ZCwBcd77mpbzVKoxPtm5F2X6KpbQk1rjkUMTotOhuN6YE637/ccme15iRySaRk/2/a4dh/9NzMHuY2DlhQ6IDoVGrYGhqRXF1k9BYiFwNr1KTJ9lZUIVWs4wBoX6KarYzuW3f5g4mmySYWiVh+fy0Lrde2BLQ5fPTPK45EMBkk0gIlUqCl1rs4afxUmFYTCAA4MC5GqGxELkaXqUmT/JDewmtsjqkTx4UDq23ClpvNSt0SLh56TEYmxTS6fZonRar78r02A7mHH1C5EQXGloQ7OcNSXKNK1sj4nU4cM6AQyUGzB8VKzocIpexdm8xfj0rFf/v00OQgC6vVnvqVWpyP8nh/hgeG4TpgyNFh9Irg6MCcGD5XPh4qUWHQgSzRcbJtg7/z8xPQ4i/BpGB1ouSnvxZwWSTyIluXLUDxlYLXr9nDIbH6kSHg5FxwQCKcKC4RnAkRK7jta2n8cf1R5EY5ocXbxmFP39zvFOzoBdvGeWxV6nJ/dw7JRn3TkkWHUavSZLERJNcRl7xBdQ0tkLn6427JiQKr2BzFUw2iZzkfE0TzlQ1QiUBCaF+osMBAExODcefbhqB0QM6l30QeaJ/b7MmmgBw4+g43JgZj+sz4rCnsBrldUbkFtXgzvEDkBoVKDhSIrpYTWMLgv00osMgD7b52I8dnZlo/ojJJpGT7CyoAgCMiA92mYHZccG+uG3cANFhELmEN3cU4g9fWxPNX181CI/NHgzA2vjBNqpoQUacsPiIHOFAcQ1SowLgp1HmKWF9swk3rdqB0xUNyP2fOQh0kc9X8jzZbaPtZg5RRkdnZ1HmOwuRAu08bU02Jw4UO/KEiDp7Z+cZrFiXDwB4eGYKHp8zWHBERI7XYrLgjtd2odUs45vHpyFZQZ1obQJ8vNBissBkkbH7dDVmp4nt9E6e6/37J2B3YTVGxYvfJuVKuMZL5ASyLLevbIqer3mp4upGvLvzDL7IKxEdCpEQn+eW4H++OAIAWDw9Bb+dO+SyTbyyCyqx+N39+GBPkbNCJHKI/WcvoKHFjECtFxJdZHtHX9hGoHDeJomk9VZj+uAIlnNfgskmkRMUVzehpKYJ3moJY7poiy3S/rMX8PsvjuDt7DOiQyESYmJKGAZG+OOBaQPx5LzLJ5oAkH++FhuOlOI/+885KUIix9h60rrHbGpqOFQK7pZpSzZtZYxE5DqYbBI5ge0DMCMh2OX2xYxsK/c4cr4WJrNFcDREzhcVpMXnD0/G0muG9mgs0fxRsZAk64WacxcanRAhkWNsPfFjQxMlmzgwDJIEnCirR3mt8co/QGRHLSYLFvxzB55ffxSNLSbR4bgcJptETjA8VodFU5Jx4+h40aF0khTmj0AfLzSbLDhRVi86HCKn+HhfMT7P/bF0PEjb8/m3UUFajE8OBQB8dVDvkPiIHK2irhlHztcCAKamKjvZDPHXYHhsEAAgu23LCpGz7DtTjQPFNfg0pwRajuLphMkmkROMiNfh99el4Y7xrtf5VaWSMKJtdfNQSY3YYIic4JP95/DEJwex5KM85BZd6NNjXD/K2pX2y7zz9gyNyCnMFhlvZRcCAJLC/BDqr/w9ZpNTuG+TxNh8vBwAMGNIhKLL0R2FySYRtSebB84ZBEdCZF9mi7U51xd5JdhZUIVP95/Db/9zALIM3Dk+ERkJwX163GvSo+GlkpCvr8WpclYEkHJsOKzHlBe+xz83FwAAzlQ1YsoL32PDYWWv0s8aFoWfZcYhKcyv/Xg3W2TRYZEH2HzcWo4+c0ik4Ehck2ttHiNyQ7lFF9DYYkZWYgi03q5ZXjEqPhgAcIjJJrmRDYf1WLEuH3pD5z1cd4wfgBXXD+9x6eylQvw1mJoajs3HK/DlgfNYwlEppAAbDuvx4JocXJqClRqMeHBNDlbflYl56TFCYuuv6oZm7Ciown9yfiyPj9FpsXx+mmJ/J3J9xdWNOFVeD7VKwpTUcNHhuCSubBI52KtbT+POf+/Ga1tPiw6lWyPirCubx8vq0GJikyBSPttJdVeJJgBMSel/983rM2IxMl6HpDDljowgz2G2yFixLr9Togmg/bYV6/IVuRrY3fFuS6KVvmpLrstWQjsmMQQ6X2/B0bgmrmwSOZDFImPX6bb5moNca77mxeJDfPHhAxMwPDYIGi9egyJlu9xJNQBIAJ77Oh9Xp0dD3Y+E84aMOJds+kXUlT2F1d1efAGsCafeYMSewmpMdLF50JdzpSRagjWJnpPWv+OdqCubj1mTzZlDWULbHZ5VEjnQsdI6XGhshZ9GjZFtpaquSJIkTBgYhkAtr8qR8vXmpLo/+lqCSyRCeV3PRoL09H6uwlnHO1FXEkL9EBHow/2al8Fkk8iBdratao5NCoW3mocbkTM4+6S61tiKz3NLYFFg+SF5jshArV3v5yrcNYkmZXh2QTp2L52FwVEBokNxWSyjJXKgnQXWFuxKKEkqNRjx2rbTqGlsxf/dMkp0OER95syTarNFxlV/+QGV9c2IC/HF2KTQfj8mkSOMSw5FjE7b7SqgBCBap8W4ZGX9DbtrEk3KwXEnl8elFiIHMZkt2H3aWrYzSQHJpiQBr28vxKc55/DxvmK2jSfFsp1Ud0eCtUulPU6q1SoJM4ZEAODMTXJtapWE5fPTuvye7VR5+fw0xe1rtB3v3UVtz+OdyEaWZRwuMbCipQeYbBI5SL6+FnXNJgRqvTA8Vic6nCvKLboAlWTd3/K7/xzE7a/tcovZa+R5nH1SPX9ULABg/SE9TGZ2cybXNS89BsNjgzrdHq3TKnbsycXH+6VHtJKTaHJtBRX1uO7v2zH1z5v5vn8FLKMlcpD0WB2+/vUUnLvQ5PIfcu48e40807z0GAwI9UNRdWOH26MdMHdvckoYwvw1qGpowY6CKkwfHGG3xyayJ5PZgrNV1mPi+RvT4e/jhchA66qfq39OXc689Bisviuz01zd8EAfPLdgOD+/yO42H6sAAKREBsCLPTkui8kmkYOoVBKGx+pcflWTbePJHZXVGtsTzX/dlYlmk8VhJ9VeahWuHRGDd3edxZd555lsksvK19eivq3i5taxA9zqPX1eegzmpEVjT2E1nv78EAoqGvDorFQmmuQQtvmaM4fw/f5KmGwSeTh3nb1Gnu37ttlnGQnBTjnZvD4jFu/uOouNR0phbE2H1lvt8Ock6q3jpXWQJGBckrJXMrujVkmYmBKGP944AoD1+Ceytzpja/soHY48uTImm0QOcOicAW/uKMSsYVH4yUjXvqrKtvHkjr47ak02Zzlp0HbWgBDE6LQorTUir7gGEwbywgy5npvHJGBuWjQMTa2iQ3EoHn/kSDtOVcJkkZEc7o+kcH/R4bg8JptEDrDleDk+zS2B0WR2+WSTbePJ3Rhbzdh+yrqfZtawKKc8p0ol4eXbRiMxzA9RQTxWyHXp/Lyh8/MWHQaRYtn2a85gCW2PcEcrkQPsPF0FAJiYEi44kitj23hyN3VGE34yIhbpcUEYFhPotOcdlxzKRJPIRWQXVOKZL49gc1tJPZE9yLLcvl/zKidVzigdk00iOzO2mrHv7AUAwEQFlPKwbTy5m4hAH/zfLaPw1a+mQpLE/N1yRi25mnd3nsHN/8rGZ7nnRIfiFD8cr8Bb2WfwzZFS0aGQG5Fl4B93ZOKhGSm8CN9DTDaJ7Cyn6AJaTBZEBvogJUIZtfy2tvHRuo6rMkqevUYkwuESAxa+vhu/fHe/6FCIOth6shJ7z1xAWW2z6FCcwpYI2Bq5ENmDSiVhXHIonpg3FD5ebATXE9yzSWRnuwpsJbRhwlZV+sLWNv7LvBK8tu00VJKELx6ZwhVNUhS9oQlV9S0YHhsk5PjTequx7WQlvFQSLjS0IMRf4/QYiC5lscjtSdd4D1mNGZMYCkkCTlc2oLzOyL4DRIJwZZPIzrLbks1JChwTolZJmDQoHPn6OuTra2GyWESHRNQrH+87h+v+vh2//figkOcfFBmAtJggmCwy/nuY5XvkGo6V1sHQ1Ap/jRrpca49+9ledH7eGBodBADYd+aC4GjIHVxoaMHvPz+MzcfKIcvcKtFTwpPNVatWITk5GVqtFllZWdi2bVu3992yZQskSer0dezYMSdGTNQ9s0VGi9maoE0c6PrNgboSGeiDQK0XLDJQWNkgOhyiXvmurRnI2KQQYTFcnxELAPjyQImwGIgutrvQehE0KykU3mrhp35OM67tfYCltGQPW09W4N1dZ/HChmOKqlwTTeg7ztq1a/HYY49h2bJlyM3NxdSpU3HNNdegqKjosj93/Phx6PX69q/U1FQnRUx0eWqVhC8fmYLc389BQqiv6HD6RJIkpEYGAABOltULjoao58rrjDhQXANAbJfA+aOsyebuwmqUGjiflsTb1dYhfcJAzyihtRmXbK0w2s1kk+zg+7aLmTOGsAttbwhNNl988UUsWrQI9913H4YNG4aXXnoJCQkJWL169WV/LjIyEtHR0e1fajU36JJrCfHXKPqqV2qkdVzEyXImm6QcW9pmn42M1yFS4AiSuGBfjEkMgSwDXx/SC4uDCLh0v6bytnf0x9hk68pmfXMrjK1mwdGQkpktMn44Yf2M4ciT3hGWbLa0tGD//v2YO3duh9vnzp2L7Ozsy/7s6NGjERMTg1mzZmHz5s2XvW9zczNqa2s7fBE5SovJPfY4pkZZVzZPldcJjoSo5747VgbANU4EfiylPS84EvJ0dUYTxiSFIlanxch4z9ivaRMZqMWupbOw7YmroPXmwgT1XV5xDWoaWxGo9ULmgGDR4SiKsGSzsrISZrMZUVFRHW6PiopCaWnXTRViYmLw6quv4pNPPsGnn36KIUOGYNasWdi6dWu3z7Ny5UrodLr2r4SEBLv+HkQ2tcZWZDy7Ebe9uhNNLcq+gjqIZbSkMMZWM7adrAQAzB4WdYV7O9416TGYPCgMd4xLYCMJEkrn543X7h6DHU9d5VH7NW0uHelF1Beb20popw2OgJcHHkf9IXz0yaWlhrIsd1t+OGTIEAwZMqT9vydOnIji4mL85S9/wbRp07r8maVLl2LJkiXt/11bW8uEkxxib2E1GlvMKDUY4atR9hXU1KhABPp4IcRPc9ljkshV7G47/qKCfDA8Nkh0OIgI9MF7900QHQZRO09/H+dnGfXH5uPWZHMm92v2mrBkMzw8HGq1utMqZnl5eafVzsuZMGEC1qxZ0+33fXx84OPj0+c4iXoqu32+pjK70F4sVqfFwWfm8oOZFGNSShjev388qhta+HdL1EaWZZy70IT4EF+PPS6aWsz41Qe5yCuuwdYnZsBPI3ydhRSmscWEOqMJADBjSITgaJRH2DqwRqNBVlYWNm3a1OH2TZs2YdKkST1+nNzcXMTExNg7PKJe26ng+ZqXso0VIlIKb7UKk1LCcd3IWNGhdFBea8SbOwpRUMGSdHK+U+X1mPrnzZj94g+wWDyznNtXo8ZRfS0q65uRW1QjOhxSID+NF3743Qxse2ImwgO4gNVbQi/vLFmyBAsXLsSYMWMwceJEvPrqqygqKsLixYsBWEtgS0pK8M477wAAXnrpJSQlJWH48OFoaWnBmjVr8Mknn+CTTz4R+WsQ4UJDC/L11uZTEwYqP9m8GEuPiPru6c8PY2N+GR6akYIn5g0VHQ55mF1tXWijgrRQqTz3fXxsUghK8pqwu7Aakwcpv/qInE+SJCSE+okOQ5GEJpu33norqqqq8Oyzz0Kv1yM9PR3r169HYmIiAECv13eYudnS0oLf/va3KCkpga+vL4YPH46vv/4a1157rahfgQjAjwOzB0cFICLQPa56bThcij9/cwyj4oPx11szRIdD1K0P9hTheGkdfpYVj/Q41+q2OX9ULDbml2HdwfP43dVDeOGGnMo2X9PTRp5calxyGD7PO489bZ/VRD1ltsiwyLJHNteyF+GF6w899BAeeuihLr/31ltvdfjvJ554Ak888YQToiLqnfb9mm60qumtlnC6ogEavsGSi/t4XzFyimqQGhXgcsnm7GFR8NOoUVzdhLziGoweECI6JPIQsixj92nryuaEgaGCoxFrXLL1988tqkGzyQwfL2U38SPn2V1YhV++ux8LMmLxhxtGiA5HkXgWSWQHowcE46qhkZjhRl3KUiMDAQCnKxtgMrvH/FByP5X1zcgtrgEAzBoqfuTJpXw1asxJs8bFmZvkTKcrG1BZ3wyNlwqjEoJFhyNUSoQ/wvw1aDZZcOicQXQ4pCBbjlegzmhCUwvPg/qKySaRHdw4Oh5v3DMWM11gmLy9xIX4QuutQovJguILTaLDIerSluMVkGVgeGyQy87Tm9/WtOirg3qYPbRJCzmfrYR2dEIwtN6evZInSVL76ubutn2sRD1hm685cyi70PYVk00i6pJaJSElIgAAcLKsTnA0RF377mgZAGDWMNdb1bSZNjgCOl9vVNQ1Y/dp7hkj5/ixhNZ9tnf0x+RB4RiXHIoYF70oRa6nuLoRJ8vroVZJmDqIyWZfMdkk6qf9Z6tRUuOeK3+pkW3JZjnHNpDraTFZsPVEBQBglgtXFWi8VLgmPRreaonHEjnNT7Picc+kJFzlwseGM901IREf/XIibsqMFx0KKcSW49ZVzawBIdD5eQuORrmENwgiUrolHx3A2apGvLtoHKamuteVr9Qo677NUzxBJhe0u7AKDS1mRAT6YISLNQa61GOzB2PpNcN4wkJOM31wBKYPdq/PJCJn2nzcejHTnbZIicBkk6gfSmqacLaqEWqVhAw3bMCQFhOE9LggJIT4ig6FqJPaJhNidVpMTY1w+RmCtv2kZouMPYXVKK8zIjJQi3HJoVC7eOxE7qSmsQV1RhNnJtJlGVvNyC6oBMD9mv3FZJOoH3a2jTwZEadDoNb9VixmDo3kFT1yWT8ZGYNrR0SjqdUsOpQe2XBYjxXr8qE3GNtvi9FpsXx+GualxwiMjNzNhsN66Hw1GD2AzYEu9sGeIiz99BCuHh6FVxaOER0OubAWswUPTh+EQyU1GNJW5UV9wz2bRP1gSzYnprABA5EIkiTBT+P61003HNZj8ZqcDokmAJQajHhwTQ42HNYLiozcjSzLWLEuH7e/tgv7z14QHY5LGdyWNOwprIYsszM0dS9I641HZ6fi3z8fC0li9Ul/MNkk6iNZlrGzrcRiopt3+zOZLTAqZPWIPENZrVEx81/NFuvJf1dsp7sr1uVzLArZRXF1E/QGI7zVEjIHhIgOx6WMiNNB663ChcZW9iIgchImm0R9VFTdiPNtH+hjktz3A/359UeR9j/f4O3sM6JDIWr3yPs5GPPHb7HtZIXoUK5oT2F1pxXNi8kA9AYj9nD+H9mBbb7myPhg+GpYQnsxjZeqPQHnvE3qzvmaJqw/pEetsVV0KG6BySZRH2W3ldBmJAQrooyvrwJ8vNBitnBkA7mMCw0t2H/2AmoaW5Ec7i86nCsqr+s+0ezL/YguZ1eh9bNpwsBQwZG4pnHJ1n8XXtyh7qw/pMdD7+XgkfdzRYfiFtz3DJnIQWzdJGVZxmOzUzE8Jkh0SA7FWZvkaracKIdFBoZGByI+xPU7SkYG9myIfE/vR3Q5u09bk6jxye69vaOvxiX9mGzKssz9eNTJ5rb5mjM4OsgumGwS9UJ33STNsuy23SRTo6zJ5qmyOn4wk0v47qj1RGDWMGV0Sh6XHIoYnRalBiO62pUpwToaxbbiQtRXxdWNKKlpglolISvRfbd39MfoASHwUkkorTXi3IUmjkChDuqbTe2r3uzGbx8soyXqoQ2H9XjQA7tJJob5w0sloaHFfNl9Z0TO0Gq24IcT1n2as4ZFCY6mZ9QqCcvnpwGwJpYXs/338vlpnLdJ/WY7SR4Zr4O/D9cTuuKrUeNXV6XihZ+OQJAbjiyjvjFbZOwsqMJfN55Aq1lGYqivIrZpKAHfiYh6wNZNsqtVCRnWE8YV6/IxJy3a7U4YvdUqJIf742R5PU6W1yM22Fd0SOTB9p6pRp3RhDB/DUbFB4sOp8fmpcdg9V2ZnSojojlnk+zohtFxGBwVqJjZs6I8OjtVdAjkQrqqWquob8GGw3q+N9sBk02iHuhNN0l3nLmZGhVgTTbL6jCdexhIIFsJ7cyhkYq7sDMvPQZz0qKxp7Aa5XVGRAZaS2eV9nuQ61KrJIyI14kOg0gxbFVrly4mNLaY8eCaHKy+K5MJZz8x2STqAU/vJjkxJRwSJCSGsaSExPppZjz8NWpMUOhsW7VKcssLUkRKc1Rfi92nq3DdqFiEB/iIDocEuFzVmo27Vq05E5NNoh7w9G6SCyckYuGERNFhECEtNghpscrvAC3LMo6V1mFPYTXunpjIxlvUb9/ml2HDkVL8ZEQMG5v0wG8/PoAj52sRHuiD60bGig6HBPD0qjVnYYMgoh6wdZPs7nRQgrUrLbtJElFPGFstWPDPHVj+5REUVDSIDofcwLdHy/Cf/eew83SV6FAUgfM2ydOr1pyFySZRD1zcTfJSntJN0mKRUVzdCCMbT5Ag//qhAN8cKXWLv0Ffjbp93t+2kxWCoyF3sLstaZowkBc9e2I8k02P5+lVa87CZJOoh2zdJDXqjodNtE7rERvIf/L37Zj6583Yf/aC6FDIAxkaW/G/3xzHL9/dj/LaZtHh2MXU1HAAwLaTlYIjIaUrqzWisLIBKgkYk8RksyfGtv07HSutQ01ji+BoSARWrTkHk02iXrh6eDSCfK1bnZ+4egg+uH8Ctj95ldsnmgCQEGIdeXKyrE5wJOSJtpwoh9kiIzUyAAPC3GMI+9RUa2fnnQVVaDYpf7WWxNnVVjqbFhvE2ZE9FBbgg0GRAQCAvWd4EdUTsWrNOZhsEvWCJEnYuXQWvvrVFDwwbSAmpoR5zJtQapT1Q/lkeb3gSMgTfX/MOvJk1rAowZHYz9DoQIQH+KCp1YycszWiwyEFay+hTWYTk974cd8m97l6KlvVmo+XZ1atOQOTTaJe8larkB6ng5fasw6f1MhAAEw2yflMZgu2HLfua5w1zH26bKpU0kWltNy3SX23u21lc7xCRwKJYtu3yZVNzzY3LRpab+s53ZI5qR5VteYMHH1CRD1iKzc6xWSTnGz/2QswNLUi2M8bmQNCRIdjV1NTw/FZbkl7GSRRbzW1mKFWSVBJaG86RT0zLTUCaxaNx+gBwaJDIYFOVdTD0GSCr7caD84YBG8PW0xwNCabRL3w8Ps58PNW41dXpbrNvrGeSokIgCQB1Q0tqKpvRhiHYJOTfNdWQjtzSKTbla1fNTQS7903HlmJ7pVEk/P4atTY+Ph0GBpbofPjfs3eCPHXYEpbdQF5LltH4tEDgploOgD/RYl6qKnFjA2HS/Hx/nPwUrvXCW9P+GrUSAixJtgnyri6Sc5zusL69+ZOJbQ2wX4aTB4UDq23WnQopHBMNIn6Zu8Za7I5lpUBDsGVTaIeOnzeALNFRkSgD2J0njlz6easeDS2mhEZxFVNcp5//3wszlQ2ICKQf3dEl2o1W7ga0w/nLjTi7ewzaGwx4483jhAdDglgssjQqFVMNh2EySZRD+UV1QAAMhKCIUmet7IJAL+alSo6BPJQSeH+okNwmAsNLfj796dwvKwWaxaN99j3F+q9yvpmTH1hM7ISQ/DmL8Yy6eyDFpMFr20rhMZLhd9fl8YqAw/0zzsyYWw1u902DVfBdyWiHsorrgFgTTaJyDlMZovoEBzOV6PGmt1nseNUFRtwUa/sKaxGU6sZlfXNTDT7KDncH+EBPmgxWXDwnEF0OCSI1lvNY8hB+K9K1EO2ZHO0ByebsiyjvNaInQXsnEmOV2tsReZzm/DAO/tgbDWLDsdhtN7q9hEMW09WCo6GlKR95Ekyy//6SpKk9n8/ztv0PK0ecEFTNCabRD1QXmdESU0TJAkYEa8THY4wjS1mjHv+O9z+2i7UNLaIDofc3NYTFag1mlBQUe/2pW2ct0l9sbutiybna/bPuLZk0/bvSZ7jur9txzUvb8Ox0lrRobgtJptEPVBR14yUCH8MjgxEoNZzO/75+3ghLtgXAHCS5X7kIGaLjJ0FVXh7xxkA1vEg7m5qagQAYPfpajSb3HcVl+ynuqEFx0rrAPyYLFHf2P799p+94BGl+2RV3dCC42V1OKqvRVSgZzZ+dAY2CCLqgeGxOnz3mxloMfFDaFBkAEpqmnCyrJ6d28juNhzWY8W6fOgNxvbbPskpQVZiCOalxwiMzLGGRgciPMAHlfXN2H/2AialcPYfXZ5tNmBqZADCOfe4X4ZEBSJI64VaowlHztdilAdvl/EktpEnqZEBCPHXCI7GfXFlk6gXNF48ZFIjAwAAJ8vrBEdC7mbDYT0eXJPTIdEErN1aH1yTgw2H9YIiczxJkjCtvZSW+zbpyna37S8cP5AX/fpLpZIwLjkUEYE+qKhrFh0OOcnetgs2Y3jh3KG4skl0BbIsw2yR4cUuZQCA1ChrssmumWRPZouMFevyIXfxPRmABGDFunzMSYt22/b0UweHI7ugCn5uvj+V7CM9VocZQyIwra0Em/rnpdtGw1+j5ughD2Jb2RyXHCI4EvfGZJPoCgoq6nH9P3ZgXHIo3rxnrMd/EKVGBQIATpYx2ST72VNY3WlF82IyAL3BiD2F1ZiY4p7NUK4fFYcbMuI8/j2GeuanWfH4aVa86DDcRoAPT4k9SUOzCYfPW5sCcUuQY3GphugK8ooNaGwxo7HZzJNAWPdsAkBprRG1xlbB0ZC7KK/rPtHsy/2USK2S+B5DJJgsyxyH4QFyi2pgtsiI1WkRH+InOhy3xss4RFeQV3wBAJAxIFhsIC4iSOuNX89KRVywFmqeGJOdRPawE2BP76dkFosMfa2xvfMz0aUOlxgQFqBBjI5/I/b0t+9O4u3sM3h0dirunpgkOhxyoCBfL9yQEcvmWk7AZJPoCvKKawAAo+KDhcbhSpbMGSw6BHIz45JDEaPTotRg7HLfpgQgWqd1+xEPx0prcfuru6DxUmHX0llc6aQuPfXpQRwuqcW/7srCvPRo0eG4laqGFuwprGay6eZGxgfjpdtGiw7DI7CMlugyjK1mHNNbu65yZZPIcdQqCcvnp3X5PVu6tXx+mts2B7JJCvNHY4sZZbXNnGVLXTI0tSK/ba/ZaH4u2ZXtYtaewmrIcleXvYiot4Qnm6tWrUJycjK0Wi2ysrKwbdu2Hv3cjh074OXlhYyMDMcGSB7tcIkBJouMiEAfxOrcv3yvpxpbTNh7phqbj5WLDoXcyLz0GDzexap5tE6L1XdluvWcTRutt7r9hHfriQrB0ZAr2nemGhYZSArzQ1QQP5fsKSMhGBq1CuV1zThb1Sg6HHKQ8lojjpXWwmLhBQVnEJpsrl27Fo899hiWLVuG3NxcTJ06Fddccw2Kioou+3MGgwF33303Zs2a5aRIyVPZSmgzEoJZznaRI+drcfO/duLpzw+LDoXcTFOrGQAwOSUML9+WgQ/un4DtT17lEYmmjW2UBedtUld2t80GnDDQPbsyi6T1VmNUgg6AdXWT3NNnuSWY99I2PLo2T3QoHkFosvniiy9i0aJFuO+++zBs2DC89NJLSEhIwOrVqy/7c7/85S9xxx13YOLEiVd8jubmZtTW1nb4Iuqp+BA/XDU0ElMGhYsOxaUMirB2pC2paUJDs0lwNOROthy3rubdPCYBCzLiMDElzO1LZy81dbD1/WZ3YRWMbck3kdkiY2dBFTYc1gMAxiZxNqAj2CoLdjPZdFu2+Zoj4oIER+IZhCWbLS0t2L9/P+bOndvh9rlz5yI7O7vbn3vzzTdRUFCA5cuX9+h5Vq5cCZ1O1/6VkJDQr7jJs8xLj8Yb94zFzycliQ7FpYT4a9o7uBVUcF8Z2UdZrRFH9bWQJGBqqude4BkSFYiIQB8YWy3Yf/aC6HDIBWw4rMeUF77H7a/tQlF1EwDghQ3H2xNPsp9xydYV420nK/BFXgl2FlTBzHJLt2GxyNh7xvq+yvmaziEs2aysrITZbEZUVFSH26OiolBaWtrlz5w8eRJPPfUU3nvvPXh59ayR7tKlS2EwGNq/iouL+x07EQGpbfM2T5Yx2ST7+KFtj+LIOB3CPLgdvSRJ7cn21pPct+npNhzW48E1OdAbOs6YrahrxoNrcphw2ll1Qwu81RLK65rx6Id5uP21XZjywvf8d3YTJ8vrYWhqha+3GulxOtHheIRejT7paQlqUFDPl6Uv3Qcny3KXe+PMZjPuuOMOrFixAoMH93zsgo+PD3x8PPekhfquvM4Ii8XanIQ6S40KwM7TVeyYSXZjSzanD4kUHIl4CzLiEKvzxdXDOdbCk5ktMlasy+9yHJAMa6fmFevyMSct2uPKzR1hw2E9lqzN6/TvXWow4sE1OR7TqMyd7WkroR09IBjeauF9Uj1Cr5LN4ODLN0mxJYpm85X3mISHh0OtVndaxSwvL++02gkAdXV12LdvH3Jzc/HII48AACwWC2RZhpeXFzZu3IirrrqqN78O0WW9k30W/9h8CvdMSsIz1w8XHY7Lsa1sniqvExwJuQOzRcb2toY40wdHCI5GvOmDI/jvQNhTWN1pRfNiMgC9wYg9hdWYmMKGQf3BxN4z7G3bi8sSWufpVbK5efNmuz2xRqNBVlYWNm3ahBtvvLH99k2bNmHBggWd7h8UFIRDhw51uG3VqlX4/vvv8Z///AfJycl2i40I+LET7aC2pIo6GhQZCABc2SS7UKskfPPYNGw9WYGMhGDR4RC5hPK67hPNvtyPusfE3jPsa1vZtDWCIsfrVbKZlpaGiAj7XWldsmQJFi5ciDFjxmDixIl49dVXUVRUhMWLFwOw7rcsKSnBO++8A5VKhfT09A4/HxkZCa1W2+l2ov6yWGQcOFcDADzx7UZaTBCeuyEdg5mMk51E67S4ZQybuNk0NJuws6AKtcZW3JQZLzocEiAysGfbOHp6P+oeE3v3J8syVv50JPYWVmP0gGDR4XiMXiWbcXFxuP7667Fo0SLMmzev33MHb731VlRVVeHZZ5+FXq9Heno61q9fj8TERACAXq+/4sxNIkc4XdmAOqMJPl4qDIkOFB2OS9L5eWPhhETRYRC5rbziGtz3zj5EBvrgxtFxnPXrgcYlhyJGp0WpwdhleacE60UartL0HxN79ydJErcoCNCrnbFvv/02amtrMX/+fCQkJOD3v/89CgoK+hXAQw89hDNnzqC5uRn79+/HtGnT2r/31ltvYcuWLd3+7DPPPIO8vLx+PT9RV2wltCPidNxATuRgFXXNWPj6bryxvRCyzBEDNlmJIdB6q1Be14wT7PrskdQqCcvnp3X5Pdulh+Xz07iH0A5siX13/5ISgBgm9kS91quz6Ntvvx0bN25EYWEh7r//frz33nsYPHgwZs6ciffeew9GI0sLyD3kFVtnMLGE9vKKqhrx8b5ibDleLjoUUrBtJyuw7WQlPsk5x9W7i2i91Rh/0cw/8kzz0mPw55+N7HR7tE7L7qh2dHFif+m7EBN79/CvHwrwbX4ZjK1XbmRK9tOnJZuEhAQsX74cp0+fxsaNGxEXF4cHHngAMTExeOihh+wdI5HT2VY2M1jTf1nfHSvD7/5zEB/sYbk79d2W49ZEasYQljZd6sd5m5WCIyGR/DTWXU8JIb54+bYMfHD/BGx/8iommnY2Lz0Gq+/K7DTyLIqJveJV1TfjT/89hvve2YemFiabztTv+sBZs2ZhzZo17U18XnnlFXvERSTU4ukpuGdSErISQ0SH4tJS2ZGW+slskbH1pC3Z5HzNS01r21u0+3QVr8Z7sOwC68WGWcOisCAjDhNTwrjC5iDz0mOw/cmr8MH94xGktSb5f715FBNNhdt31lqxlhoZgBB/jeBoPEu/ks0zZ85g+fLlSEpKwq233orMzEy899579oqNSJjrRsbimeuHI0bnKzoUl5YaZe1Ee7aqEc0mnghT7x08V4OaxlYEar0wmmXrnaRGBiAqyAfNJgv2nbkgOhwSJLugCgAweVC44Eg8g1olYWJKOKamWi/25LRVO5Fytc/X5J5bp+tVN1oAMBqN+Pjjj/Hmm29i69atiIuLwz333INf/OIXSEpKckCIROSqIgN9EKj1Qp3RhDOVjezcS71mK6GdmhoOLzbj6kSSJEwZFIFPcs4hp+gCpqQy2fA0NY0tKKs1QiVxNqCz3TI2ARNSwjCNx53i7bXN10ziMeRsvUo2H3jgAXz00UcwGo1YsGABvv76a8ydO5cNHcitfJtfhiBfb4yM10HrrRYdjkuTJAmpkQHIKarBibI6JpvUa1tOtJXQDmYJbXcenpmCR64ahKQwP9GhkADBfhocWD4XJ8rqoPP1Fh2OR+GIDPfQ0GzC4fO1ALiyKUKvks1du3ZhxYoVWLhwIUJD+WKRe3pm3RGcu9CENYvGcxWhB1IjA5FTVMN9m9RrJrMFwb7e0Hip2vcmUmcDIwJEh0CCeatVGB6rEx0GkSLlFtXAbJERF+yLuGBuj3K2XiWbBw8ebP//lZWVOHPmDCRJQlJSEsLCwuweHJGzVdY349yFJkgSMDKBH+w9MSjSeiJ8qrxOcCSkNF5qFd6+dxyMrWZWERCRSyqqasS2UxVIDPXnBWiFOnCuBgAwNolNH0Xo9Z7NI0eO4MEHH8SOHTs63D59+nSsXr0aQ4YMsVtwRM52oK0JQEpEAIK0LFfqiXnp0RgSHcgSWuozJppXllt0Aa/8cBpRQT5YsSBddDjkJKcr6nHf2/swY0gk/qdtBiQ512e5Jfjrtydw/ahYJpsK9dCMFFyTHg2LLDoSz9SrZLO0tBTTp09HREQEXnzxRQwdOhSyLCM/Px+vvfYapk6disOHDyMykntvSJls8zVHxQcLjUNJEkL9kBDKvWTUOxaLjMr6ZkQGaa98Z0JTixkbjpQiPMAHz1w/nL0SPER2QRVOVzYgMsggOhSPNTbZuhq2r63BDCmPJEncjiBQr1r//fWvf0ViYiJyc3Px6KOP4uqrr8a8efOwZMkS5OTkICEhAX/9618dFSuRw9mSzYwBwULjIHJ3R87XYtzz3+Hmf2VDlnm5+UqykkKg9Vahsr4Zx0pZsu4pdraNPJmUwhU1UTISguGlknDeYERJTZPocIgUp1fJ5qZNm/Dkk09Cq+18JdrX1xe/+93v8M0339gtOCJnsljk9mST8/56Z+uJCvzlm+PYf5ZzAKlnthwvBwCE+Gm4StcDPl5qTBho7Y2w7WSF4GjIGSwWGTtP2+Zrsi+GKH4aLwyPs/ZwsM1qJOX4YE8RHn4vB98fKxMdisfqVbJ5+vRpZGZmdvv9MWPG4PTp0/0OikiE05UNqDOa4OOl4v7DXvoi7zz+sfkUdpyqFB0KKcQPbSNPpg9hF9qesg2Y33aSx5knOFZah+qGFvhp1BjJrR1CjU20ltLuZSmt4nx3tAxfH9KjoLxBdCgeq1fJZl1dHYKCgrr9fmBgIOrrOf6AlGlAqB8+fWgS/nLzKHhzuHyvpEZZ90Jw/An1hKGxFTlF1lXwGUO4x7+nbIPldxdWw9hqFhwNOVp2gfWiwrjkUH4mCTYmyTrub98ZVu8oicUiY2/ba8b5muL0uhttXV1dl2W0AFBbW8u9N6RYGi8VMgeEIHMAW2P3Vmrb+JOTZdxLRle27VQFLLL174Yzz3puUGQAooO0KK01Yu+Z6vaVTnJPtv2ak7lfU7gxbSMzTlXUo87YikB2q1eEk+X1MDS1wtdbjeGx3S+WkWP1KtmUZRmDBw++7Pe594bI86RGWsuOT1c2wGS2wItX4ekyfjjeVkI7mMlSb0iShJlDI3CirB68ruv+Bkb4o6DCDxNTuF9TtPAAH7x//3ikx+mYaCrInray58zEYFYHCNSrZHPz5s2OioNIKGOrGX/4Oh+j4oNxU2Y81CpeNOmNuBBfaL1VMLZaUHyhCcnh/qJDIhcly3L7fk2W0Pbe8zeO4EVdD7HsJ2lY9pM0Voy5CHYEVh5bQ6exSSyhFalXyeb06dMdFQeRUEfO12LNriJsCCjFz7LiRYejOGqVhJSIABw5X4uTZXVMNqlbZouMZT8Zhm0nK9vn11HPMdH0PHzNiXpPluX2hk7jmGwK1as1ZZVKBbVafdkvL69ebwMlEq59vmZCMD/Y+6h93yabBNFleKlVWJARh7/cPAo+XmrR4ShWdUMLvjpwHl/klWBnQRXMFq5+uZNT5XUwmS2iw6CLGFvNeGHDMdz26k426FKA+mYTIoO00HqrMJq9OITqVWb42Wefdfu97Oxs/P3vf2e5BynSxckm9c1jswdjyZwhiAthwxciR3rqk4P4cG9xh9tidFosn5+GeekxgqIiezG2mnHt37bDR63CpiXTEa3ruikjOZePlwof7zuHyvpmHCoxsDTTxQVqvfHFw5NhbDVD680LmyL1KtlcsGBBp9uOHTuGpUuXYt26dbjzzjvx3HPP2S04Imc50J5s8upXXyWxdJauoNbYijW7zmLG4EiksTNgn2w4rO+UaAJAqcGIB9fkYPVdmUw4FS7n7AW0mCwI9vVGVJCP6HCojSRJGJsUgv8eLsXeM9VMNhWCiaZ4fW7NdP78edx///0YOXIkTCYT8vLy8Pbbb2PAgAH2jI/I4arqm1FU3QgAGBGvExwNkfvKPlWJP284jkfezxEdiiKZLTJWrMvv8nu2mqIV6/JZUqtw2baRJ4PCua3DxXDepnKw1Nl19DrZNBgMePLJJzFo0CAcOXIE3333HdatW4f09HRHxEfkcAfO1QAAUiL8ofNlS/P++NcPBfjVB7k4X9MkOhRyQVtsI0+GcORJX+wprIbeYOz2+zIAvcGIPW0dGEmZdhRUAgBHnrigsW3zNvedqYaFF3VcVlV9M9KXf4MF/9yBFhP3PovWq2Tzz3/+MwYOHIivvvoKH3zwAbKzszF16lRHxUbkFKfaGtqwhLb/Ps8twboD53GstFZ0KORiLh55wvmafVNe132i2Zf7keupM7bi4DkDAGASk02XkxYTBD+NGrVGE5vhubC9Zy7AZJHR1GKCxovzNUXr1Z7Np556Cr6+vhg0aBDefvttvP32213e79NPP7VLcETO8MC0FNyUGY9mXv3qt9SoQBwrrcPJsnpcNTRKdDjkQk6U1UNvMMLHS4UJA3kS3ReRgT1rFNPT+5Hr2VNYDbNFRmKYH+JD/ESHQ5fwUqswekAwdpyqwp4z1RgSHSg6JOqCbeQJ99W6hl4lm3fffTf3D5BbCg9gEwZ74PgT6s4PJ8oBWEsD2bChb8YlhyJGp0WpwYiuCvgkANE6LcYl8wRLqWz7Nbmq6brGJIbiqL4OzdwT6LLa52vyvdAl9CrZfOuttxwUBhG5g0FMNqkb7fs1WULbZ2qVhOXz0/DgmhxIQIeE03YZePn8NKhVvCisVDeOjoPO1xtjErmtw1U9OCMFj81O5eKLi2poNuHIeetWHq5sugYWMpNH++8hPRa+vhtr9xaJDsUt2FY2T5XVceYutWsxWdo//GcMiRQcjbLNS4/B6rsyO81ejNZpOfbEDaTH6fDrWamYNChcdCjUDa23mommC8spugCzRUZcsC9igzn32xX0amWTyN3sPF2FbScrkRrJfRf2kBjmDy+VhIYWM/QGI9/oCQCg8VJhz7JZyC2qQVIY96H117z0GMxJi8aewmqU1xkRGWgtneWKJpHzyLKMZpOF2wJczN5CltC6Gq5skkfLK64BAGQMCBYah7vQeKmQFG5NOIvbZpcSAYCPlxoTBoZxRcBO1CoJE1PCMCklHMdLa/FW9hnRIVE/fZFXgvWH9DA0tYoOha7gk/3nMGHld/jj10dFh0KXSI/T4ScjYzBzKKtoXAVXNsljGVvNOKq3lvaNTggWG4wbee++8Qj118BbzWtZRI52vLQOz6zLR3iABvdMSuLqpoK99O1JFFY24LW7x2BOGrt5uzJ/HzXKapvbG9GQ65g7PBpzh0eLDoMuwrNB8lj5+lq0mmWE+WsQH8JyT3uJCtIy0aR2p8rrMev/tuCFDcdEh+KWxg8MRaDWC5X1LcgrviA6HOqj8zVNKKxsgEpi+Z8SZCVaX6PjZXUwNHIlmuhyeEZIHiuvqAYAkJEQzNI+IgfZcrwcBRUNOFxiEB2KW/JWq3BVW7nYxiNlgqOhvtrZNvJkRHwwdL7egqOhK4kI9EFyuD9k2dqQhlzDUX0tTpXXs0Ghi2GySR7Ltl9zFEto7epCQwseX5uLa17eii9yS7CzoApmC9/4PdUPJzjyxNFsJZeb8plsKtWOgkoAnK+pJLbxNCyldR1/+eY4Zr/4A97mHnaXwj2b5LF8vFQI9PFCBpNNu9p+qgKf5Z4HADy6Ng8AEKPTYvn8NI5l8DBNLWbsbusMOGMIk01HmT44At5qCacrG3CqvL593i0pgyzL7Subk1M48kQpxiaF4uP957DvDFc2XYHFImPfWetrMXoA59S6Eq5sksf635tH4cDyuZjMeWZ2s+GwHr/+IK/T7aUGIx5ck4MNh/XOD4qE2Xm6Ei0mC+KCfZESwQTIUQK13pjYlqRwdVN5zlQ1Qm8wQqNWISuRJ8lKMSbJ+lrlnatBs8ksOBo6UV4HQ1Mr/DRqDI8NEh0OXYTJJnk0lUpi90Y7MVtkrFiXj64KZm23rViXz5JaD7LluLWEdsaQCO6LdrA5aVHwVkuobmgWHQr1Um7bnr/MxGD4ajizUSmSw/0xNTUcCyckwthiER2ORzNbZHy0txgAMDDcn583LoZltOSRWkwWaLx4rcWe9hRWQ28wdvt9GYDeYMSewmpM5L4kj8D9ms5z0+g43JARi0Atm8sozU2Z8RiXHIraJpPoUKgXJEnCu4vGiw7D4204rMeKdfnt5x+Hz9diygvfc+uOC+HZNnmk+9/Zh2l/3oytbSfD1H/ldd0nmn25HymbsdWMiQPDkBDqi0ksVXc4fx8vJpoKFh/ihzSW/hH1yobDejy4JqfThW5u3XEtXNkkjyPLMg6cq0FNYyuC/XhyZi+RgVq73o+UTeutxp9+OlJ0GB7J0NgKHd/biJyiscWEvOIaTEgOg4rbcpzmSlt3JFi37sxJi+Z2KcG4skke50xVI2oaW6HxUmFoNK8k28u45FDE6LTo7i1dgrUrLQeWEzlGTWML5v99O8Y9/y0amlmSqQTv7y7Corf24psjpaJDoT4wW2SMf/473PHabhRU1IsOx6P0ZusOiSU82Vy1ahWSk5Oh1WqRlZWFbdu2dXvf7du3Y/LkyQgLC4Ovry+GDh2Kv/71r06MltxBXrG1GUN6bBD3bdqRWiVh+fw0AOiUcNr+e/n8NF5h9ADGVjNyiy6wGZST6Xy9UdPUgmaTBdtOcouAEnx3tAzfHSvH2aoG0aFQH6hVEkbE6QAAezhv06m4dUc5hJ5pr127Fo899hiWLVuG3NxcTJ06Fddccw2Kioq6vL+/vz8eeeQRbN26FUePHsXTTz+Np59+Gq+++qqTIyclyyuqAQBkJLDFvL3NS4/B6rsyEa3rWCobrdNi9V2Z3KzvIXYXVuPGVdm47u/bRYfiUSRJwty0aADARo5AcXkms6V9Du0kztdUrDFJ1modztt0Lm7dUQ6hezZffPFFLFq0CPfddx8A4KWXXsI333yD1atXY+XKlZ3uP3r0aIwePbr9v5OSkvDpp59i27ZteOCBB7p8jubmZjQ3/9gKvra21s6/BSlN3jkDACBjQLDYQNzUvPQYzEmLxp7CapTXGREe4IMJA8O4oulBthwvBwCMitcJjsTzzEmLwuvbC/H9sXKYzBZ4qVm94aoOlhhQ32yCztcbaTHc0qFUY9vmbe7lyqZT2bbudFdKK8F6oZtbd8QT9inU0tKC/fv3Y+7cuR1unzt3LrKzs3v0GLm5ucjOzsb06dO7vc/KlSuh0+navxISEvoVNymX2SJj64lyHG5LNkfG8UTYUdQqCZmJwXhvdxEeeGcfGlq4f8wTmC0ydhZU4euD1g6A01K5WuNsYxJDEOznjZrGVuw7y5UWV5Z9qhIAMHEgG8so2egBIVBJwLkLTdAbmkSH4zEu3rpzKW7dcS3Cks3KykqYzWZERUV1uD0qKgqlpZffKB8fHw8fHx+MGTMGDz/8cPvKaFeWLl0Kg8HQ/lVcXGyX+ElZNhzWY8oL3+PuN/bCLFv3kd322i62xXYgHy819IYmNLSYcbDYIDoccjDbMXb7a7tQXmetJlnxVT6PMSfzUqtw1dBIAMDGIyyldWXZBVUAgMmDOHdYyQJ8vNrH1rCU1rmuHh6NkC46b3PrjmsRXl8jSR2vOMiy3Om2S23btg379u3Dv/71L7z00kv44IMPur2vj48PgoKCOnyRZ+luDlMZ5zA5nG1frK0pE7mn7o6x8tpmHmMCzE2zXsTddLQUsswmTa7I2GpuX3meyP2aijcm0bZvk6W0zpSvr8WFxlb4eEl4+96xePm2DHxw/wRsf/IqJpouRNiezfDwcKjV6k6rmOXl5Z1WOy+VnJwMABgxYgTKysrwzDPP4Pbbb3dYrKRcnMMkVkZCMNYdOI88rmy6LR5jrmfa4AhcPyoWs4ZFwiIDav6zu5yqhhZkDghGSU0TUiL8RYdD/TR/VCySwvwweRAvHDjTt/nW/gDTBkdi+uBIwdFQd4QlmxqNBllZWdi0aRNuvPHG9ts3bdqEBQsW9PhxZFnu0ACI6GK9mcM0MYWlTPaWkWDdF5tXXNOjqgVSHh5jrsdP44W/3T76ynckYeKCffHhAxNhtvB90R1kJYYgK5Ed7p3t26PWrQJzhl1+kYrEEtqNdsmSJVi4cCHGjBmDiRMn4tVXX0VRUREWL14MwLrfsqSkBO+88w4A4J///CcGDBiAoUOHArDO3fzLX/6CX/3qV8J+B3JtnMMk1vBYHbxUEirrm1FS04T4ED/RIZGd8Rgj6juu9hP1TanBiEMlBkgSMHMoVzVdmdBk89Zbb0VVVRWeffZZ6PV6pKenY/369UhMTAQA6PX6DjM3LRYLli5disLCQnh5eSElJQV/+tOf8Mtf/lLUr0AujnOYxNJ6qzEsJgiHSgw4UGxgsumGeIy5rpNlddiYX4afZcUjKoj//q7C2GpGQ7MJYQE+okMhO9IbmrDtRCWCfL0xLz1adDhu70xVA8IDfDAg1BcRgTyWXJkke1j3gNraWuh0OhgMBjYL8gBmi4wpL3yPUoOxyz1ltjlM25+8ileYHeR/vzmGo/o6/GJyEqamRogOh+yMx5jrumnVDuQU1eC5G9KxcEKi6HCozffHynDvW/swJy0Kr909RnQ4ZCcf7inCU58ewvjkUKz95UTR4XgEi0VGVUMLk01BeppTCe9GS+RInMMk3u+uHoo37hnLRNNN2Y6x7hJNgMeYKHPSrKsrm/I5AsWV7DhlHXkSHqARHAnZ05gka0favOIatJgsgqPxDCqVxERTAZhsktublx6D31/XOeHkHCYi+5iXHoPbxiV0up3HmFhz2kag7CyoRJ2xVXA0ZGObr8mRJ+4lJcIfIX7eaDZZcPg8O7A7Uq2xFRaLRxVmKprQPZtEzjYiLgj3TR2IyEAtxiWHcrXFicpqjdB6qaHrYgAzKV9lnbUr+K1jEzApJYzHmAsYFBmAgeH+OF3ZgB9OVOC6kbGiQ/J41Q0tOKqvBQBMHMjuzO5EkiSMSQrFpvwy7DtTjcwB7E7rKM+ty8fm4xX4n/lpuH4U39dcHVc2ySNsP1UJALhuZCwWZMRhYkoYT4Kd6JH3czD++e/w1aHzokMhBzC2mttLA++emMhjzIXMGW5d3WQprWvY2baqOSQqkOV/bmhcWyntnsILgiNxX2aLjO+PlaOyvpml6ArBZJM8wm/nDsGT84a2l5WRcyWFWYeW5xXViA2EHGLvmWo0tZoRGeiDtBg2XnMlc9ve8zYfK0ermfvIRMsusF74nDSIq5ruaEySdTVz/9lqlnk6SF7xBVQ1tCBQ64Wxbck9uTaW0ZJHSIsNQlosT4JFGZUQDMDaOIHcz5bjFQCAGUMiOKDexWQkhCA8QIPGFjMKKuoxNJrvgyLZ9mtO4n5NtzQ8VgettwoXGltRVN2IpHB/0SG5nU355QCAmUMi4a3mmpkSMNkkIocblaADAJyqqEedsRWBWu7bdCebj//44U+uRa2S8N59E5AY5gett1p0OB5NlmU8PHMQsk9VYlwyV2TckcZLhTWLxiMlIgAh/izxdITvjlq3BMxmpZpi8JIAub2/fXcSX+SVoL7ZJDoUjxUZqEVcsC9kGTh0jl363EmtsRVmiwwvlYTJqVytcUVDogOZaLoASZLws6x4vHhrBnS+vODmrsYkhTLRdJAzlQ04WV4PL5WE6YM5Tk0puLJJbs3Q1IqXvj0BiwzseOoqBPjwT16UjIRglNQ0Ibe4BpMGMSlxF0Fab/zwu5nQG5oQxBVrl2cyW+DF0jOnMltk7CmsRnmdkV2aifrh27ZVzfEDQ3nBRkF45k1ubdfpKlhkYGC4P+KCfUWH49EyEoLx9SE9DnDfpluK0fH4cmWf5Z7D3787hfmjYvH4nMGiw/EYGw7rsWJdPvQGY/tt0UFaPHN9GufPuilZlvHydyex63QVXr5tNKKCtKJDchuTUsLxy+kD2YhOYXh5k9za9pPWzn+TuZIm3KRBYbhnUhJuHpMgOhSyE5PZwg6nCmEyyzhd2cARKE604bAeD67J6ZBoAtaZww+uycGGw3pBkZEjSZKETfll2HW6GvvOcASKPaXFBmHpNcOwICNOdCjUC0w2ya3Z5mtO4V4y4YbH6vDM9cM5fsaNZBdUYfSzm/D054dEh0JXMGtYFFQSkK+vxbkLjaLDcXtmi4wV6/LR1fAL220r1uXDzPEYbsk2kmPvmWrBkRCJx2ST3Na5C40orGyAWiVhYgpnmhHZ25bjFahvNsFk5gmzqwv112BMovUE+FuubjrcnsLqTiuaF5MB6A1G7ClkMuKObPM2mWzaz9q9Rdh8vBzGVrPoUKiXmGyS29rRtqo5Kl7HxiUuoqnFjN2nq7DrdJXoUMgOtrSNPJkxhF0BlcBWVbCRyabDldd1n2j25X6kLLYLO0f1tagztgqORvlaTBb84auj+MWbe5GvrxUdDvUSk01yW6fK6wEAU1J5Iuwq1h08j1tf3YW/bjohOhTqp7NVDThd2WAdecI90YpgSzZ3F1bD0MgTYEeKDOxZU5ie3o+UJVqnRUKoLywykFtUIzocxdtTWI26ZhPCAzTIiA8WHQ71EpNNclvLfpKG3f9vFu6aMEB0KNRmdEIwAOBQiYF7lRRuy/EKANZysUBWDihCUrg/UiMDYLbI2Ny2Kk2OMS45FDE6LbobcCIBiNFZx6CQexrbtrq5j6W0/WYbeTJraBRUHBukOEw2ya1FBWl55diFDIwIQICPFxpbzDhRVic6HOqHH0toIwVHQr1x85h43DomAQMj/EWH4tbUKgnL56d12SDIdqq8fH4a5226sTFJoQjSesEs88Jqf8iy/GOyOYyfN0rEOZvklmRZhiTxQ9zVqFUSRsbrkF1QhQPFNRjGWVmKZGw1Y2fbvlvu11SWB6aliA7BY8xLj8G/7srEM18eQWltc/vt0Totls/nnE1397OseNw2NoErcf10vKwO5y40wcdLxckCCsVkk9zSA+/uh7HVjCeuHooR8TrR4dBFMhKCkV1QhbziGtw2jiXOStRituDhGYNwsMSAIVGBosMhclnz0mMwJy0aewqrUV5nRGSgtXSWK5ruT+OlgtkiY2dBFV/7frB1z54yKBx+GqYtSsRXjdyOsdWMrScq0Gyy4H+uY6W4qxnVtm8zr7hGaBzUd0Fab/xqVqroMKiPLBYZB87VoKKuGXOHR4sOx23tP1uN0QkhHL/loTYc1mPFuvwOI3BiuKrda4dLrN1nZ3NGt2Ix2SS3s//sBTSbLIgK8sGgyADR4dAlbE2CTpTVoaHZBH8fvg0ROdO2U5X4+Rt7EBXkg9nD2HDDEY7qa/HT1TsxKDIAX/96Cny81KJDIifacFiPB9fkdNqzW2ow4sE1OVh9VyYTzh5afVcmTpXXs/+GgnHZh9zOtpPW+ZqTB4Vz36YLigzS4vkbR+A/D06CjxffgpSm1GDEVwfPc3SGgk0YGAp/jRpltc04WGIQHY5bemvHGQDAkKhAJpoexmyRsWJdfpfNoWy3rViXz47sPSRJElKjAqHzY9dzpeKZHrmdHaesyeZUbiR3WXeMH4DMASHwUvMtSGm+OVKKR97PxYPv7RcdCvWRj5ca09saO23KLxUcjfupqm/GZ3klAIB7pySJDYacbk9hdYfS2UvJAPQGI/YUciTKlViYkLsFnumRW7nQ0ILD561X6ienMNkksjfbfMbpg9mFVsnmpln3am5qa75B9vPBniK0mCwYGa9D5oAQ0eGQk5XXdZ9o9uV+nqqpxYzxK7/Dw+/noL7ZJDoc6gcmm+RWdhRUQpatpUuRQazvd1WNLSZ8tK8YK9cfFR0K9YKx1YydBbaRJ5x3pmQzh0RCrZJwoqweZ6saRIfjNlrNFry76ywA4BeTk7iVwwP1dG8h9yBe3vZTlaioa0ZeUQ38NSxFVzImm+RWgrTemJoajtlpPBF2ZbIMPPXJQbyy9TRKL1NuRK5l5+kqNJssiNFpMTiKzbeUTOfnjfHJoQC4umlP6w/pUVbbjIhAH/xkRKzocEiAccmhiNFp0d1lBgnWrrTj2o4/6tp3R63vS7OHRfKijcIx2SS3Mm1wBN5dNB6/u3qo6FDoMvx9vDC4bT4jR6Aoxw/HKwBYVzX54a98c9pGCaw/qMcXeSXYWVDFpiX9ZGtQd9f4RGjYAM0jqVUSls9PA4BuE87l89M4b/MyLBYZ3x61btngyBPl4zshEQmRwXmbirOlbb/mjCHcr+kO/DReCPPXIKe4Bo9+mIfbX9uFKS98jw2H9aJDU6z//dlIfPjABNw1YYDoUEigeekxWH1XJqJ1HUtlwwM0HHvSAwfO1aCyvhkBPl4Yn8wZtUrHAXfkNk5X1MPfxwtR3KupCBkJwfhwbzEOMNlUhOLqRpypaoS3WsLkQWy+pXQbDuvx1CcHOQfQziRJwoSBPDkma8I5Jy0aewqrUV5nRGSgtXSWK5pX9m1bCe30IRGsEHADTDbJbfx5w3FsOFKK5xYMx8KJSaLDoSvIGBAMADh4rgZmi8wPYBeXEOqH7KeuwpHztQjw4UeHkl1pDqAE6xzAOWnRPC57yNDUCrVK4rFBHahVEiam8OJDb33XVkI7ZxhLaN0BLxeQWzBbZGQXWPfKpMfpBEdDPZEaGQg/jRoNLWacKq8XHQ71QGywb/s+P1IuzgG0v1e3FmDi899hTVsnWqKuHDpnwJP/OYitJypEh+KyzBYZ146IQUZCMLdsuAkmm+QWDpUYUGs0IVDrhZHxwaLDoR5QqySMaLswcKy0VnA0RJ6DcwDty9hqxvu7i1DXbEJ4gEZ0OOTCPsstwdp9xbwocRlqlYRfz0rF5w9PRrAfjyd3wGST3ML2k9arhJNSwlj2pSDP3zQC+5+ejQUZcaJDocvYdrICP39jDz7LPSc6FLIDzgG0r89zS3ChsRVxwb6YkxYtOhxyYbePSwAAfHesHOW1vJhDnoHJJrkFW7v5KaksuVCSlIgAhAX4iA6DrmBTfhl+OFGBvWcuiA6F7IBzAO1HlmW8ueMMAODnkxJ5sZMuKzUqEFmJITBbZHy8nxfvLlVnbMXXB/WoM7aKDoXsiMkmKV5jiwk5RdaT4KnskklkV7IsY4ttvuZgXsxxB1eaAyiDcwB7amdBFY6X1cFPo8atYzjuhK7strHW1c21e4th4VzbDrYcr8DD7+fg5n/tFB0K2RGTTVK83YXVaDXLiAv2RWKYn+hwqJf+ve00Fr6+u/2CAbmWwsoGFFVbR55M4sUct9HdHEAbnS/3SvXEGzsKAQA/zYyHzs9bcDSkBD8ZGYNAHy8UVTdi5+kq0eG4lItHnpD7YI9uUrzRCcF4+bYMtJgskCReiVeaPYXV2HayEtNSI5A5IER0OHQJ26rmuORQjnVwM13NAfzyQAk+ySnB2aoGjmy4gsr65vbj457JSWKDIcXw03jh+oxYvLe7CB/uLebc4jatZgs2H+PIE3fEMwdSvGA/DRvMKFjGgGBszC9DXnGN6FCoC5uPWz/8ZwyOFBwJOcKlcwDTYoPwy2kpSAr3FxiVMoQH+GDzb2dg28lKpEQEiA6HFOT2cQOw+Vg5hsUEig7FZew7cwG1RhNC/TUYzQvPboXJJhEJlZEQDABMNl1QU4sZu9tmLXLemWfQ+XpD58ty0J5KCPXDHeO5V5N6Jz1Oh21PXsV90RexldBeNTSS/y5uhns2SdF2nKrEPzefwomyOtGhUB+NiNNBkoCSmibO9XMxlfXNGJsUguRwfwyK5MqNp9l/9gKWfXYIsswmJpcytppFh0AKx4TqR7Istyebs1lC63aEJ5urVq1CcnIytFotsrKysG3btm7v++mnn2LOnDmIiIhAUFAQJk6ciG+++caJ0ZKr+TSnBP/7zXF8ksMW4koVqPVGalsic6DYIDgaulhCqB/eu28CNj0+jfuhPYyhsRULX9+N93YX4ZOcEtHhuBSzRca1L2/DfW/vw/maJtHhkIK1mi3YcFiPo/pa0aEIdbaqEWerGqFRqzA1lXtY3Y3QZHPt2rV47LHHsGzZMuTm5mLq1Km45pprUFRU1OX9t27dijlz5mD9+vXYv38/Zs6cifnz5yM3N9fJkZMrkGUZ209ZmzNMHcQSPyX7sZSWHWldkZda+HVJcjKdnzd+dVUqAOCPX+ejuqFFcESuY/OxcpyubMCewioEswMt9cMfvsrH4jU5+Pe2QtGhCJUU7o/tT87EP+4YDX82onM7Qs8gXnzxRSxatAj33Xcfhg0bhpdeegkJCQlYvXp1l/d/6aWX8MQTT2Ds2LFITU3F888/j9TUVKxbt87JkZMrKKioR1ltM3y8VBiTxM3kSpaREIJAHy+YOHPMZRgaW1FR1yw6DBLovqnJGBIViAuNrVi5/qjocFzGm9nWxOC2cQPgp+GJMfXd9RmxAICvD51HrbFVcDRixYf4Ye7waNFhkAMISzZbWlqwf/9+zJ07t8Ptc+fORXZ2do8ew2KxoK6uDqGhod3ep7m5GbW1tR2+yD1sO1kJABibFAqtt1pwNNQfP8uKx4Hlc7H0mmGiQ6E2/8k5h7F//Ba///yw6FBIEG+1Cs/fNAIA8PH+c9hZwJmAx0vrsONUFVQScPfERNHhkMJlDghBamQAjK0WfJF3XnQ4RA4hLNmsrKyE2WxGVFTHjcBRUVEoLS3t0WP83//9HxoaGnDLLbd0e5+VK1dCp9O1fyUkJPQrbnId29uSzSms71c8jZcKKjZLcClb2kaeJIb5CY6ERMpKDMGdbd1Wl31+CM0mz26M8+YO66rm1cOjER/CY4P6R5Ik3DbOenx9uKfrLWTuymyRsbOgCr///DBu+Od2/PeQXnRI5CDCN+Jc2nRCluUeNaL44IMP8Mwzz2Dt2rWIjOx+/tvSpUthMBjav4qLi/sdM4nXarZg12nrVfYpHIjsVswspRWuscWE3adtI084X9PTPTFvKMIDfHC6ogFf5Hru6kt1Qws+y7U2S/rF5GTB0ZC7uHF0HDRqFY6cr8Whc57RJG/DYT2mvPA9bn9tF97ddRZ5xQb87j8HseEwE053JCzZDA8Ph1qt7rSKWV5e3mm181Jr167FokWL8NFHH2H27NmXva+Pjw+CgoI6fJHynalsgAwg1F+DtBi+pu7g89wSTPvzZjzz5RHRoXi8nQVVaDFbEB/ii5QIf9HhkGA6X2/88cZ0/O/PRuLmMfGiwxHmo33FaDZZkB4XhLHsE0B2EuqvwdXp1r2KH+51/9XNDYf1eHBNDvSGjqPO6ptNeHBNDhNONyRsZ7tGo0FWVhY2bdqEG2+8sf32TZs2YcGCBd3+3AcffIB7770XH3zwAX7yk584I1RyQalRgcj7n7koqm5g+aWb8FarUFTdiFx2pBVuc1sJ7YwhERx5QgCsZaOebuGERPhr1IjR+fK4ILu6fWwC1h04j7NVjT2u8FMis0XGinX5uFz90op1+ZiTFs05pG5EaBu1JUuWYOHChRgzZgwmTpyIV199FUVFRVi8eDEAawlsSUkJ3nnnHQDWRPPuu+/Gyy+/jAkTJrSvivr6+kKn0wn7PUgMjZcKgyIDRYdBdpIxIBgAcExfB2OrmU2fBJFlGVuOW0cKzWQJLXWhztiKU+X1GD3As1b3/H28sHBikugwyA1NGBiGDY9NxdBo967U2lNY3WlF82IyAL3BiD2F1ZiYEua8wMihhO7ZvPXWW/HSSy/h2WefRUZGBrZu3Yr169cjMdHa4U2v13eYufnKK6/AZDLh4YcfRkxMTPvXo48+KupXIAFkmXv63FGsTovwAB+YLDKOnPeMfSuuqKCiAecuNEGjVvHDnjopqKjHnBe34t639nrU7E1+7pAjqVSS2yeaAFBe132i2Zf7kTIIHxD10EMP4aGHHurye2+99VaH/96yZYvjAyKXtym/DH/acAw/zYzHwzMHiQ6H7ESSJGQkBOPbo2XILapBVmL3I43IcSKDfPDiLaOgNxg5Q5A6GRDqB52vN46XGbFy/VH8782jRIfkMGaLjD2F1dh7phof7yvGr2el4uYx7GhPjmVoakWr2YLwAB/RodhdZKDWrvcjZRDejZaot3acqsTpigboDU2iQyE7G91WSptXXCM0Dk8WpPXGTbyQQ924dPamrSu4u7m4W+aLm06g+EIT/ueLw2xeQg711o5CjPvjt1i1uUB0KA4xLjkUMTotutuNKQGI0WkxLpkXm90Jk01SnG2n2uZrDooQHAnZ26j4YABMNolcWYfZm5+53+zN7rplNrVa2C2THCoxzB/NJgs+zT0HY6t7HVeyLKOirhnL56cBQKeE0/bfy+ensTmQm2GySYpyvqYJpysaoJLA/WRuaGSCDsNjgzBtcARMZovocDzO/rPV+NcPBThVXi86FHJxttmbBRUNeOWH06LDsZuedsvkPGByhGmDIxCr06KmsRUb88tEh2M3sizjT/89hnkvb8WAUH+svisT0bqOpbLROi1W35WJeekxgqIkR+GGHFKU7Setq5oj44Oh8/UWHA3ZW5DWG1//eqroMDyObW/aP74/iR0FVSiubsQfbxwhOixyYTpfbyyfn4ZffZCLf2w+hetGxmBgRIDosPqN3TJJJLVKws1jEvDydyfx4Z4iXD8qVnRI/SbLMv749VH8e3shAGvl0h3jB2BOWjT2FFajvM6IyEBr6SxXNN0Tk01SlO1tJbRTU8MFR0LkHjYc1mPFuvwOJ9jrD+kxNTWcV5jpsq4bGYP/7D8Hna83/DRe2FlQpfgTR3bLJNFuHhOPv31/EtkFVThb1YDEMH/RIfWZLMt49qt8vLnjDADguQXDcUdbCb5aJfGCjYdgskmKYbHI2NG+X5PJpjtrNplRXN2EQZHKXylxZba9aZcWBNY0tuLBNTksaaLLkiQJr96dhc3HynHjqh0dLljE6LRYPj9NcX8/7JZJosWH+GFaagR+OFGBD/cW48l5Q0WH1CeyLGP5l0fwzs6zAIDnbxzRnmiSZ+GeTVKMxlYz5g6PwuCoAI8bJu5JTpXXY8Tyjbhp1Q5YuC/KYS63N812G/em0ZVsPlbeZTOdUoOx1810zBYZOwuq8EVeCXYWVDntb0+WZXyWew5r9xaxWya5hNvHWUfsfJ5bosjPQYtFxtOfH8Y7O89CkoAXfspE05NxZZMUI8DHCytvGik6DHKwxDA/SBJQazShsKoBKW6wD8wVcW8a9deVLlhIsF6wmJMWfcWS2q7KuZ2xOnq8tA6//+Iw9hRWw1+jxowhkVg+Pw0PrsmBBHT43dgtk5xl1rAoLLt2GBZkxEKlwL+1FrMFJ8vrIUnAn386kvNpPRxXNsnlibraTWJ4q1VIj9MBAA5wBIrDcG8a9VdPL1j88ev8y/4ddTdqpC+roz1V32zCH7/Ox7V/24Y9hdXw9Vbj4asGIcRPg3npMeyWSUJ5q1W4f9pARAYps1xb663Gm/eMxes/H8NEk7iySa5N1NVuEmtUfDD2n72AvOIa3JQZLzoct8S9adRfPb0Q8caOM7hhdFz739In+8/hiwPnkRjqh4RQX6zeUmCX1dGekGUZXx3U4w9f56OsthkAcPXwKPzP/OGIC/Ztv9+89Bh2yySXIcsyJMm1//bMFhnfHS3D3OHRAAB/Hy9cNTRKcFTkCphsksvqrnmJ7Wo3rzC7r4wBwcAOrmw6iizLCA/QIEanRanB2OWJvgTrSg73plF3enohInNASIeOmgfP1WDriYoe/Wxfyrlto3y6ShKLqhvx2No8mC0yEsP88Mz1wzFzSGSXj8NumSRadkEl/rn5FMYnh+HXs1JFh9Mts0XG7z4+gE9zS/CbOYPxKxeOlZyPySa5JHvuBSLlGZ0QDADI19fC2GqG1lstNiA30tBswlOfHsK3+WX43dVD8NxX+dybRn1ia6ZzpQsWHy+e2OHv6LZxAzA8VoczVQ3ILqhCXg8uKj35yUFMSQ1HWkwQ0mKDMDQ6EH6azqcwXVXDRAdp8cz11mqYxDB/PDQjBV4qFX45fSDfW8illdc2Y8epKhRWNODhmYP69X58uYsw/XmczAHBeOKTg/gi7zzUKskt5u2SfTHZdCP2eiNxBWxe4tniQ3wR6q9BdUML8vW1yGT3Ybs4VV6HxWtycKq8Hl4qCTpfb6y+K7PzyTlL1akH1CqpT810hsUEYVhMEABgZ0EVbn9t1xWfq6i6Ee/vLvrx8SUgOdwfnz00GTpfbwDAl3klePTDvM7VMLVGLF6Tg3+1VcP8Zu6QXv6mRGLMS4+G7ktvnDcYse1kBWZ0swp/JfbaktTV42i9VTC2WuClkvCPO0bzc4M6YbLpJtxtbyObl3g2SZKwaEoyvFQSohXaIMHVfHngPJ765CAaW8yICvLBP+/IxJgka4ks96ZRX9ma6fT1gkVPVkfDA33w+58Mw7HSOhw5X4t8fS0q6ppR09iKIK31NMZskfG7/xzs8jFsWA1DSqP1VuPG0XF4K/sMPtxT3Kdk015bkrp7HGOrBQBw39RkRZ5vkuMx2XQD7ri3kc1L6OGZg0SH4BZaTBY8v/4o3so+AwCYODAMf7t9NCICfdrvw71p1B/9aabTk9XR5xYMx7z0GFx/0ffK64zQ1xjbm6bsKaxGs8ly2ediNQwp0e3jBuCt7DPYlF+KDYf1aDZZenyM9XdLktkiw9hqRkOzCb//4shlL+Z8kXcev7t6KC/mUCdMNl1EX0tg3XVv47jk0PbSjK6weQlRz6zdW9SeaD40IwVL5gyGl5pTr8i++nPBoi+ro5GB2g4XG1kNQ+5qSHQgksP9UFjZiMVrctpv70n1Wm+3JO04VYklH+XB2GpBU6sZLVe4gHMxXsyh7jDZdAF9LYE1NLbiy4Pn3XJvo1olYeVNI/H42rxO32PzEs9RWNGAT3KKER/ih8Qwf5Z39sHt4wZg+6lK3JyVgNlpbENPrqm/o0ZYDUPuasNhPQorGzvdbqtee3ZBOlIi/HHuQhPOXWjEuQtNuGP8AIxJCu31RRiLLLePBOoLXsyhrjDZFOxKJbB/uWUUBkUE4ExVA3y81JiXbp1f1Gq2IOsPm2CyXK6o4UfH9LWYMDDU5ec0Xdx59MbRcfD1VrF5iYfacFiPh9/Phfmiv/G+7kN2p+ZZV2KxyPh4fzFuGB0HHy81vNQqvLJwjOiwiK6oP6ujPe2My2oYUhJb9VpXbH/nv//icKfvjYjXYUxSaK8vwmQkBOOrX02B1lsNX40avt7Wr9yiC7jj37t7/DhEF2OyKdCVSmAB4DcfHWi/bfSA4PZk01utQnyIL2oaW1HT1HrF51rxVT7ezD6Dq4ZG4qqhkRg/MBQ+Xl23fBd1Yn6hoQW3v7YL142MwSNXWWc0cbC2Z7LnPmR3a551sUuP1cFRAfjdfw7i+2PlOHK+Fs8uSBcdIpFT9LUzLpEru1IZrE2MTovUqEDEh/giPsQXY9uav/X2Ikyg1hvpcbpO9xs/MIwXc6jPmGwK1NM3EZ2vN4ZEBWJEfMc3gG8enwYvlQpTXvj+sm8AIf4a1DW1oqi6EW9ln8Fb2Wfgp1Fj8qBwXDU0ErOHRbU3CxF1Ym5oasXCN3bjWGkdqhtacOf4RIT4awCweYmnsec+ZFdtnmWPCzpdHatqCTDLgI+XCumxnU8YiNxZfzvjErmanpalPnXNUCzIiOt0u70uwvBiDvUHk02Bevom8uyC4V2+idhWJq/0BvD8jemYmhqBHacq8f2xcmw+Xo6y2mZsyi/DpvwyaG5W4adZ8cJOzOubTfj5G3twuKQWYf4avH//+PZEkzxPbxoalNUaka+vhVolwUslwUulgpdaglolQSUBb2wvdLnmWfa4oNPdsWpuu+E3cwbjlrEJdoqYSDlYDUPuxB57ke11EYYXc6ivmGwKZK+GBj19A5g7PBpzh0dDlmUcOV/bnnjOGBIhrKttY4sJ9765F3nFNQj288aa+8ZjUGSg3R6flKc3DQ2+O1aOdQfO9+l5RDTP6s8FnWaTGdUNLWhutXR7rALWY/XN7DNYNHUgT7DJI7EahtyFvfYi2+siDC/mUF8w2RTIng0NevMGIEkS0uN0SI/T4dezrHsjdxZUOb2rrbHVjPve3oc9Z6oRqPXCu/eOx7CYILs8NilXby7CzB4WiRidFq1mC8wWGSaLDLPZ+r9nq+qx72zNFR/nr5tOwGQZhMkp4VA58AOzNxd0ln95GKWGZlQ1NKO6oQXV9S2oazYBAIZGB7plB2oiIurInuWr9roIw4s51FtMNgWydw18f94ARMwo23K8AtkFVfDXqPH2veM67Uklz9SbizBqldRliTlgvYBy+2u7rvh8e85U4+nPD2PLb2dc8b593WspyzI+yznX4yRx45EylNd1bj/vpZLQau7Z3DO2oCciUj6Wr5LSMdkUzFXeRETMKJuXHo0/3piOQREByBwQYrfHJWWz10WYniStof4aXJ0eheSwgPaxQM0mM255ZRdmDonAgow4JIf7A+j5XktZllFc3YSyOmN7R0AAWP7lkR79/uV1Rjw2ezDQFl9YgAZh/hqE+fsgyNcLu05X9yiJZgt6IiL3wPJVUjJJluWeDWp0E7W1tdDpdDAYDAgKcp2STdFzAM0W+bJdbQEgPECD3f9vNtQqCXpDEw6dM2BOWlSvZneazBY0tZoRqPW2T+DktuzZSAfoOmntao/kN0dK8ct397f/96h4HQZHBeLj/ec6Pb4tGX5wegq81BIOnDPg0LkaXGhsRYxOi51LZ7Xf99ZXsrG78MIVY/7g/gmXrVC40rFqW/nd/uRVPBEhIiIih+hpTsVkk9r15sT86c8PYc2uIgyPDcJjswdj9rDIKyadZouM33yUh1MV9Xj3XnacpStz1IiQyyWt9c0mbDxSis/zzmPHqUqYLb1/i/RWSxgWE4QPH5gAP41X++9irySxL0k0ERERkb0w2ewGk83L6+mJ+UvfnsBrW0+jocUMAEiPC8JjswZj1kVJ58WJQkSADz7LLcHH+8/BSyXhjXvGYtrgCOf+cuSx+pq0VtQ14x/fn8TbO89e8b7TB4dj9rAojIwPxtCYwPbRRBezZ5IoaiYuEREREZPNbjDZvLKenphXN7TgtW2n8Xb2GTS2JZ0j43X4zdwhaGoxdToRBqwn1X+/YzSuGxnrjF+FqN++yCvBox/mXfF+L9+W0W2zoovZM0kUXX5PREREnqmnORUbBFEnPe1qG+qvwZPzhuK+Kcl4ddtpvJN9FgfPGbBm11l8m1/W7YgHL54Mk4LYu3mWPRs9sAU9ERERuTKubJLdVNU345Wtp/F5bkmXYxsANi8h5WFDHiIiIqKOeppTqZwYE7m5sAAfzBwS2W2iCXScJUikBLZRLMCPeytt+jIPl4iIiMhTMNkku+rpIHkOnCclsc3DjdZ1LJWN1mnZ+ZWIiIioG9yzSXZl7/1tRK6CQ7WJiIiIeofJJtnVuORQxOi0V9zfNi451NmhEfUbG/IQERER9RzLaMmuuL+NiIiIiIgAJpvkANzfRkRERERELKMlh+D+NiIiIiIiz8ZkkxyG+9uIiIiIiDwXy2iJiIiIiIjI7phsEhERERERkd0JTzZXrVqF5ORkaLVaZGVlYdu2bd3eV6/X44477sCQIUOgUqnw2GOPOS9QIiIiIiIi6jGhyebatWvx2GOPYdmyZcjNzcXUqVNxzTXXoKioqMv7Nzc3IyIiAsuWLcOoUaOcHC0RERERERH1lCTLsizqycePH4/MzEysXr26/bZhw4bhhhtuwMqVKy/7szNmzEBGRgZeeumlXj1nbW0tdDodDAYDgoKC+hI2ERERERGRx+ppTiVsZbOlpQX79+/H3LlzO9w+d+5cZGdn2+15mpubUVtb2+GLiIiIiIiIHEtYsllZWQmz2YyoqKgOt0dFRaG0tNRuz7Ny5UrodLr2r4SEBLs9NhEREREREXVNeIMgSZI6/Lcsy51u64+lS5fCYDC0fxUXF9vtsYmIiIiIiKhrXqKeODw8HGq1utMqZnl5eafVzv7w8fGBj4+P3R6PiIiIiIiIrkzYyqZGo0FWVhY2bdrU4fZNmzZh0qRJgqIiIiIiIiIiexC2sgkAS5YswcKFCzFmzBhMnDgRr776KoqKirB48WIA1hLYkpISvPPOO+0/k5eXBwCor69HRUUF8vLyoNFokJaWJuJXICIiIiIioi4ITTZvvfVWVFVV4dlnn4Ver0d6ejrWr1+PxMREAIBer+80c3P06NHt/3///v14//33kZiYiDNnzjgzdCIiIiIiIroMoXM2ReCcTSIiIiIior5z+TmbRERERERE5L6YbBIREREREZHdMdkkIiIiIiIiu2OySURERERERHbHZJOIiIiIiIjsjskmERERERER2R2TTSIiIiIiIrI7JptERERERERkd0w2iYiIiIiIyO6YbBIREREREZHdMdkkIiIiIiIiu2OySURERERERHbHZJOIiIiIiIjsjskmERERERER2R2TTSIiIiIiIrI7JptERERERERkd0w2iYiIiIiIyO6YbBIREREREZHdMdkkIiIiIiIiu2OySURERERERHbHZJOIiIiIiIjsjskmERERERER2R2TTSIiIiIiIrI7JptERERERERkd0w2iYiIiIiIyO6YbBIREREREZHdMdkkIiIiIiIiu2OySURERERERHbHZJOIiIiIiIjsjskmERERERER2R2TTSIiIiIiIrI7JptERERERERkd0w2iYiIiIiIyO6YbBIREREREZHdMdkkIiIiIiIiu2OySURERERERHbHZJOIiIiIiIjsjskmERERERER2R2TTSIiIiIiIrI7JptERERERERkd0w2iYiIiIiIyO6EJ5urVq1CcnIytFotsrKysG3btsve/4cffkBWVha0Wi0GDhyIf/3rX06KlIiIiIiIiHpKaLK5du1aPPbYY1i2bBlyc3MxdepUXHPNNSgqKury/oWFhbj22msxdepU5Obm4v/9v/+HX//61/jkk0+cHDkRERERERFdjiTLsizqycePH4/MzEysXr26/bZhw4bhhhtuwMqVKzvd/8knn8SXX36Jo0ePtt+2ePFiHDhwADt37uzRc9bW1kKn08FgMCAoKKj/vwQREREREZEH6WlO5eXEmDpoaWnB/v378dRTT3W4fe7cucjOzu7yZ3bu3Im5c+d2uO3qq6/G66+/jtbWVnh7e3f6mebmZjQ3N7f/t8FgAGD9ByIiIiIiIqLeseVSV1q3FJZsVlZWwmw2IyoqqsPtUVFRKC0t7fJnSktLu7y/yWRCZWUlYmJiOv3MypUrsWLFik63JyQk9CN6IiIiIiIiz1ZXVwedTtft94UlmzaSJHX4b1mWO912pft3dbvN0qVLsWTJkvb/tlgsqK6uRlhY2GWfpzdqa2uRkJCA4uJiluYqAF8v5eFrphx8rZSJr5ty8LVSHr5mysHXqudkWUZdXR1iY2Mvez9hyWZ4eDjUanWnVczy8vJOq5c20dHRXd7fy8sLYWFhXf6Mj48PfHx8OtwWHBzc98AvIygoiH+YCsLXS3n4mikHXytl4uumHHytlIevmXLwteqZy61o2gjrRqvRaJCVlYVNmzZ1uH3Tpk2YNGlSlz8zceLETvffuHEjxowZ0+V+TSIiIiIiIhJD6OiTJUuW4N///jfeeOMNHD16FI8//jiKioqwePFiANYS2Lvvvrv9/osXL8bZs2exZMkSHD16FG+88QZef/11/Pa3vxX1KxAREREREVEXhO7ZvPXWW1FVVYVnn30Wer0e6enpWL9+PRITEwEAer2+w8zN5ORkrF+/Ho8//jj++c9/IjY2Fn/729/w05/+VNSvAMBaqrt8+fJO5brkmvh6KQ9fM+Xga6VMfN2Ug6+V8vA1Uw6+VvYndM4mERERERERuSehZbRERERERETknphsEhERERERkd0x2SQiIiIiIiK7Y7JJREREREREdsdkk4iIiIiIiOyOySa5nX379sFoNIoOg8ht8RgjchweX0SOw+PL+ZhsXkF1dTUqKysBABaLRXA0dDmnT5/GggULMG7cOHz00Ueiw6Ee4PGlLDzGlIfHmHLw+FIeHl/KweNLHCabl7Fs2TIMHToUr776KgBApeI/lyuSZRkPPfQQUlNTIUkSdDodAgICRIdFV8DjSzl4jCkTjzFl4PGlTDy+lIHHl3g8MrpQU1ODRYsW4dtvv8WAAQOwa9cu7N27F4D1j5Zcx+effw5/f3/s378f2dnZ+PzzzzFs2DD897//BcDXyxXx+FIWHmPKw2NMOXh8KQ+PL+Xg8eUavEQH4CpkWYYkSQAAX19fJCYmYv78+QgJCcGSJUvw2WefISMjA97e3h3uS8538b9/RUUF1qxZg5tuugkA0NTUhJSUFFRXV6OxsRF+fn4iQ6U2PL6UhceY8vAYUw4eX8rD40s5eHy5HiabsP7xqVQq+Pj4AAA0Gg0effRR6HQ6AMDMmTOxdetWbNq0Cddee63IUD3epa/VokWL2ktXzGYzfH19ER4eju+//x5+fn6wWCwsbRGMx5ey8BhTHh5jysHjS3l4fCkHjy/X5PH/wkuXLsWUKVNw3XXX4W9/+xtqa2shSRKCgoLaN3v/+te/hizL+Pzzz1FZWQlJkrj0LsClr1VdXR1UKlX762S7kjV79mycOXMGRUVFfBMRjMeXsvAYUx4eY8rB40t5eHwpB48v1+Wx/8otLS24+eab8eWXX+KJJ55AbGwsXnnlFdxxxx0ArH+Utj/SAQMG4JZbbkFOTg6++uqr9u/zzcQ5unutbr/9dgA/bsq/+OpVWFgYiouLhcXs6Xh8KQuPMeXhMaYcPL6Uh8eXcvD4UgDZQ+Xn58upqanyxo0b22/bvn277OvrK//5z3+WLRaLLMuybDabZVmWZaPRKF977bXyLbfcIh88eFBes2aN/Ic//EFI7J6mt69VVVWVrNFo5K+++qrD7eQ8PL6UhceY8vAYUw4eX8rD40s5eHy5Po9NNvfv3y9LkiRXVVXJsiy3/zGuXLlSDgkJkU+cONF+X9sf4ueffy4PHDhQDgsLkzUajfyXv/zF+YF7oN68VrIsyzU1NfK0adPk3/zmN06Plax4fCkLjzHl4TGmHDy+lIfHl3Lw+HJ9HltGq1KpkJaWhvfff7/D7b/5zW8QHByMV155BYB1uV2lUqGgoACffvopCgsLccstt6C6uhq/+c1vRITucXr6WplMJgBAQEAA9Ho9Ghoa0Nra6vR4iceX0vAYUx4eY8rB40t5eHwpB48v1+e2yaZ8hVr5xMREpKamYvv27dDr9ZAkCSaTCd7e3njkkUfwwQcfwGKxQK1WAwBeeeUVfP/99zhw4ABWrVoFf39/Z/waHsFer5WXlxfMZjPUajV+//vf4/HHH4e3t7eTfgvPwuNLWXiMuR8eY8rB48v18DNMOfj5pXxumWxWVFSgsbGx/b9tnaiAH69shISEYP78+Th27Bg++ugjAICXl3USjE6nQ0hICIqLi9t/9k9/+hOKi4sxYsQIZ/0aHsGerxWA9jf+hQsXYvDgwU75HTxNeXk56urq2v+bx5drs+frBfAYcwbba2Q2mzt9j8eYa7HnawXw+HIGg8HQ4fXiZ5jrsudrBfD4EsWtks3W1lY88MADmDx5MubPn49f/OIXuHDhQofWxl5eXjAajfjwww9x7733IiMjA2vXrsXmzZvb73Pu3DlEREQgMTGxUxcrsg9HvFbkWCaTCYsWLcK4ceMwe/Zs3HnnnaiqquLx5aIc8XqRY7W2tuKhhx7CL3/5SwAdjwvbSRaPMdfgiNeKHKu1tRUPP/wwrr32Wlx77bV47rnn2ucs2hIXHl+uwRGvFQkkcsOoPVVXV8uzZ8+WZ86cKW/fvl1+9dVX5dGjR8uTJk2Sjx071n6/l19+WQ4NDZUXLFggy7IsHzhwQL7zzjtljUYjP/jgg/IDDzwgBwYGyqtXr5Zl+ceNxmQ/fK2Up7W1Vb7zzjvlCRMmyFu2bJFffPFFOT09XZ4yZYqcn5/ffj++Zq6Br5fy7Nq1S542bZocEREhe3t7y9u3b5dlWZZNJlOH+/E1E4+vlfJs3LhRHjRokDx9+nT5s88+k++99155yJAh8rJlyzrcj6+ZeHyt3I/bJJsbNmyQ09PTOyQr+fn5skqlkn/961/LFy5ckN988015wIAB8nvvvdeh1bHFYpGff/55+f7775evvfZaeceOHSJ+BY/B10p5ioqK5NTUVPndd99tv02v18txcXHyr371K7m6upqvmQvh66U8L730krxo0SJ5/fr18k033SSPHz++031WrVolJycn8zUTjK+VshgM/7+9uwuKqv7jOP45rIAsNJC2wIAoRisNOQYJgyERXkA6UzEJhqNGFNaUaE8welWO2ZSMkyNh2JgOED04PTmlUsKFklEhQ+QDaKhoVgpMIFFo7Lr7/V/wZ5VQgzq764/9vO5YluV3fO/gfvecPed3Wbp0qeTn54vFYhERkf7+flm9erXcd9990tfXJyJsdiNgq7FpzAybFRUVEhQUNOS2uro6mTBhgpjNZtm9e7fY7Xb5888/h9yH73S4Hlupp6mpSfz8/OT48eMiMnBNMRGRTZs2idlslp07d4rdbnf8RzCIzdyDvdQx+G/+888/S3Nzs4gMvCFnMplk69atIjLwYktkYI81/y66D1upqbu7W8rLy6WpqUlELndYtWqVpKSkOO7HZu7HVmOTkgeZV1VVARh6hqqIiAhMnDgRRUVFjtu2bt2KvLw82O12fPbZZ9A0DX5+fkMeS9M01yzaQ7GVerZs2YK3334bX331leM2s9mM0NBQvPvuuwAufz4lPz8fgYGB+OSTT9Df3w+j0TjksdjM+dhLPYPNamtrHf/m4eHhiImJAQDEx8dj4cKFWLNmDWw2G3x8fBxnU/z7WS7ZzLnYSj1XNgMGTiCTk5OD2NhYAJc/U9vb24tbb70VwMBrFDZzPbbyEO6ddUdn165dEh4eLpqmOXaND35Goru7W9avXy+apklSUpIEBATI9OnTxWq1SklJiYSHh7tz6R6HrdTz/vvvS3BwsNx9990SGxsrJpNJXnnlFREZOLRl1apVYjabpaOjQ0RELl68KCIilZWVEhgY6PiaXIO91HO9Zn//vF99fb2YzWYpLCwUERlyqBg5H1upZ6TNBveAJSYmOvZIc6+Ya7GVZ1Fm2Ny/f7/MnTtXli9fLvPmzZP4+Pir3q+2tlZKSkqkurracdu6deskOTlZenp6XLVcj8ZW6nnvvffkzjvvlLfeektERH799VcpKSkRf39/+f3330VEpKamRhISEmTZsmUicvkP/t69eyU4OFgOHjzonsV7IPZSz/Wa9fb2Drt/X1+frF+/XgIDA+Wnn34SkYF2g33JedhKPaNt1tbWJiaTaci5I06ePCkiw99MIH2xlee54Q+jlf8ffhkSEoL09HS88MILWLt2LVpaWrBt2zYAQ6+7k5KSguXLlyMtLQ0AYLFY8N133yEuLg6BgYGu3wAPwlbqGWxmtVqRmJiInJwcAEBYWBji4uIQHh6OlpYWAEBycjIWLVqEiooK7NixA1arFQBQV1eHmJgYXl/MBdhLPSNpdvTo0WE/ZzQakZGRgbi4OCxYsADx8fHIzMxEd3e3S9fvSdhKPf+22Z49exAREYHo6Gg0NTUhMTERs2bNwqVLlxzXYiR9sZUHc9+ce32NjY3D9m4NvoNhtVqloKBATCaT48QXf3fs2DFpbW2VnJwcmTp1qnz77bdOX7OnYiv1NDY2yvnz5x1f9/T0DHuH8IcffpDQ0FDp7u523Nbb2ysrV66Um266Se69915ZsGCB+Pn5yZtvvikiPLzFWdhLPf+22ZUOHz4sM2bMEE3TZNmyZY6Tz5C+2Eo9/7bZ4N+8FStWSFZWljz//PPi5eUleXl513yNQv8NW9ENN2x+/PHHMmnSJImKipLJkyfLSy+9JOfOnRORgSfe4JOvra1NIiIipKCgwPG9K73++usSFRUlKSkp0tra6tqN8BBspZ6/N3vxxRelvb3d8f0rP2u0YcMGmT17tojIsBdOH330kaxevVqeeuopOXr0qGsW74HYSz16Ndu/f79MmTJFZs2aJSdOnHDN4j0MW6lHj2Y2m02mTJkimqZJamqq48zCpC+2okE31LDZ0NAgt99+u2zcuFEOHjwopaWlYjKZ5Omnn5auri4RubzHzG63S2lpqYwbN07a2tpEZOAJOni899mzZ6WxsdE9G+IB2Eo9I2lms9nEarWKiMhDDz0k+fn57lyyR2Mv9ejZ7OzZszzKw4nYSj16Nevp6ZHXXntN9uzZ49L1exK2oivdEMPm4J6uzZs3y6RJk4Z8qH7Tpk0ya9YsWbt27bCf6+rqkqSkJMnIyJDGxkZJT0+XyspKngnOidhKPaNtZrPZxG63S1RUlOzatUtERH788UdZuHChnDlzxrWL90DspR42UwdbqYfN1MFWdDU3xAmCBq+Nc+rUKUybNg3jxo1zfC83NxczZ87EF198gebmZgCAzWYDAEyYMAFPPPEEPv/8cyQkJMDHxweZmZmOa8qR/thKPaNt5uXlhYaGBhiNRtx111147rnnMGPGDHR1dSE4ONgt2+BJ2Es9bKYOtlKPns1MJpNbtsFTsBVdjVte6dfU1OCZZ55BcXExDhw44Lh99uzZ+Oabb9De3g5gYFDx9/dHRkYGNE1DdXU1AMBgMMBisaC0tBR5eXlISUnBoUOHsHPnTvj5+bljk8YstlLPf20GAFVVVThy5Aiio6NRU1ODuro6VFdXw9fX1+XbM9axl3rYTB1spR5nNhs/frzLt2csYysaCZcOm+fOncMDDzyAJUuWoLu7G9u2bUN6errjCZqeno7IyEgUFRUBuPwOSVpaGry8vHDixAnHY50/fx6tra0oKyvDvn37cMcdd7hyU8Y8tlKPns28vb1xyy23oLy8HM3NzZg5c6brN2iMYy/1sJk62Eo9bKYOtqJRcdXxun19ffLoo49Kdna24yQxIiIJCQmSm5srIgMnlHnnnXfEy8tL6urqhvz84sWLZc6cOa5arkdjK/Xo0Sw1NdXxdWdnp2sW7qHYSz1spg62Ug+bqYOtaLRctmfTaDTC19cXubm5mDp1Ki5dugQAuP/++x0XcTUYDHj44YeRkZGBpUuXora2FiKC9vZ2HD9+HIsXL3bVcj0aW6lHj2ZLlixxPB4/K+Fc7KUeNlMHW6mHzdTBVjRamoiIq36Z1WqFt7c3AEBEoGkaHnnkEfj5+WHLli2O2/766y/MmzcPLS0tiI2NxZEjRzB58mR8+OGHiIiIcNVyPRpbqYfN1MJe6mEzdbCVethMHWxFo+HSYfNqUlJS8PjjjyM3NxciArvdDoPBgI6ODhw6dAgNDQ2IjIzEokWL3LlMAlupiM3Uwl7qYTN1sJV62EwdbEXX4tZhs62tDUlJSdi9e7fjA8EWiwU+Pj7uWhJdA1uph83Uwl7qYTN1sJV62EwdbEXX45ZLnwzOt19//TUCAgIcT8w1a9bg2WefRWdnpzuWRVfBVuphM7Wwl3rYTB1spR42Uwdb0UiM++e76G/wFMgHDhxAZmYmampq8OSTT+LChQuorKzkhZJvIGylHjZTC3uph83UwVbqYTN1sBWNiDNOcTsSFy9elNtuu000TRNfX19Zt26du5ZC/4Ct1MNmamEv9bCZOthKPWymDraif+LWz2ympaXBbDZjw4YNGD9+vLuWQSPAVuphM7Wwl3rYTB1spR42Uwdb0fW4ddi02WwwGAzu+vU0CmylHjZTC3uph83UwVbqYTN1sBVdj9svfUJERERERERjj1vORktERERERERjG4dNIiIiIiIi0h2HTSIiIiIiItIdh00iIiIiIiLSHYdNIiIiIiIi0h2HTSIiIiIiItIdh00iIiIX2bdvHzRNQ09Pj7uXQkRE5HS8ziYREZGTpKamIjY2Fhs3bgQAWCwWdHd3IyQkBJqmuXdxRERETjbO3QsgIiLyFD4+PggNDXX3MoiIiFyCh9ESERE5QW5uLmpra1FcXAxN06BpGsrLy4ccRlteXo6goCDs2rUL0dHRMBqNyMrKQl9fHyoqKhAZGYmbb74ZK1asgM1mczy2xWLBypUrER4eDn9/fyQmJmLfvn3u2VAiIqJr4J5NIiIiJyguLkZrayumT5+Ol19+GQDQ3Nw87H4XLlzAG2+8ge3bt+OPP/7A/PnzMX/+fAQFBaGqqgptbW3IzMxEcnIysrOzAQCPPfYYTp8+je3btyMsLAw7duzA3LlzcfjwYZjNZpduJxER0bVw2CQiInKCwMBA+Pj4wGg0Og6dPXbs2LD7Wa1WbN68GVFRUQCArKwsVFZWoqOjAwEBAYiJicGcOXOwd+9eZGdn4+TJk/jggw/wyy+/ICwsDABQWFiIL7/8EmVlZXj11Vddt5FERETXwWGTiIjIjYxGo2PQBICQkBBERkYiICBgyG2dnZ0AgO+//x4igmnTpg15nP7+fkycONE1iyYiIhoBDptERERu5O3tPeRrTdOuepvdbgcA2O12GAwGNDY2wmAwDLnflQMqERGRu3HYJCIichIfH58hJ/bRQ1xcHGw2Gzo7O3HPPffo+thERER64tloiYiInCQyMhL19fU4ffo0fvvtN8feyf9i2rRpWLx4MXJycvDpp5/i1KlTaGhoQFFREaqqqnRYNRERkT44bBIRETlJYWEhDAYDYmJiYDKZcObMGV0et6ysDDk5OSgoKEB0dDQefPBB1NfXIyIiQpfHJyIi0oMmIuLuRRAREREREdHYwj2bREREREREpDsOm0RERERERKQ7DptERERERESkOw6bREREREREpDsOm0RERERERKQ7DptERERERESkOw6bREREREREpDsOm0RERERERKQ7DptERERERESkOw6bREREREREpDsOm0RERERERKS7/wFalFeOxdrSLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ndvi.plot(figsize=(11, 5), linestyle=\"dashed\", marker=\"o\")\n", + "plt.title(\"NDVI\")\n", + "plt.ylim(0, ndvi.max().values + 0.05);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Split data and fit a model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cross-validation is a common method for evaluating model performance. It involves dividing data into a training set on which the model is trained, and test (or validation) set, to which the model is applied to produce predictions which are compared against actual values (that weren't used in model training)." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ndvi = ndvi.drop(\"spatial_ref\").to_dataframe()\n", + "train_data = ndvi[\"NDVI\"][\n", + " : len(ndvi) - 10\n", + "] # remove the last ten observations and keep them as test data\n", + "test_data = ndvi[\"NDVI\"][len(ndvi) - 10 :]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Iteratively find the best parameters for the SARIMAX model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SARIMAX models are fitted with parameters for both the trend and seasonal components of the timeseries. The parameters can be defined as:\n", + "* Trend elements\n", + " * **p**: Autoregression order. This is the number of immediately preceding values in the series that are used to predict the value at the present time.\n", + " * **d**: Difference order. The number of times that differencing is performed is called the difference order.\n", + " * **q**: Moving average order. The size of the moving average window.\n", + "* Seasonal elements are as above, but for the seasonal component of the timeseries.\n", + " * **P**\n", + " * **D**\n", + " * **Q**\n", + "* We also need to define the length of season.\n", + " * **s**: In this case we use 6, which is in units of resample frequency so refers to 6 months.\n", + " \n", + "In the cell below, initial values and a range are given for the parameters above. Using `range(0, 3)` means the values 0, 1, and 2 are iterated through for each of p, d, q and P, D, Q. This means that there are $3^2 \\times 3^2 = 81$ possible combinations." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of iterations to run: 81\n" + ] + } + ], + "source": [ + "# Set initial values and some bounds\n", + "p = range(0, 3)\n", + "d = 1\n", + "q = range(0, 3)\n", + "P = range(0, 3)\n", + "D = 1\n", + "Q = range(0, 3)\n", + "s = 6\n", + "\n", + "# Create a list with all possible combinations of parameters\n", + "parameters = product(p, q, P, Q)\n", + "parameters_list = list(parameters)\n", + "print(\"Number of iterations to run:\", len(parameters_list))\n", + "\n", + "\n", + "# Train many SARIMA models to find the best set of parameters\n", + "def optimize_SARIMA(parameters_list, d, D, s):\n", + " \"\"\"\n", + " Return an ordered (ascending RMSE) dataframe with parameters,\n", + " corresponding AIC, and RMSE.\n", + "\n", + " parameters_list - list with (p, q, P, Q) tuples\n", + " d - integration order\n", + " D - seasonal integration order\n", + " s - length of season\n", + " \"\"\"\n", + "\n", + " results = []\n", + " best_aic = float(\"inf\")\n", + "\n", + " for param in tqdm(parameters_list):\n", + " try:\n", + " import warnings\n", + "\n", + " warnings.filterwarnings(\"ignore\")\n", + " model = SARIMAX(\n", + " train_data,\n", + " order=(param[0], d, param[1]),\n", + " seasonal_order=(param[2], D, param[3], s),\n", + " ).fit(disp=-1)\n", + "\n", + " pred = model.predict(start=len(train_data), end=(len(ndvi) - 1))\n", + " error = rmse(pred, test_data)\n", + "\n", + " except:\n", + " continue\n", + "\n", + " aic = model.aic\n", + "\n", + " # Save best model, AIC and parameters\n", + " if aic < best_aic:\n", + " best_model = model\n", + " best_aic = aic\n", + " best_param = param\n", + " results.append([param, model.aic, error])\n", + "\n", + " result_table = pd.DataFrame(results)\n", + " result_table.columns = [\"parameters\", \"aic\", \"error\"]\n", + " # Sort in ascending order, lower AIC is better\n", + " result_table = result_table.sort_values(by=\"error\", ascending=True).reset_index(\n", + " drop=True\n", + " )\n", + "\n", + " return result_table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now will will run the function above for every iteration of parameters we have defined. Depending on the number of iterations, this can take a few minutes to run. A progress bar is printed below." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c4f2c665bbf24d338113f8f21c0d09ff", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/81 [00:00 Note: The Q-Q plot and correlogram generated for model `0` show there is some pattern in the residuals. That is, there is remaining variation in the data which the model has not accounted for. You could experiment with different parameter values or model selection in the prior steps to see if this can be addressed." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR0AAAMICAYAAABFN0L4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfrw8e+Zmp6Q3iChhl6kCShFBEWxgYqigisormUXsaK/VVQUxYavK5a1YFmVVRAVC6CCUpUOAqGHEgjpPZlMOe8fkxkSSCBlWpL7c125lMmZ8zwzaWfuuYuiqqqKEEIIIYQQQgghhBBCuIjG2xsQQgghhBBCCCGEEEI0LxJ0FEIIIYQQQgghhBBCuJQEHYUQQgghhBBCCCGEEC4lQUchhBBCCCGEEEIIIYRLSdBRCCGEEEIIIYQQQgjhUhJ0FEIIIYQQQgghhBBCuJQEHYUQQgghhBBCCCGEEC4lQUchhBBCCCGEEEIIIYRLSdBRCCGEEEIIIYQQQgjhUhJ0FMIL/vjjD6677jratGmD0WgkJiaGQYMG8eCDD1Y7bv78+SxYsMA7m6w0a9YsFEXxyFppaWkoilLtMXty/aqGDx/O8OHDPb5uTRYsWICiKKSlpZ33WE/suz77WbhwId26dcPf3x9FUdi2bZvb9rVq1SrnvhzfS6tWrXJ+3vG9FB0dTVFR0Vn3T05OZuzYsdVuq/r9mJyczKxZs9y2fyGEEOJcHH9/N23aVOPnx44dS3JycrXbkpOTuf322+u1zrp165g1axb5+fkN22gL1JDn2Zd89tlnzJs3r8bPKYritesfd74WaszjclxzVr3O9IaaXjvJz6/wNRJ0FMLDvv/+ewYPHkxhYSFz585l+fLlvP766wwZMoSFCxdWO9YXgo7eNnXqVNavX+/tbXjVlVdeyfr164mLi/P2VuolKyuL2267jfbt2/PTTz+xfv16OnXq5O1tkZWVxdy5c729DSGEEMLtvv76a/71r3/V6z7r1q3j6aeflqBFC3KuoOP69euZOnWqZzdUSV4LnVtcXBzr16/nyiuvdN4mP7/C1+i8vQEhWpq5c+fStm1bli1bhk53+kfwpptuahGBkNLSUgICAup8fGJiIomJiW7ckWupqkp5eTn+/v4uO2dUVBRRUVEuO5+n7Nu3D7PZzK233sqwYcNccs76fv/U5PLLL+e1117j3nvvJTY21iX7EkIIIXxRnz59vL2FejObzSiKUu06WXjPhRde6O0tiFoYjUb5+gifJ5mOQnhYTk4OkZGRNV5IaTSnfySTk5PZtWsXv/32G4qioCiKs2SmvLycBx98kN69exMaGkp4eDiDBg3im2++OeuciqJw33338cknn9ClSxcCAgLo1asXS5cuPevY77//nt69e2M0Gmnbti0vv/xyjY/hzTffZOjQoURHRxMYGEiPHj2YO3cuZrO52nHDhw+ne/fu/P777wwePJiAgADuuOMOAE6cOMGNN95IcHAwoaGhTJgwgYyMjLPWOrO82lFaVNNH1bJiVVWZP38+vXv3xt/fn1atWnH99ddz6NChaudXVZW5c+eSlJSEn58fF1xwAT/++GONj7smjuf37bffpkuXLhiNRj766CMA9u/fz8SJE4mOjsZoNNKlSxfefPPNave32WzMnj2blJQU/P39CQsLo2fPnrz++utnPeaq5cx13XdtpdA1lYWsWLGCa665hsTERPz8/OjQoQPTpk0jOzu7zs+Hw+23385FF10EwIQJE876+nz77bcMGjSIgIAAgoODGTVq1FkZrY6v/ZYtW7j++utp1aoV7du3r/dezjR79mwsFouUSgshhGj2ziz7Pd91x6xZs3j44YcBaNu2rfMay3G9YLPZmDt3Lp07d8ZoNBIdHc2kSZM4fvx4tXVVVeX55593Xqf069ePFStWnNUGxnE98sknn/Dggw+SkJCA0WjkwIEDZGVlcc8999C1a1eCgoKIjo7mkksuYfXq1dXWcpSYvvTSS7z44oskJyfj7+/P8OHDnW+APvbYY8THxxMaGsp1111HZmbmeZ+722+/naCgIHbt2sXIkSMJDAwkKiqK++67j9LS0nPetz7XX1u3bmXs2LHO68X4+HiuvPLKs57Tmvz888+MHDmSkJAQAgICGDJkCL/88ku1Y7Kysrjrrrto3bo1RqORqKgohgwZws8//wzYr9e///57jhw5Uu262uHMMmTHY/v111+58847iYiIICQkhEmTJlFSUkJGRgY33ngjYWFhxMXF8dBDD531GuHpp59m4MCBhIeHExISwgUXXMD777+PqqrOY871WgigsLCQhx56iLZt22IwGEhISGD69OmUlJRUW6uwsNC5z6CgIC6//HL27dt33ufWITU1lcsvv5yAgAAiIyO5++67a2zTU9evh+P6dteuXdx8882EhoYSExPDHXfcQUFBQbVjv/zySwYOHEhoaCgBAQG0a9fO+VoKzi6vPtfP75QpUwgPD6/xe/eSSy6hW7dudX5OhKgPeftICA8bNGgQ7733Hv/4xz+45ZZbuOCCC9Dr9Wcd9/XXX3P99dcTGhrK/PnzAfu7WQAmk4nc3FweeughEhISqKio4Oeff2bcuHF8+OGHTJo0qdq5vv/+ezZu3MgzzzxDUFAQc+fO5brrrmPv3r20a9cOgF9++YVrrrmGQYMG8cUXX2C1Wpk7dy6nTp06a28HDx5k4sSJzj/y27dv57nnniM1NZUPPvig2rEnT57k1ltv5ZFHHuH5559Ho9FQVlbGpZdeyokTJ5gzZw6dOnXi+++/Z8KECed9/hylxlWtX7+eGTNmVPtjOW3aNBYsWMA//vEPXnzxRXJzc3nmmWcYPHgw27dvJyYmBrBf9Dz99NNMmTKF66+/nmPHjnHnnXditVpJSUk5734AlixZwurVq3nyySeJjY0lOjqa3bt3M3jwYNq0acMrr7xCbGwsy5Yt4x//+AfZ2dk89dRTgD3zddasWfzf//0fQ4cOxWw2k5qaet6SCFfs+0wHDx5k0KBBTJ06ldDQUNLS0nj11Ve56KKL2LlzZ43fp7X517/+xYABA7j33nt5/vnnGTFiBCEhIYC9hOeWW25h9OjRfP7555hMJubOncvw4cP55ZdfnMFKh3HjxnHTTTdx9913n3UhWdXw4cOrXaxW/f+qkpKSuOeee3jjjTeYMWPGOUu+q56jLj0shRBCCHezWq1YLJazbq/t715V57vumDp1Krm5ubzxxhssXrzY2dqla9euAPz973/n3Xff5b777mPs2LGkpaXxr3/9i1WrVrFlyxYiIyMBeOKJJ5gzZw533XUX48aN49ixY0ydOhWz2Vzj392ZM2cyaNAg3n77bTQaDdHR0WRlZQHw1FNPERsbS3FxMV9//bXzeuHMHtZvvvkmPXv25M033yQ/P58HH3yQq666ioEDB6LX6/nggw84cuQIDz30EFOnTuXbb7897/NlNpu54oormDZtGo899hjr1q1j9uzZHDlyhO++++689z+fkpISRo0aRdu2bXnzzTeJiYkhIyODlStX1hrYcvj000+ZNGkS11xzDR999BF6vZ533nmHyy67jGXLljFy5EgAbrvtNrZs2cJzzz1Hp06dyM/PZ8uWLeTk5AD2Eua77rqLgwcP8vXXX9d571OnTmXcuHF88cUXbN26lccffxyLxcLevXsZN24cd911Fz///DMvvvgi8fHxzJgxw3nftLQ0pk2bRps2bQDYsGED999/P+np6Tz55JPAuV8LlZaWMmzYMI4fP87jjz9Oz5492bVrF08++SQ7d+7k559/RlEUVFXl2muvZd26dTz55JP079+ftWvXMmbMmDo9xlOnTjFs2DD0ej3z588nJiaG//73v9x3330N/no4jB8/ngkTJjBlyhR27tzJzJkzAZyvpdavX8+ECROYMGECs2bNws/PjyNHjvDrr7+e82tS289veHg4H3zwAZ999lm1cvndu3ezcuXKsxIjhHAZVQjhUdnZ2epFF12kAiqg6vV6dfDgweqcOXPUoqKiasd269ZNHTZs2HnPabFYVLPZrE6ZMkXt06dPtc8BakxMjFpYWOi8LSMjQ9VoNOqcOXOctw0cOFCNj49Xy8rKnLcVFhaq4eHh6rl+VVitVtVsNqsff/yxqtVq1dzcXOfnhg0bpgLqL7/8Uu0+b731lgqo33zzTbXb77zzThVQP/zwQ+dtTz311DnXT01NVSMiItQRI0aoJpNJVVVVXb9+vQqor7zySrVjjx07pvr7+6uPPPKIqqqqmpeXp/r5+anXXXddtePWrl2rAnV67gE1NDS02uNWVVW97LLL1MTERLWgoKDa7ffdd5/q5+fnPH7s2LFq7969z7nGhx9+qALq4cOH673vM+/rsHLlShVQV65cWeOaNptNNZvN6pEjR876WtV2zjM51vjyyy+dt1mtVjU+Pl7t0aOHarVanbcXFRWp0dHR6uDBg523Ob72Tz755DnXqSvH+bKystTs7Gw1NDRUHT9+vPPzSUlJ6pVXXumStYQQQghXc/z9PddHUlJStfskJSWpkydPdv67LtcdL730Uo1/5/fs2aMC6j333FPt9j/++EMF1Mcff1xVVVXNzc1VjUajOmHChGrHOa7Pql6nOK4Vhg4det7H77jeHTlyZLVroMOHD6uA2qtXr2rXFvPmzVMB9eqrr652nunTp6vAWddoZ5o8ebIKqK+//nq125977jkVUNesWeO87cznua7XX5s2bVIBdcmSJed9/FWVlJSo4eHh6lVXXVXtdqvVqvbq1UsdMGCA87agoCB1+vTp5zzflVdeedb3jgOgPvXUU85/Ox7b/fffX+24a6+9VgXUV199tdrtvXv3Vi+44IJa13a8lnjmmWfUiIgI1WazOT9X22uhOXPmqBqNRt24cWO127/66isVUH/44QdVVVX1xx9/POfXsOrjqsmjjz6qKoqibtu2rdrto0aNqvZ1rM/Xw3E9Onfu3GrH3nPPPaqfn5/z8b/88ssqoObn59e6P8f3ftXXTrX9/Kqq/bXZmT//f//739WQkJCzXocK4SpSXi2Eh0VERLB69Wo2btzICy+8wDXXXMO+ffuYOXMmPXr0qHMp65dffsmQIUMICgpCp9Oh1+t5//332bNnz1nHjhgxguDgYOe/Y2JiiI6O5siRI4D9XdaNGzcybtw4/Pz8nMcFBwdz1VVXnXW+rVu3cvXVVxMREYFWq0Wv1zNp0iSsVutZ5QqtWrXikksuqXbbypUrCQ4O5uqrr652+8SJE+v02B0yMjK4/PLLiYuL4+uvv8ZgMACwdOlSFEXh1ltvxWKxOD9iY2Pp1auXs6Rl/fr1lJeXc8stt1Q77+DBg0lKSqrzPi655BJatWrl/Hd5eTm//PIL1113HQEBAdX2cMUVV1BeXs6GDRsAGDBgANu3b+eee+5h2bJlFBYWnnc9V+37TJmZmdx99920bt3a+T3lOF9N31cNsXfvXk6cOMFtt91WrZ1AUFAQ48ePZ8OGDWeVfYwfP94la1cVERHBo48+yqJFi/jjjz9cfn4hhBDCXT7++GM2btx41seZlQI1ach1h8PKlSsBzprSPGDAALp06eIsI92wYQMmk4kbb7yx2nEXXnjhWdO1HWr7W//2229zwQUX4Ofn57w2+eWXX2q8LrniiiuqXVt06dIFoNqQjaq3Hz16tJZHWt2Z11uO61XH89EYHTp0oFWrVjz66KO8/fbb7N69u073W7duHbm5uUyePLnadabNZuPyyy9n48aNzuqQAQMGsGDBAmbPns2GDRvOKnVuqLFjx1b797meb8drDodff/2VSy+9lNDQUOdriSeffJKcnJw6lb4vXbqU7t2707t372qP/7LLLqtWvu74GtX2NTyflStX0q1bN3r16nXO+9fn6+Fw5uugnj17Ul5e7nz8/fv3B+DGG2/kf//7H+np6XXa87n885//ZNu2baxduxawl55/8sknTJ48maCgoEafX4iaSNBRCC/p168fjz76KF9++SUnTpzggQceIC0trU7DZBYvXsyNN95IQkICn376KevXr2fjxo3ccccdlJeXn3V8RETEWbcZjUbKysoAyMvLw2az1ThU48zbjh49ysUXX0x6ejqvv/66M4DqSMl3nNOhponLOTk5zvLmc611LkVFRVxxxRWYzWZ+/PFHQkNDnZ87deoUqqoSExODXq+v9rFhwwZnYNdRVlKXx30uZz7GnJwcLBYLb7zxxlnrX3HFFQDOPcycOZOXX36ZDRs2MGbMGCIiIhg5ciSbNm2qdT1X7bsqm83G6NGjWbx4MY888gi//PILf/75pzM4eubXtaEce6/p+yI+Ph6bzUZeXl612901tXv69OnEx8fzyCOPuOX8QgghhDt06dKFfv36nfVR9VqoNg257nA4399wx+cd/63pWq+m22o756uvvsrf//53Bg4cyKJFi9iwYQMbN27k8ssvr/G6JDw8vNq/HW9G13Z7TdfMZ9LpdGddRzuutRyPszFCQ0P57bff6N27N48//jjdunUjPj6ep5566pzBQUf7o+uvv/6sa80XX3wRVVXJzc0FYOHChUyePJn33nuPQYMGER4ezqRJk2rspV4f9Xm+qz7Xf/75J6NHjwbgP//5D2vXrmXjxo088cQTQN2uOU+dOsWOHTvOeuzBwcGoqlrtWv9cX8PzycnJqdP1dn2+Hg5n7slROu54/EOHDmXJkiVYLBYmTZpEYmIi3bt35/PPP6/T3mtyzTXXkJyc7HzdtmDBAkpKSrj33nsbfE4hzkd6OgrhA/R6PU899RSvvfYaf/3113mP//TTT2nbti0LFy6s1ujZZDI1aP1WrVqhKEqNFx9n3rZkyRJKSkpYvHhxtay6bdu21XjuqvtziIiI4M8//zzvWrUxm82MHz+egwcPsnr16rOmW0dGRqIoCqtXr3b+Aa/KcZvjj31tj7u2d+PPdOZjbNWqFVqtlttuu63WP+Jt27YF7BezM2bMYMaMGeTn5/Pzzz/z+OOPc9lll3Hs2LEaJzXXZ9+OzNUzvzfOzKj966+/2L59OwsWLGDy5MnO2w8cOFDbw24Qx95Pnjx51udOnDiBRqOpljUKNX8PuYK/vz+zZs3irrvu4vvvv3fLGkIIIYQvach1h0PVv+FnXnudOHHC2c/RcVxNfcFru76q6W/9p59+yvDhw3nrrbeq3X6+XoeuZLFYyMnJqRYgclx/1fSmvkNdr78AevTowRdffIGqquzYsYMFCxbwzDPP4O/vz2OPPVbj+R3P9RtvvFHr9GJHgDcyMpJ58+Yxb948jh49yrfffstjjz1GZmYmP/30U62PwV2++OIL9Ho9S5curVZhtWTJkjqfIzIyEn9//7N6yVf9PNi/Ruf6Gp5PREREnV4f1efrUR/XXHMN11xzDSaTiQ0bNjBnzhwmTpxIcnIygwYNqvf5NBoN9957L48//jivvPIK8+fPZ+TIkQ3uBy9EXUimoxAeVlOwBU6Xr8bHxztvq5qNWJWiKBgMhmoXaBkZGTVOr66LwMBABgwYwOLFi6u9E1lUVHRWk2zHmlWDeaqq8p///KfO640YMYKioqKzGnh/9tlndbr/lClTWLVqFYsXL6Znz55nfX7s2LGoqkp6enqNmQA9evQA7GU+fn5+/Pe//612/3Xr1p1VBlIfAQEBjBgxgq1bt9KzZ88a91DThWpYWBjXX3899957L7m5ubUOLqnPvh0X9jt27Kh2+5nPfU1fV4B33nnnvI+3PlJSUkhISOCzzz6r1vC+pKSERYsWOSdae8odd9xBly5deOyxx7DZbB5bVwghhPC22q47zsy4cnC0y/n000+r3b5x40b27NnjHJQxcOBAjEYjCxcurHbchg0b6nV9pSjKWdclO3bsOGugoLudeb3luF49c5BNVXW9/qpKURR69erFa6+9RlhYGFu2bKn12CFDhhAWFsbu3btrvM7s16+fM/OwqjZt2nDfffcxatSoauev7TWHOyiKgk6nQ6vVOm8rKyvjk08+OevY2vY1duxYDh48SERERI2P3fH8jxgxAqj9a3g+I0aMYNeuXWzfvv2c92/o16OujEYjw4YN48UXXwTsra7OdSzUnjE6depUDAYDt9xyC3v37q1xKI4QriSZjkJ42GWXXUZiYiJXXXUVnTt3xmazsW3bNl555RWCgoL45z//6TzW8c7nwoULadeuHX5+fvTo0YOxY8eyePFi7rnnHufk4meffZa4uDj279/foH09++yzXH755YwaNYoHH3wQq9XKiy++SGBgYLVygFGjRmEwGLj55pt55JFHKC8v56233jqrJPZcJk2axGuvvcakSZN47rnn6NixIz/88APLli07731feuklPvnkE+6//34CAwOd5b8AISEhdO3alSFDhnDXXXfxt7/9jU2bNjF06FACAwM5efIka9asoUePHvz973+nVatWPPTQQ8yePZupU6dyww03cOzYMWbNmtXgMmWH119/nYsuuoiLL76Yv//97yQnJ1NUVMSBAwf47rvvnJPnrrrqKrp3706/fv2IioriyJEjzJs3j6SkJDp27Fjjueuz7/79+5OSksJDDz2ExWKhVatWfP3116xZs6bacZ07d6Z9+/Y89thjqKpKeHg43333HStWrGjU83AmjUbD3LlzueWWWxg7dizTpk3DZDLx0ksvkZ+fzwsvvODS9c5Hq9Xy/PPPc9111wHUGMQWQgghmou6XHc43px9/fXXmTx5Mnq9npSUFFJSUrjrrrt444030Gg0jBkzxjm9unXr1jzwwAOAvbx2xowZzJkzh1atWnHddddx/Phxnn76aeLi4qr1XTyXsWPH8uyzz/LUU08xbNgw9u7dyzPPPEPbtm1rnN7tDgaDgVdeeYXi4mL69+/vnF49ZsyYc/bQrOv119KlS5k/fz7XXnst7dq1Q1VVFi9eTH5+PqNGjar1/EFBQbzxxhtMnjyZ3Nxcrr/+eufE7+3bt5OVlcVbb71FQUEBI0aMYOLEiXTu3Jng4GA2btzITz/9xLhx45zn69GjB4sXL+att96ib9++aDQa+vXr1/gnsAZXXnklr776KhMnTuSuu+4iJyeHl19+ucbqpNpeC02fPp1FixYxdOhQHnjgAXr27InNZuPo0aMsX76cBx98kIEDBzJ69GiGDh3KI488QklJCf369WPt2rU1BjhrMn36dD744AOuvPJKZs+e7ZxenZqaWu24un496uPJJ5/k+PHjjBw5ksTERPLz83n99dfR6/UMGzas1vvV9vPr6O8fFhbGpEmTeOutt0hKSqqxf78QLuWtCTZCtFQLFy5UJ06cqHbs2FENCgpS9Xq92qZNG/W2225Td+/eXe3YtLQ0dfTo0WpwcPBZEwlfeOEFNTk5WTUajWqXLl3U//znPzVOegbUe++996x9nDllT1VV9dtvv1V79uypGgwGtU2bNuoLL7xQ4zm/++47tVevXqqfn5+akJCgPvzww87pcFWnIQ8bNkzt1q1bjc/D8ePH1fHjx6tBQUFqcHCwOn78eHXdunXnnV7tmCRY08eZ0+0++OADdeDAgWpgYKDq7++vtm/fXp00aZK6adMm5zE2m02dM2eO2rp1a9VgMKg9e/ZUv/vuO3XYsGF1nl5d0/OrqvaJcnfccYeakJCg6vV6NSoqSh08eLA6e/Zs5zGvvPKKOnjwYDUyMtL5vE+ZMkVNS0tzHlPTBMT67Hvfvn3q6NGj1ZCQEDUqKkq9//771e+///6sr9fu3bvVUaNGqcHBwWqrVq3UG264QT169GitUwsbMr3aYcmSJerAgQNVPz8/NTAwUB05cqS6du3aasdUnTbtCuc63+DBg1VAplcLIYTwWY6/v2dO7HWoaQLxmdd7dbnuUFVVnTlzphofH69qNJpq1wtWq1V98cUX1U6dOql6vV6NjIxUb731VvXYsWPV7m+z2dTZs2eriYmJzuuUpUuXqr169ao2efpc1womk0l96KGH1ISEBNXPz0+94IIL1CVLlqiTJ0+u9jgdE3xfeumlavev7dznex4dJk+erAYGBqo7duxQhw8frvr7+6vh4eHq3//+d7W4uPicz7Oq1u36KzU1Vb355pvV9u3bq/7+/mpoaKg6YMAAdcGCBefcm8Nvv/2mXnnllWp4eLiq1+vVhIQE9corr3Q+5vLycvXuu+9We/bsqYaEhKj+/v5qSkqK+tRTT6klJSXO8+Tm5qrXX3+9GhYWpiqKUu3au7brwDOfv9qusxzPY1UffPCBmpKSohqNRrVdu3bqnDlz1Pfff/+s68tzvRYqLi5W/+///k9NSUlRDQaDGhoaqvbo0UN94IEH1IyMDOdx+fn56h133KGGhYWpAQEB6qhRo9TU1NQ6Ta9W1dPXx35+fmp4eLg6ZcoU9ZtvvjnrOrouX49zPU9nXl8vXbpUHTNmjJqQkKAaDAY1OjpaveKKK9TVq1c771PT9GpVrf3n12HVqlUqoL7wwgvnffxCNJaiqlXq24QQQgghhBBCCBc7fPgwnTt35qmnnuLxxx/39nbO6/bbb+err76iuLjY21sRwqUefPBB3nrrLY4dO3bO3qRCuIKUVwshhBBCCCGEcJnt27fz+eefM3jwYEJCQti7dy9z584lJCSEKVOmeHt7QrRIGzZsYN++fcyfP59p06ZJwFF4hAQdhRBCCCGEEEK4TGBgIJs2beL9998nPz+f0NBQhg8fznPPPdegKb5CiMZzDGwcO3Yss2fP9vZ2RAsh5dVCCCGEEEIIIYQQQgiXqtvoMCGEEEIIIYQQQgghhKgjCToKIYQQQgghhBBCCCFcSoKOQgghhBBCCCGEEEIIl2pRg2RsNhsnTpwgODgYRVG8vR0hhBBCiHpRVZWioiLi4+PRaOS946ZIrkeFEEII0dTV9Zq0RQUdT5w4QevWrb29DSGEEEKIRjl27BiJiYne3oZoALkeFUIIIURzcb5r0hYVdAwODgbsT0pISIiXdyOEEEIIUT+FhYW0bt3aeU0jmh65HhVCCCFEU1fXa9IWFXR0lLCEhITIRZ4QQgghmiwpy2265HpUCCGEEM3F+a5JpRmQEEIIIYQQQgghhBDCpSToKIQQQgghhBBCCCGEcCkJOgohhBBCCCGEEEIIIVyqRfV0FEIIIYQQQgghhBBNj6qqWCwWrFart7fS7Gm1WnQ6XaP7iEvQUQghhBBCCCGEEEL4rIqKCk6ePElpaam3t9JiBAQEEBcXh8FgaPA5JOgohBBCCCGEEEIIIXySzWbj8OHDaLVa4uPjMRgMjc7AE7VTVZWKigqysrI4fPgwHTt2RKNpWHdGCToKIYQQQgghhBBCCJ9UUVGBzWajdevWBAQEeHs7LYK/vz96vZ4jR45QUVGBn59fg84jg2SEEEIIIYQQQgghhE9raLadaBhXPN/yFRNCCCGEEEIIIYQQQriUBB2FEEIIIYQQQgghhBAuJUFHIXzY7KW7uXjur+QUm7y9FSGEEEIIIYQQwqdYbWqTX2/BggWEhYW5/Ly+QAbJCOHDlu44SUZhOb/vz+K6Pone3o4QQgghhBBCCOEztBqFf36xlQOZxW5fq0N0EK/f1Kde97n99tvJz89nyZIl1W5ftWoVI0aMIC8vjwkTJnDFFVfU6XwLFixg+vTp5Ofn12sf3iJBR+GzNqXlkppRxC0D26Aoire343E2m0p2ZYbj9mMFEnQUQgghhBBCtFhWm4pW4/nXhd5aV9Tdgcxidp0o9PY2Gszf3x9/f39vb8MtJOgofNY/v9hGen4ZvRLD6JEY6u3teFxuaQWWytTtHcfzvbsZIYQQQgghhPAiT2a0OTQks02I+joze3H79u1Mnz6dTZs2oSgKHTt25J133qG4uJi//e1vAM7ErKeeeopZs2Z5aefnJ0FH4ZPySytIzy8D4EBWUYsMOmYWnu7juOtEIWarDb1W2rAKIYQQQgghWqamntEmRF3ccsst9OnTh7feegutVsu2bdvQ6/UMHjyYefPm8eSTT7J3714AgoKCvLzbc5Ogo/BJqRlFzv9Pyy714k68J7Oo3Pn/JouNfaeK6Bbf8oKvQgghhBBCCCFEU7V06dKzgoNWq7XW448ePcrDDz9M586dAejYsaPzc6GhoSiKQmxsrHs262KSNiV80t4qQccjOSVe3In3ZBZVn1i943iBl3YihBBCCCGEEEKIhhgxYgTbtm2r9vHee+/VevyMGTOYOnUql156KS+88AIHDx704G5dS4KOwielZpxOmU/LaZmZjllnBR3zvbMRIYQQQgghhBBCNEhgYCAdOnSo9pGQkFDr8bNmzWLXrl1ceeWV/Prrr3Tt2pWvv/7agzt2HQk6Cp9Utbz6aG7LDDpmFtrLq9tHBQL2CdZCCCGEEEIIIYRo3jp16sQDDzzA8uXLGTduHB9++CEABoPhnKXZvkZ6OgqfY7Op7KsSdMwtqaCgzEyov96Lu/I8R3n1pV1jOPjbIfaeKqLcbMVPr/XyzoQQQgghhBBCCN/QIdozw1Q8sU5ZWRkPP/ww119/PW3btuX48eNs3LiR8ePHA5CcnExxcTG//PILvXr1IiAggICAALfvq6Ek6Ch8Tnp+GSUVVgxaDcF+OnJKKjiaU9riJlg7go69EsOIDDKSXWxi14lC+ia18vLOhBBCCCGEEEII77PaVF6/qY9H19NqFLedX6vVkpOTw6RJkzh16hSRkZGMGzeOp59+GoDBgwdz9913M2HCBHJycnjqqaeYNWuW2/bTWBJ0FD5nz0l7P8cO0UEEGrXklFSQllPSAoOO9vLq6GAjPRND+TU1k53H8yXoKIQQQgghhBBCgFsDgK5Yb8GCBTXePnz4cFRVBeD222/n9ttvB+zl059//vk5z/nWW2/x1ltv1Wsf3iI9HYXPcUyu7hwbTFKEvZ9hS5tgraoqmYX2TMfoYD96VgZcZYK1EEIIIYQQQgghmgLJdBQ+J/WUPeiYEhuM2WoDWt4E68JyCyaL/bFHhxjplRgGwHaZYC2EEEIIIYQQQogmQIKOwuekVpZXp8QGU1RuAVpepmNWZWl1sJ8OP73Wmel4KLuEonIzwX4ta6iOEEIIIYQQQgghmhYprxY+pdxsdWY1dokLISnCPoWppWU6ni6tNgIQEWQkIcwfVYWd6VJiLYQQQrjK/Pnzadu2LX5+fvTt25fVq1fXeuyqVatQFOWsj9TUVA/uWAghhBCiaZCgo/ApBzKLsdpUwgL0RAcbSQq393TMKjJRWmHx8u48xzG5OjrYz3lbr9bS11EIIYRwpYULFzJ9+nSeeOIJtm7dysUXX8yYMWM4evToOe+3d+9eTp486fzo2LGjh3YshBBCCNF0SNBR+BTHEJmUmGAURSE0QE+rAHsp8ZEWlO3onFwdYnTe1rOyr+MO6esohBBCuMSrr77KlClTmDp1Kl26dGHevHm0bt36vBMho6OjiY2NdX5otVoP7VgIIYQQoumQoKPwKakZ9n6OnWODnbe1xAnWZ5ZXA86+jtuPSaajEEII0VgVFRVs3ryZ0aNHV7t99OjRrFu37pz37dOnD3FxcYwcOZKVK1ee81iTyURhYWG1DyGEEEKIlkCCjsKnpFZmOnaOC3HeltwC+zrWVF7dI8EedEzPLyOn2OSVfQkhhBDNRXZ2NlarlZiYmGq3x8TEkJGRUeN94uLiePfdd1m0aBGLFy8mJSWFkSNH8vvvv9e6zpw5cwgNDXV+tG7d2qWPQwghhBDCV8n0auFTnOXVLT3TsYby6mA/Pe2iAjmUVcKO4wWM6Bztre0JIYQQzYaiKNX+rarqWbc5pKSkkJKS4vz3oEGDOHbsGC+//DJDhw6t8T4zZ85kxowZzn8XFhZK4FEIIYQQLYJkOgqfkVtS4czw6xRzOuiYHFmZ6Zjd8jIdo6qUVwP0cvZ1lBJrIYQQojEiIyPRarVnZTVmZmaelf14LhdeeCH79++v9fNGo5GQkJBqH0IIIYQQLYEEHYXPcPRzbBMeQJDxdBJum/CWl+mYVXh2eTWc7usow2SEEEKIxjEYDPTt25cVK1ZUu33FihUMHjy4zufZunUrcXFxrt6eEEIIIZqB22+/nWuvvbbabV999RV+fn7MnTuXWbNmoSgKiqKg0+mIjIxk6NChzJs3D5Opelu14cOHO4+t+nH33Xd78BHVj5RXC59RU2k1nO7peLKwnHKzFT99854QWVZhpchkAaqXV8PpCdbbjxecs/xLCCGEEOc3Y8YMbrvtNvr168egQYN49913OXr0qPPifebMmaSnp/Pxxx8DMG/ePJKTk+nWrRsVFRV8+umnLFq0iEWLFnnzYQghhBCiiXjvvfe49957efPNN5k6dSqzZs2iW7du/Pzzz9hsNnJycli1ahWzZ8/mk08+YdWqVQQHn46R3HnnnTzzzDPVzhkQEODph1FnEnQUPsMRdOx8RtAxPNBAsFFHkcnC8bxSOkQH13T3ZsPRz9FPryHYWP1HtFt8CDqNQnaxiZMF5cSH+Xtji0IIIUSzMGHCBHJycnjmmWc4efIk3bt354cffiApKQmAkydPcvToUefxFRUVPPTQQ6Snp+Pv70+3bt34/vvvueKKK7z1EIQQQoiWSVXB7KUWbPoAaEAC0Ny5c3nyySf57LPPGD9+vPN2nU5HbGwsAPHx8fTo0YNRo0bRq1cvXnzxRWbPnu08NiAgwHlsUyBBR+Ez9tSS6agoCkmRAfyVXkhadksIOp4urT4zk9FPr6VTTDC7Txay43i+BB2FEEKIRrrnnnu45557avzcggULqv37kUce4ZFHHvHAroQQQghxTuZSeD7eO2s/fgIMgfW6y2OPPcabb77J0qVLufTSS897fOfOnRkzZgyLFy+uFnRsaqSno/AJNpvK/lOOTMezG6w7JlintYC+jpnOfo7GGj/fq7W9r+N2GSYjhBBCCCGEEEL4tB9//JEXX3yRb775pk4BR4fOnTuTlpZW7bb58+cTFBRU7eOjjz5y8Y5dRzIdhU84lldKaYUVg07j7OFYleO2IznNf4K1o7z6zH6ODj0Tw/j8z2MyTEYIIYQQQgghRMukD7BnHHpr7Xro2bMn2dnZPPnkk/Tv379aj8ZzqWmOwy233MITTzxR7bbo6Oh67ceTJOgofEJqZWl1x+ggdNqzE3BbVKZjUc2Tqx1OT7AuwGZT0WhkmIwQQgghhBBCiBZEUepd4uwtCQkJLFq0iBEjRnD55Zfz008/1SnwuGfPHtq2bVvtttDQUDp06OCurbqclFcLn5B6svbSaoCk8BaU6VhZXh1VS3l1p5hgjDoNReWWFhGEFUIIIYQQQgghmrI2bdrw22+/kZmZyejRoyksLDzn8ampqfz000/VBs40RRJ0FD5h7yn7D9yZk6sdkiPt72Ck55dhtto8ti9vcJZX1xJ01Gs1dI23B2d3SF9HIYQQQgghhBDC5yUmJrJq1SpycnIYPXo0BQX21/MWi4WMjAxOnDjBzp07eeONNxg2bBi9e/fm4YcfrnaO0tJSMjIyqn3k5eV54+HUiQQdhU9IrWVytUN0sBE/vQarTSU9r8yTW/O4LEd5dUjN5dUAvRLDAAk6CiGEEEIIIYQQTUVCQgK//fYb+fn5jBo1ivz8fHbt2kVcXBxt2rRh+PDh/O9//2PmzJmsXr2aoKCgavf/z3/+Q1xcXLWPm2++2UuP5vykp6PwunKzlbRse5lwbZmOiqKQHBFIakYRaTklzszH5uh0T8eaMx2hal/HfE9sSQghhBBCCCGEEPW0YMGCs26Li4sjNTXV+e958+bV6VyrVq1yzaY8SDIdhdftP1WMTYXwQEOtfQwBklrABOsKi43ckgrgfEHHMAD+OlGApZmXmwshhBBCCCGEEKLpkaCj8LrUDHs/x5SY4LPGwVeV3AImWGcX27McdRqFVgGGWo9rFxlIsFFHudnG/sxiT21PCCGEEEIIIYQQok4k6Ci8bu95+jk6JFUGHZtzpqOjtDoq2IhGU3sAVqNR6J4gJdZCCCGEEEIIIYTwTU0q6Pj7779z1VVXER8fj6IoLFmyxNtbEi7gGCJTWz9HB0d5dXPOdMwsPPfk6qp6trYHHbfLMBkhhBBCCCGEEEL4mCYVdCwpKaFXr178+9//9vZWhAs5g45xIec8zhF0PJ5bhtWmun1f3nA607H2ydUOpydY57txR0IIIYQQQgghhBD116SmV48ZM4YxY8Z4exvChbKLTWQXm1AU6BQTdM5j40L9MWg1VFhtnCwoI7FVgId26TnOydUhdch0rJxgnXqyiHKzFT+91q17E0IIIYQQQgghhKirJpXpWF8mk4nCwsJqH8K3OPo5tgkPIMBw7hi4VqPQOtwfaL59HbOK6l5enRDmT3igAYtNZc9J+d4WQoiG+mR9GrO+3cXv+7IwW23e3o4QQgghhBDNQrMOOs6ZM4fQ0FDnR+vWrb29JXGGuvZzdGjuE6wzCyszHetQXq0oijPbcWe69HUUQoiG+DX1FP/6ZhcL1qUx6YM/6fvsCmYs3MayXRmUVVi9vT0hhBBCCCGarGYddJw5cyYFBQXOj2PHjnl7S+IMezPsGXopsefu5+jQ3CdYO8ur65DpCNCzsq/j9mMSdBSiuTuWW8qnG45QVG729laajYIyMzMX7wSgd+swIoMMFJZbWLw1nWmfbOaCZ1dw9yebWbI1nYIyed6FEEIIIYSojybV07G+jEYjRmPdgjfCO/bWN9MxsnKCdXYzzXR0lFfXoacjQK/KTEcZJiNE8/fUt7v4NTWTt387yKs39mZA23Bvb6nJe3bpbk4VmmgXGcgXd12IXqthy9E8fvorg5/+yiA9v4yfdmXw064M9FqFQe0jubxbLKO6xhBVxzeHhBBCCCGEqIvbbruNLl268Pjjj7t1neuvv57BgwczY8YMt64DzTzTUfg2q01l7yl70DGljkHHNuH2oGNzzHS02lSyiyuAupVXw+lMxwNZxRSbLO7amhDCy8xWGxsO5QBwPK+MCe+uZ84PezBZpPy3oVamZvLV5uMoCsy9vid+ei1ajUL/5HD+NbYrax4dwdL7L+L+SzrQMToIs1Xl931ZPP71TgY8/zM3vr2e99cc5nhe8/t7JIQQQgghXOP2229HURReeOGFarcvWbIERVGc/96xYwfff/89999/v/M2VVWZNWsW8fHx+Pv7M3z4cHbt2nXO9Xbt2sX48eNJTk5GURTmzZt31jFPPvkkzz33nEfmnjSpoGNxcTHbtm1j27ZtABw+fJht27Zx9OhR725MNMjR3FLKzTaMOo2zV+P5OI47kluCqqru3J7H5ZZUYLWpKApEBhnqdJ+oYCPxoX6oKvwlfR2FaLZ2HC+gtMJKqwA9N/ZLRFXhnd8Pcc2/17L7hAySqq+CMjOPLd4BwJQhbemXfHbWqKIodE8I5cHRKayYMYyfZwzj4ctS6JUYiqrCn2m5PLt0Nxe9uJKxb6zm37/u50BmkacfihBCCCGE8HF+fn68+OKL5OXl1XrMv//9b2644QaCg08nZM2dO5dXX32Vf//732zcuJHY2FhGjRpFUVHt15ylpaW0a9eOF154gdjY2BqP6dmzJ8nJyfz3v/9t+IOqoyYVdNy0aRN9+vShT58+AMyYMYM+ffrw5JNPenlnoiEc/Rw7xQSj1SjnOdouoZU/Wo1Cudnm7H/YXDhKqyMCDei0df/RdGQ7Som1EM2XI8txYNsI5l7fi3dv60tEoIHUjCKueXMNb606iNXWvN6IcSdHWXXbyEAeHJ1Sp/t0iA7i3hEd+Oa+i1j72CU8dVVXLmwXjkaBv9ILeXn5Pi599XcueWUVc39KZcfx/Gb35pgQQgghhK9QVZVSc6lXPup7jXfppZcSGxvLnDlzavy8zWbjyy+/5Oqrr672+ObNm8cTTzzBuHHj6N69Ox999BGlpaV89tlnta7Vv39/XnrpJW666aZzthu8+uqr+fzzz+v1OBqiSfV0HD58uFzANyOOydV1La0G0Gs1JLby50hOKWnZJcSE1K0MuSlwBFGj6lha7dCzdSg/7cpg+3HJdBT1s/9UEQadxjmgSfiu9QftQcdB7SMAGN0tlguSWjFz8U5W7D7Fiz+l8mvqKV65oTdtIgK8uVWfV7Ws+qXre+Jv0Nb7HAlh/vxtSFv+NqQtOcUmft5zip/+ymDtgRwOZZUwf9VB5q86SHyoH49d0YWre8W74ZEIIYQQQrRcZZYyBn420Ctr/zHxDwL0db/m1mq1PP/880ycOJF//OMfJCYmVvv8jh07yM/Pp1+/fs7bDh8+TEZGBqNHj3beZjQaGTZsGOvWrWPatGmNegwDBgxgzpw5mEwmt85CaVKZjqJ5ST1ZvyEyDs11gnVWYf0mVzv0kkxH0QAZBeVc9e81jJu/jnKz9AX0ZRUWG5uO5AKng44AkUFG3r2tL3Ov70mQUcfGtDzGvP47X/x51CfeoCs3W31iH1VVLau+o5ay6vqKCDIyoX8bPvzbADb/61L+3819uLJHHAEGLScKynn++z3YJAtVCCGEEKJFu+666+jduzdPPfXUWZ9LS0tDq9USHR3tvC0jIwOAmJiYasfGxMQ4P9cYCQkJmEwml5zrXJpUpqNoXhxDZDrHhtTrfskRAfwOpOU0rwnWzsnV9Qw6dk+wT7A+lltGbkkF4YF16wcpWrYl29IpN9soN1ewMS2XiztGeXtLohbbj+dTbrYREWigY3RQtc8pisKN/VozqF0ED365nT8P5/JYZfbjC+N7enzCstlq49fUTL748yir9mVxebdY3ri5T71aRrjT7Cpl1Q/Vsay6PoL99FzdK56re8VTYrIw4LmfySgsZ2d6Ab1ah7l8PSGEEEKIlspf588fE//w2toN8eKLL3LJJZfw4IMPVru9rKwMo9FYbbCMw5m3qapa43H15e9vfwylpe5N5vKNVwGixSmrsDqDhvUpr4bmm+noKK+ODqlfkCDUX0/bSPtzItmOoi5UVWXR5uPOf69MzfLibsT5OEqrL2wXUesFRuvwAD6/80Iev6IzBq2GX1IzuWze7/z0l3vfuXQ4llvKS8tSGfLCr0z7ZDMr92ahqvDjXxk88fVfPpHxuDI1ky8bWVZdH4FGHcNT7O9WL9/tma+DEEIIIURLoSgKAfoAr3w0NOg3dOhQLrvsMh5//PFqt0dGRlJaWkpFRYXzNscQmDMzETMzM8/KfmyI3Fx7JVVUlHuTTyToKLxi36kiVNU+NKW+mThJ4fbeCc0u09FZXl3/PpU9E+3Zjjulr6Oog10nCtmfWez896p9mV7cjTgfxxCZC6uUVtdEq1G4a2h7vr1/CF3iQsgtqeDuTzfz4P+2U1hudvm+Kiw2fth5ktve/4OL567kzZUHySwyERFoYNqwdjx3XXc0CizcdIxXlu9z+fr1UVBmZubinYDryqrrYnQ3+wXhsl2nPLKeEEIIIYTwbS+88ALfffcd69atc97Wu3dvAHbv3u28rW3btsTGxrJixQrnbRUVFfz2228MHjy40fv466+/SExMJDIystHnOhcprxZesbdyiEznuPplOQIkR9qDjkdySl2WWuwLGlpeDfYJ1t9sOyHDZESdLNpiz3Ic1imKtQeyOZRVwtGcUhlA4oNMFiubj+QBMKhd3QJlnWNDWHLvYOb9vJ93fjvIoi3H2XAoh5dv6FWtJ2RDHc4u4YuNR/lq03FySk6/G3txx0huHtCGS7vEYNDZ39PUKAozF+/k3ysPEBVsZPLg5Eav3xCzl+4mo7DcbWXVtRmeEo1Oo3Ags5iDWcW0jwo6/52EEEIIIUSz1aNHD2655RbeeOMN521RUVFccMEFrFmzxhmAVBSF6dOn8/zzz9OxY0c6duzI888/T0BAABMnTqz1/BUVFc7gZUVFBenp6Wzbto2goCA6dOjgPG716tXVhtS4i2Q6Cq9wTq6OqV8/R4DEVgEoChSbLORWecHb1DW0vBqgV2Wmo5RXi/MxW218u+0EALcPTqZvUitAsh191daj+ZgsNiKDjPUKWBl1Wh69vDP/mzaINuEBpOeXcfN/NjB76e4GDQ4qN1v5Zls6N727nhEvr+Kd3w6RU1JBVLCRe0e05/eHR/DJlIFc0SPOGXAEuHlAGx4c1QmAWd/tYumOE/Veu7FW7vVsWXVVof56Z6B3xW7JdhRCiObK6qWBYS1tXSGai2efffas9kN33XUX//3vf6vd9sgjjzB9+nTuuece+vXrR3p6OsuXLyc4+HTy1u23387w4cOd/z5x4gR9+vShT58+nDx5kpdffpk+ffowdepU5zHl5eV8/fXX3Hnnne55gFVIpqPwir2nCoH6T64G8NNriQ/1Jz2/jLScUiKCPDsowR1UVT0ddGxAeXW3+FC0GoXMIhMZBeXEhtb/HKJl+H1fFjklFUQGGbi4YyR7TxXxx+FcVu3NYtKgZG9vT5zBWVrdLrxBWd39ksP54Z8X89z3u/n8z2O8t+Ywv+3L4rUJvZ1DqM7lQGYRn/95jEVbjpNfai/RVhQY3imKmwa04ZLO0ejPMyTmvks6kFVs4uP1R5ixcDvhAQYGd3BvGYdDQZmZmYs8X1Zd1eiuMazen83yXRncPay9x9cXQgjhflqNwj+/2MqBKu1r3G14ShQPX9a5xa0rRFOzYMGCs25LSkqivLy82m2TJ0/m+eefZ/369QwaNAiwZzvOmjWLWbNm1Xr+tLS0akHH5OTk8/ZTf//99xk4cCAXXnhhnR9HQ0nQUXhF6snKTMcGBB0BkiLsmTtHckqcmVpNWWGZhQqLDaBB02b9DVo6RgeRmlHE9uP5xIbGunqLoplYvCUdgGt6J6DTahieEsULP6ay7mA25WYrfnrPZYGJ83MMkWlMWXSQUceccT25tEsMjy7ayf7MYq59cy3TL+3I3cPanzVZutxs5fsdJ/li41E2puU5b48L9ePGfq25sX9rEsLqPrFPURSeuqob2cUmftiZwV2fbOaLuy6sU9CzsbxVVl3VqK6x/OubXWw9lk9mYTnRIfKmkBBCNEcHMovZdaLQY+u1jwpskesK0Vz5+fnx8ccfk52dXef7FBUVcfDgQZYuXVqvtfR6fbXybneS8mrhcVlFJnJKKlAU6BTT0KCj/Y9OWjOZYO3o5xjip2tw0KdXYhggJdaidgWlZmeJ57gLEgBIiQkmLtSPcrONPw7nenN74gzlZitbj+UDMKhd43sxjuwSw7LpF3N5t1gsNpWXl+/jxnfWk5ZtH8qVmlHIU9/8xYDnfubBL7ezMS0PrUbh0i4xfHB7P9Y8egkPjOpUr4Cjg1aj8OqNvbmwXTjFJgu3f7iRo27+/V21rHquh8uqq4oN9aNX6zBUFVbskRJrIYQQQghRs2HDhnHVVVfV+fjg4GCOHTtGUFD9+obfddddpKR45g15CToKj3MMkUmOCGzwi8DkCMcwmeYxwfp0P8eGZ8D0bO3o6yjDZETNlu48QYXVRufYYLrG2fupKorC8JQoAFamSl9HX7LlaB4VFhvRwUbaRrrm3f2IICNv3XoBr9zQi2Cjji1H8xnz+mqu/vcaLp+3mo/WH6Gw3EJCmD8PjurE2kcv4b3J/bikcwxaTeOGdvnptbw7qR9d4kLILjZx2wd/kFX5u8/VqpZV/21wW/p7oay6qtFd7VOsl8sUayGEEEII0YJI0FF4XGqGPQ0/pYFZjmAvr4bml+nYkMnVDj0TwgB70PF8PRxEy+QorR53QUK1/oDDOkUD8Nu+LK/sS9RsQ5XS6ob0c6yNoiiM75vITw8MZVC7CMrMVnYcL0CnURjTPZaP7hjA6kdGcP/Iji7vDxvip+ejv/UnsZU/R3JK+duCPyk2WVy6BsBz39vLqpMjAnj4Mu+UVVd1WTd70HHdwWyKys1e3o0QQgjhOsGUMlm7jP8ZnuYt/WtM0i6jg3IckNcjQgjp6Si8wDG5unNcY4KO9qyfZpPpWOgYItPwoGNKbDAGrYaCMjNHckpJdlFmlGge0rJL2HwkD40C1/ZOqPa5IR0i0GsVDmeXkJZdIt87PmLDIXu5uytKq2uSEObPf6cO5MvNxygqt3BN74QG9ZStr+gQPz6ZMpDr31rHX+mF3P3JZj64vX+1qdeNsXJvJv/bVDmt+oZeXiurrqpDdDDtogI5lFXCqr1ZXNUr3ttbEkIIIRqlneUQt+i+5lrtOgKU05ULY7QbAchSQ9lg68I6WzfW27qSpsYCrnsTVbRMklzjWa54vltkpmO52ertLbRojvLqhkyudnBkOuaXmikobfpZI64orzboNHSJt5fMbpe+juIMi7fasxwv7hh11vdZsJ+efkn28tNVe6XE2heUVVjZesw+xOVCNwUdATQahQn92zD14nYeCTg6tI0M5MO/9SfAoGXNgWwe/HI7NlvjL2oKy32rrLqq0V3tA76W75YSayGEEE2TkQr6FayA90bxRuE/mKhbSYBiYq8tkafNtzHXfCNrrN0oV/VEKQVcpd3AHP37rDI+yDrj/byin8/12t9IQKprRP3o9XoASkubR6VjU+F4vh3Pf0O0yEzHH3ae5PbhTX/icVNktansO+WYXB3S4PMEGHREBxvJLDJxJLeEngFhLtqhdziDjo180d8rMZTtx/LZebyAa87IZhMtl82msnjLceD0AJkzjegcxfpDOazcm8XtQ9p6cnuiBpuP5GG2qsSF+jnfZGlueiaG8fatfbljwUa+236CyCADT47t2qhScse0al8pq65qdLcY3v7tICtTMzFZrBh13s/AFEIIIeoiUcnkFu0v3KhdRURlAokFLT9a+/OJZRR/qp1xZDHOt16LATN9lAMM0u5ikGY3fZT9xCu5jNeuYbx2Dehhj60195n/wUFVXrOI89NqtYSFhZGZaU+QCAgIcGn7IVGdqqqUlpaSmZlJWFgYWm3Dr1tbZNDx0w1HmDysi3yTekFaTgkmiw0/vYY24Y17IZ0cEUhmkYm0nFJ6Vk5ubqoyC+09HRubaWR/Ho7IMBlRzaYjeRzPKyPIqHNmW51peEo0z/+QyoZDOZRVWH2iJLUl23Cosp9jO9f2c/Q1QztF8cqNvfjnF9v4cG0a0cF+/H14+wada5UPllVX1TsxjKhgI1lFJtYfzGF4SrS3tySEEELUSoONoZrt3Kb9mRGabWgUe0VCni6KVhdP4/atKazJqPlvbQV6/lC78IelC/MAP0z00+xjkGYXgzW76aEcoovmGAsNz3JrxeOkqm0898BEkxUba38d4wg8CvcLCwtzPu8N1SKDjvtOFbP2QA4XdYz09lZaHEdpdUpMcKMnoSZFBPBnWi5Hspt+X8csZ6Zj44Y29Eq0T7D+60QBVpva6OdYNA+OLMcresTWGojpGB1EQpg/6fllbDiUw4jOEhDxpvWVQUd3llb7imt6J5BVZGL293t48adUIoIM3Nivdb3OUVhuZuZi3yyrdtBoFEZ1jeGzP46yfPcpCToKIYTwWf6U877+ZQZrdztv+93ag0+sowjsdAXzhvUnb/tqoLBO5yvHyBpbD9bYegAQQQEfGV6kuyaNzw2zua3iMf5S27njoYhmRFEU4uLiiI6Oxmxu+i3WfJ1er29UhqNDiww6Ary/5pAEHb3AMUQmpRH9HB0cwy6awwTr0z0dG5fp2C4qiECDlpIKKwcyi13yPIumrdxs5fsdJwEYd0FirccpisKwlCg+++Moq/ZmStDRi0pMFrYfywfsk6tbgqkXtyOr2MQ7vx1i5uKdRAQaGNklps73n710NycLfLOsuqrLusXy2R9HWbH7FLOv6Y5G3hgSQgjhY/wwOQOOxaofn1sv4b/WkaSpcQBcrTQ+CJFDKBMrnuAjw4v00RzgM8Nz3F7xKFvUTo0+t2j+tFqtS4JhwjNa5CAZRYGVe7M4kFns7a20OHsz7O+GNaafo4OjPLupT7AurbBQbLIAje/pqNUodE+wZzvKMBkBsGL3KYpMFhLC/Blwnuyv4Z2iAPvvR5kM5z2bj+RhsakkhPmT2Mrf29vxmMcu78z4CxKx2lTu/WwLm4/k1el+Vcuq517ve2XVVQ1qF0GwUUdWkYlt8jtaCCGEjzFSwbv6Vxms3U2R6s+tFY/znOVWZ8DRlQoJ5NaKmfxh60yIUsYnhjlcqNl9/jsKIZqUFhl0HJ5if2H9wdrDXt5Jy+PIdOziikzHiOaR6ZhZaM9y9NdrCTI2Pvm4V+swAHbIC1oB1QbInC+rakiHSPRahaO5pRz2wbYFLSUQWrW0ujn3czyToii8ML4HI1KiKDfbuGPBRvZXDh6rTdWy6tsHJzOgre+VVVdl0GkYXplFvGxXhpd3I4QQQpxmwMw7+tcYqt1JiWrk9opH2KZ2cOuaJfgzueJRVlu7E6iYWKB/kYs1O9y6phDCs1pk0HHShcmA/cV4XkmFdzfTgpRWWDiaaw8QuqLst03lRNfsYhMllZmCTVHV0mpXBBh6VvZ1lGEyIrOonN/3ZwNwXZ/zTwYMNOqcQZtVe7Pcurf6enX5Xvo8u4I/D+d6eytu5xwi00JKq6vSazW8ecsF9G4dRkGZmUkf/MnJgrJaj39u6R5OFpSTFBHAI5d19uBOG250V3vZ+PJdp1pMIF0IIYRv02Nhvn4ew7XbKVMN3FHxCJtVz7QrKcfIVPND/GLtg59i5j39y4zUbPbI2kII92uRQcd+ya3oFh9CudnGZ38e9fZ2Wox9p4pRVYgMMhIR1LgyYoBQfz3hgQYAjjThbMfMIvvk6saWVjv0TAgDYM/JQkwWq0vOKZqmb7edwGpT6dMmjHZRQXW6z4jK4RYr9/rOVLhik4X31hwmv9TMPz7fSm4zfrOo2GRxvmFwYTvfztpzlwCDjg9u70+7qEBOFpQz6f0/yS89+2u+am8mCzcds0+r9vGy6qqGp0Rh0Go4nF3CwSxp8yKEEMK7dFh4Q/8Gl2q3Uq7qucP8MH+oXTy6BxMG7jY/wA/WARgVC2/r53GFZoNH9yCEcI8WGXRUFIWpF7cF4KN1aVRYbF7eUcuQetLez7GzC4ebJEU0/b6OjvLqxk6udmgd7k+rAD1mq0rqyXOXJormbdGWdODcA2TO5Gg/8cfhXEorfCOD+PsdJyitsAfQMwrLefjL7c02Q2xjWi5Wm0rrcH8SWwV4ezteEx5o4OM7BhATYmR/ZjFTP9pEufn0myhNray6qmA/PYM72LNYl+065eXdCCGEaMm0WJmnf5PLtRsxqXruND/Iels3r+zFjI77zfezxDoYvWLlDf0bXKtZ45W9CCFcp0UGHQGu7BFPdLCRzCITS3ec8PZ2WgRHP0dXBh2bQ19HR3l1lIsyHRVFoUdiGCB9HVuy3ScK2XOyEINWw1U96978u31UEImt/Kmw2Fh/MMeNO6y7hRuPATCuTwIGnYZfUjP5cG2adzflJs7S6nYtr7T6TImtAvjojgEE++nYdCSP+z7bisVqf5Owalm1L0+rrs3orrEALN8tQUchhBDeocHGK/q3GKv9gwpVyzTzdFbbenp1T1a0zDDfw0LLcLSKyqv6t5igXenVPQkhGqfFBh0NOg2TBycD8P6aw802a8aX7K0MOrqin6NDs8h0dJRXh7gm6AjQS/o6tnhfb7UPkBnZJZqwAEOd76coijPb0Rf6Oh7ILGLL0Xy0GoXHxnTm/660l/vM+XEPO5vh9/eGg6eHyAjoHBvC+5P7Y9Bp+HnPKZ74+q+zyqoDDI0fwOVpl3aNRlFg+7F8MgrKvb0dIYQQLYwGGy/p3+Fa7TrMqpZ7zNNZZevj7W0BYEPDY5apfGwZhUZReVH/HyZpl3l7W0KIBmqxQUeAiQPa4KfXsOtEIX+0gOEE3qSqKqkZjvLqEJed1xF0TGvCQcesIteWVwP0dGY6Nr+gjDg/i9XGkm32DO76lFY7DO90uq+jt9+Q+d8me/B0REoU0SF+3HZhEqO7xmC2qtz/+RaKm/AQqTMVlpvZme7o5yhBR4cBbcN54+Y+aBRYuOkYd31iby4/eVDTKquuKjrYjz6twwBYsVumWAshhPAcBRtzdO8xXrsai6rhfvP9/Gzr6+1tVaOi4UnL7bxruRKAZ/QfcXHe117elRCiIVp00LFVoIHxlS/I319z2Mu7ad6yikzklZrRKNAxpm4DLeoiqbK8ukkPknH2dHR9puP+zCKf6cvX3JWbrWQUlHMoqxibzbuBujUHsskqMhEeaGBYp6h6339whwgMWg3H88o4mOW9gL7ZamPxFnvQ8cZ+rQF7Jubc63sSH+pHWk4p//f1Tq8HRl1lU1ouNtX+Zkp8mL+3t+NTLusWy3PX9QCgwmKzT6u+vOmVVVd1WTcpsfYV8+fPp23btvj5+dG3b19Wr15dp/utXbsWnU5H79693btBIYRwGZXZug+ZoFuFVVWYbr6Xn2wDvL2pWig8b5nIG5ZrAbgm623IldfsQjQ1Ta8mycXuuKgt//3jKD/vOUVadgnJkYHe3lKz5OjnmBwZiJ/edRNGHT0dTxaUU262uvTcnuKO8uroED9iQ/zIKCznr/TCJpsN5A2qqlJSYSWvpIL8UjO5pRXkl1aQV1JBbqnZ/v+lZvJKKsgrrTympIKyKkMubr2wDbOv7eG1x7C4coDM1b3iMejq/95SgEHHwHbhrN6fzaq9mXSIdt0bBfXxy55MsosriAwyMqJztPP2sAAD/+/mPkx4dwNLtp3goo5RXN+3/hmdvsbRQ1P6Odbs5gFtKKuw8uXm4zx/XfcmWVZd1ehuscz5MZX1B3MoKDMT6q/39pZapIULFzJ9+nTmz5/PkCFDeOeddxgzZgy7d++mTZs2td6voKCASZMmMXLkSE6dksCxEKIpUJml+4hbdL9gUxVmmP/OUtsgb2/qPBResdxAH2U/F2l3wY+PgHq/tzclhKiHpn3F7gLto4IYkRLFyr1ZfLj2ME9f093bW2qW9rphiAxAqwA9wX46isotHMstpWOMa8/vbhUWG3mlZsC15dUAPRNDydhdzo7j+RJ0rMHiLcfZmJZXGUSsIK/E7AwiVlgbNtFeq1Gw2lQ+3XCU0V1jGdqALMPGKio3s2yXvVxz3AUJDT7P8JToyqBjFlMvbueq7dXLl5vsA2TG901Ar60ePO2XHM4Dl3bk5eX7+NeSv+jdOsxrwVFX2XDI3uZjUHsJOtbmjovacsdFbb29DZdoGxlIx+gg9mcWs2pvJtf0bvjPq2i4V199lSlTpjB16lQA5s2bx7Jly3jrrbeYM2dOrfebNm0aEydORKvVsmTJEg/tVgghGm6i9ldu1y3Hpio8bJ7GN7aLvL2lOlJ40vI3lmsfQ7d/ORcG9WcX3pmwLYSovxYfdASYclE7Vu7N4svNx5kxOkWyDdzAkemYEuO6fo5gL7VMjghkZ3oBaTlNL+iYVWwvrdZrFVoFuPb7rlfrMJbvPsV26et4lhP5Zcz43/ZzHmPQaWgVoKdVgMH+EXj6/8MC9IQHVv//sAADwUYdT3+3i4/WH2Hm4p0se2AoQUbP/pr9cWcGJouNDtFB9EgIbfB5hqdE8exS+PNwLiUmC4EefhynCstZuTcTgBv6tq7xmL8P78D6QzmsPZDDfZ9tYcm9Q5pktjNAQZmZXSekn2NLM7pbDPszi1m2K0OCjl5QUVHB5s2beeyxx6rdPnr0aNatW1fr/T788EMOHjzIp59+yuzZs8+7jslkwmQyOf9dWFjY8E0LIUQVqqpiVYpQtMXnPC6KPKYZPidP0TDfdCOLbEM9tEPXOKTG80v4BC7L/S/TSt/lM16kDNcmbAgh3EOCjsCQDhF0jg0mNaOIL/48yrRh7b29pWbHOUQmzvVBwaSIAHamFzTJCdaZhfbS6qggI4qiuPTcjoDTjuP5Lj1vc+DoARoZZOT+SzoQVhlctAcP7f8fYNA26GvyyOWd+XVvJsdyy5jzwx5nHzpPWVTZA3HcBQmN+p5qFxlIm/AAjuaWsu5gDqO6xrhqi3Xy1ebj2FTol9Sq1gxGrUbhtRt7M+b11aRmFPH8D3t4polmq/952N7PsV1kIDEhchHdUozuGsubKw+yam9Wk20R0pRlZ2djtVqJian++y0mJoaMjJoH/Ozfv5/HHnuM1atXo9PV7TJ6zpw5PP30043erxBCnGYlw7qWq5c8RXpIGkHnyesoA8YSab9n+WF02TuxFHWjKY14WB5xK5dZVxNdcJT7dUuYa7nJ21sSQtRB0/kt40aKojjLtRasS8PcwNJKUTOL1cb+TPu7b64ur4bTfR2b4gTrzMrJ1VFuCDL0rBwmcySnlPzSCpefvyk7kV8G2L8fJw9O5preCQztFEX3hFASWwUQaNQ1OGAXaNTx4rieAPz3j6OsO5Dtsn2fz7HcUv44nIuiwLWNzJpSFIXhKfby8FWVGYeeoqqqs7T6xv41Zzk6RIf48cqNvQD4eP0RfvqraU4C3nDI3s/xQimtblF6JoYSG+JHaYWVdQc997tCVHfm73tVVWv8G2C1Wpk4cSJPP/00nTp1qvP5Z86cSUFBgfPj2LFjjd6zEKKlsqIL3URg+1fZY32XtMK0ep9B63cS/8T/EtD2dXTBO4Cm8drXrPGDMS8CMFX7Pe2VdC/vSAhRFxJ0rHR1r3gigwycLCjnxyb6otVXpeWUUmGxEWDQ0rpVgMvP3ybCfs6mOMHaEXR05eRqh7AAA0mVz80OKbGuxhF0jA9zT0bZ4A6R3DLQPoDg0cU7KDF5ZoL411vtF1+D20e4ZPrx6aBjlkcnRP95OJe0nFICDVqu7BF33uOHp0Qzbai97+QjX23neF7T+13gGCIjpdUti6IojO5mz7JbvkuGkXhaZGQkWq32rKzGzMzMs7IfAYqKiti0aRP33XcfOp0OnU7HM888w/bt29HpdPz66681rmM0GgkJCan2IYQQ9WNBH/Ynge1fwT/+KzSGHPQEM/2C6SQWvErRnhdq/FD2/ItfDhWy8/BR7tp/AUV7n8SUNRLV6ofW7xT+iZ8R0G4eupBtNIngY+cr+EPfH4Ni5Vndh4Dnrk+FEA0jQcdKfnott16YBMD7qw959AV2c+core4YE4xG49oSYmjamY5ZleXV7gg6AvRMDAOkxPpMJwocQcfGB+ZqM/OKLiSE+XMst4yXlu112zoOqqqy2FFa3cc1k5wHtYvEoNOQnl/Ggcxz9wpypYWVWY5je8bXuZfkg6NT6NU6jMJyC//8YhuWJpSxnl9awZ7K35MXtpOhTy3N6K6xAKzYfQqrTa49PMlgMNC3b19WrFhR7fYVK1YwePDgs44PCQlh586dbNu2zflx9913k5KSwrZt2xg4cKCnti6EaCkUC/qwPwhs/zJ+cYvRGHKxWYIoP3UFg/SvMKXHFDTn6G34mO4zopV8Dtri+LflWrAFUJE9iuIDj2LKutQefDRm4p/wBQHtXkMXshWweuzhNcQ7AdMoV/UM1u7mas16b29HCHEeEnSs4tYLkzDoNGw/XsDmI3ne3k6z4Zhc3cUNpdUAyZXZfOl5ZVRYmk6gAapmOron465XoqOvo2Q6VpWebw/2ujPoGGTUMWecvZ/jgnVp/FFZPusuW47mk5ZTir9ey+XdY11yTn+D1pl5t9JDJdZF5WZ+2HkSOH9pdVUGnYY3bupDsFHH5iN5zPt5v7u26HJ/HM5FVaF9VKDbfhcI3zWwXTjBfjpySirYclSuPTxtxowZvPfee3zwwQfs2bOHBx54gKNHj3L33XcD9tLoSZMmAaDRaOjevXu1j+joaPz8/OjevTuBgYHefChCiOZEMaNvtZ7A9i/hF/c1GkM+Nksw5aeupOTAI5hzh6JVzp20cKFmNxN1KwGYaZ6KCcPpT9r8qci+lOIDj2HKHI1qCUBrzMI/YSGB7V5DF7oZXw0+ntLG8oblOgD+T/8pwTS9ChchWhIJOlYRGWTkuso+aO+vOezl3TQfzsnVbgo6RgUb8ddrsamQXlk221Q4g44h7s50lKBjVScrv08S3Bh0BBjaKYoJ/eyBs0cW7aCswn0Xb44sxzHdY106aXpElRJrT/hu+0nKzTbaRwVyQZuwet23TUQAz1cGet9cdYC1Huyn2RiO0upB0s+xRdJrNYzsHA3A8l3S3sXTJkyYwLx583jmmWfo3bs3v//+Oz/88ANJSfbql5MnT3L06FEv71II0XLYTgcbY79Boy/AZg6hPOOqymDjxaAaznsWIxU8r3sPgP9aRvKn2qWW5fyoyLmE4oOPYsq8HJslAI0xG//4Lwls/wq60E34Ygnzf6xXctAWR7SSzwO6r7y9HSHEOUjQ8QyOgTLLdmVwLFfeNXGFvW4OOiqK4uxd2NRKrDOL3Fte3T0hBI0CGYXlzknZLZ2qqs6ejnGh7s8qe2JsF+JC/TiSU8rLy91TZm2yWPlu+wkAxvd1TWm1w/AUezBkY1ouxR7oTekorZ7Qv3WDhvlc1Suemwe0RlVh+sJtZBebXL1Fl3MMkRnULtLLOxHeclk3e3by8t2npL2LF9xzzz2kpaVhMpnYvHkzQ4cOdX5uwYIFrFq1qtb7zpo1i23btrl/k0KIFsCKX/zCymBjITZzKOUZ11By8GHMeUNA1df5TP/QLaadJoNTahgvWG4+/x1sRipyhlNy4FHKT43BZglEY8jFP/4rjDHf4mv9HivQ85TldgAma5fRVUnz6n6EELWToOMZUmKDubhjJDbVXhIpGqfYZOFoZfC2c6z7Gqc7+joeyW5iQcdC95ZXBxh0dIy2B3u3S7YjAIVlFkoqMw7dWV7tEOKnd2bffbD2MJuP5Lp8jV/3ZFJYbiEu1M/lg0jaRgaSHBGA2aq6PXNwb0YR24/lo9MoXNeIvpRPju1Gx+ggsopMPPi/7dh8uE9ebkmFMxt8oPRzbLGGdorCoNNwJKeUfac81z9VCCGEj1DM+CX+F33odlRVY89sPPgw5rxB9Qo2AnRRjjBNuxSAf5n/RhH1GOSpGjHnDqPkwKOYMkehqgqG8PX4xS3C1wKPa2w9WGq9EK2i8qz+QxQf258Qwk6CjjWYUpntuHDjMYrKzV7eTdO275T9xXR0sJHwwPOXAjRUUqQj07HpZKdabaozC8td5dUAPZ19HfPdtkZT4ijBjwg04KfXemTNESnRjL8gEVWFh7/aQbnZtWXWi7bYp1Zf2ycBrRuGNTmyHd1dYv2/yizHSzpHE9WI7F9/g5Z/T7wAo07Db/uyeG/NIVdt0eUcvT47xQQRGeS+3wPCtwUadVzcwZ7pukxKrIUQomVRKvBP/Ah98G5Um46y45MqMxvr3y5Hg40X9P9Bp9j4wTqA5bb+DduTaqAiZyTlJ25EVTXowzbjl/A54P6ql/p41nwrxaoffTX7uUH7m7e3I4SogQQdazCsUxQdooMoNllYuPGYt7fTpLm7tNohKbwy07EJlVfnlJiwqaAo9gCYuziCjpLpaOcorfZElmNVT47tSnSwkUNZJby2Yp/LzptTbGJV5ZCXcX0SXHbeqoY5+zpmuq30s8Ji4+ut9uDphHoMkKlNSmwwT13VDYC5P+1lq48O6DhdWi39HFu60d1iAFi+W4KOQgjRYmjK8W/zPrqgA6g2A2XH/oa1uHODT/c37U/00hyiUA3gKfPkRm/PUtiH8vSJqKoWfchO/BM/xapWNPq8rnKKcF6zjAfgMd3nhFHk5R0JIc4kQccaKIrCHUPs2Y4L1qVh9eHSPF+XerIQgM5uDjo6JlgfaUKZjo7S6ohAIzqt+34UTw+TyXdrr7BDWcU8891uDmb5dmngiQJH0NGzU4JDA/Q8d529zPo/qw+5LAj23fYTWGwqPRND6Rjjnp+zQe0iMOo0nCwod1vp5y97TpFbUkF0sJFhnaJccs6bB7Tmyh5xWGwq93++lYIy38tcX18ZdHR1Wbxoei7tEoNGgb/SC5vcUDQhhBD1p2hLCGjzH3QBR1CtfpQemYq1tH2Dz5eoZPKg7ksAnrPcQhatXLJPS1F3yo5NRrXp0QWnssPyKqVm33nN9ZH1MvbYWhOuFPOI7gtvb0cIcQYJOtZi3AUJtArQczyvTKZJNoKjV5k7+zkCJEXaMx2P5ZU2mSBxlmNytZuGyDh0jgtGr1XILzVzLNc9L2Q3HMrhuvnr+GDtYd757aBb1nCVdC9lOgKM6hrDtb3jsanwyFc7MFkaX2a9uDI70F1ZjgB+eq1zsvLKyqxKV3MMkBnfN9FlQXhFUXh+XA8SW/lzPK+Mxxfv9KkhHdnFJmcQd6AEHVu8iCAj/ZLsfT1XyHWHEEI0a4quEP+kd9D6p2OzBFJ65C5s5W0acUaV53XvE6CYWG/tykLrcFdtFQBrSSfKjv4N1WokX93DnSvuxIZvBB4t6PiX+W8ATNStpI+y38s7EkJUJUHHWvjptdx6YRIA76057OXdNE2qqrL3lGfKq+NC/DDoNJitpycT+zrn5Go39nMEMOq0dImzB323u6Gv46LNx7nt/T+cWWRHfXzq+8l8+/Oe4IWgI8BTV3UjMsjI/sxi/t8vjbso2n+qiB3HC9BpFK7qFe+iHdZshLOvo+uDjicLyvh9n71f5I39Gl9aXVWov543bu6DTqPw/c6TfOFDLTP+OGQfKtQ5NtitPW9F03G6xPqUl3cihBDCXRRdHgFJ76A1ZmIzh1B2ZBo2U+Ou467TrGGodicmVc9MyxTA9T2+rWXtKD06FR2B7MjawamgeSha36hw2qR25kvLUACe1X+IFtf2TxdCNJwEHc/htguT0GsVNh/JY9uxfG9vp8nJLDKRX2pGq1HoEB3k1rU0GoU24U2rxPr05Gr3D49w9HXcme66vo6qqvLq8r08+OV2zFaV7gn2wObxPN8O+jqC0nGh3gk6tgo0MPtae6/Bt387xM5G9Np0DJAZnhJNhJuHkAyv7Ou4KS3P5QO2Fm0+jk2FAW3DaVuZtexKfdq04uHLUgCY9e0u54Arb1t/yD4NXEqrhcOorvag4x+Hc8kr8Z2eWUIIIVxDMWQRkPw2GkMOtopwSo/cja0iulHnDLXl86T+EwBet4wjTY1zxVZrZCtvTR/dTCL8IjBrj+Of9A6Kzjf6xr9guZkCNYDumjRu1f7s7e0IISpJ0PEcokP8nNlD70u2Y73tqeznmBwR4JEpwY6+jmlNZJhMprO82v29BR19Hbe7KHhebrYyfeE2/t+vBwC4Z3h73r2tHwAnC8qxWG0uWccdTg+S8WxPx6ou7x7HlT3jsNpUHv5qOxWW+j9fVpvKksrS6vEXuK+02iEpIpB2kYFYbCprD2S77Lw2m8r/Nh0HYIKLsxyruvPidgztFIXJYuO+z7ZQVuH9d8DXH6wcItNego7CLikikM6xwVhtKr+muqeVgRBCCO/QGDMISHoHjb4AqymK0iPTUM3hjT7vnaX/oZVSzB5bG961XumCnZ5bkKY1Cy5fgNbWCq0xi4Ckd1D0uW5f93xyCGWu5SYAHtT9jwh8IxgqREsnQcfzmHKRfaDMDztPNpmyXV/hmFzdOc69/RwdkiKa1gRrT5VXA/SqDDr+lV7Q6J6XuSUV3PreH3yz7QQ6jcLc8T155PLOxIb4odcqWG0qGYXlLti161msNufevFVe7fDM1d0IDzSQmlHEv1ceqPf91x/MIaOwnBA/HZd0adw75HXlmGK9MjXLZefccDiHo7mlBBl1jOkR67LznkmjUXj1xl5EBRvZd6qYZ5budttadZFZVM7BrBIUBQa2bfwLDtF8jO5m/zmQKdZCCNF8aPyO2QOOumKs5XGUHZmGaglt/In3r2BExW9YVYVHzXdiQdf4c9ZBcmgyMcUzsFVEoDHkEpD0NhqD998s+9x6CTttyYQoZdyuW+bt7QghkKDjeXWLD2VQuwisNpWP1qV5eztNijPo6KaJumdKcmY6NpHyag8NkgHoEB1EgEFLSYWVQ42YLn0wq5jr5q9l05E8gv10fHTHAG7sb89O02gUZyDPV0usTxWZsKmg1ypEurkc+Xwigow8c429zHr+ygPsOlG/d2MXb7FnB17VKx6jzv2ZxGAv4wb4bV+WywayfLnp9OMIMLj3QjkyyMhrN/ZGUeDzP4+ydMcJt653Lhsq+zl2iQ0hLED6OYrTRleWWP+2L8snMnKFEEI0jtb/MAFt3kPRlmEtbUPpkTtRrY1vPaVRrfDDwwB8YB3DDrXhk68bQqdGUHpkGtbyGDR6+2AcjdF711YANjT823ItALdpV+CPbyZCCNGSSNCxDhzZjp/9eZQSk8XLu2k6HJOr3T1ExqHJZTpW9nSM8kB5tVaj0D3e/m7q9gb2ENxwKIdx89dxJKeUxFb+fH3PYIZ0iKx2TGIre+DXV4OOVfs5ajSub7BdX1f2iOPybrFYbCoPf7kDcx3L0ktMFn78y54FNe6CRHdusZqBbcPx02vIKCx3/nw3RkGZmR92ngRgQn/3lVZXdVHHSO4Zbr8on7loJ8e8NPhISqtFbbrFh5AQ5k+52cYaF7YyEEII4XmKLg//1h+jaE1YStpRenQK2AJccu6+hT9D3mEKlBBes1zvknPWl2oJoezoXVjLEtDoSvBv/RGK1ruvxVbY+nHYFkOYUsKN2t+8uhchhAQd6+SSztG0jQykqNzCV5uPe3s7TYLZauNApj2jrouHyqsdPR2P5JRia2QJsbupqkqWBzMdAXpUDpPZ0YAJ1lUnVPdpE8aSe4fQIfrsYHJiK0emo29mm/pCP8eqFEXh2Wu7ExagZ/fJQt5edbBO9/vprwzKzFbaRgZyQZsw926yCj+9lsHt7YHmlS6YYv3t9hOYLDY6xQTRK9EFJUZ1NP3STvRNakWRycJ9n2+tc7DXlf44ZA86yhAZcSZFUZwDZZbtkhJrIYRouqz4J3xuz3AsS6Ts2N9Adc11vxYrl+V8CsBiv3GU4r1rW9UaSOnRO7GZItHoC/CL/x/gvf7uNjS8b70CgCnaH2SStRBeJkHHOtBoFO4YkgzAB2sPN7onXkuQll1ChdVGoEHrsd55CWH+6DQKJovNWbrsqwrKzFRUBjqiPBR0dEywrk+m45kTqq/sGcfnd15Ya2myI+iY7rOZjvYSi3gv93OsKirYyKyr7GXW/+/X/aRmFJ73Pou32t/8GNcnAUXxbMbmiMq+jqv2Nr6v45ebjgFwY7/WHn0ceq2G12/qTYifju3H8nl52V6PrQ1wqrCcQ9n2fo4DpJ+jqMHobvag4y97Tvn0YC4hhBC1M0YvQxtwFNXqR1n6RFD1Ljv3VZr1RJuPg384S/3cPzzmvGz2x6jadOiC9qIPX+3V7XxlHUqOGkwbTRaXazZ6dS9CtHQSdKyj8X0TCfXXcySnlF/2nPL2dnyeo/SyU2ywx8pYdVqNM+jl6xOsHUHRUH+9RyZ7w+lhMntOFNZpWnK52co/vzg9ofreEe1546Y+59xvUymvjg/1naAjwDW947m0Swxmq73M+lxBhhP5ZayrLM29to/7p1afydHXcfORPArKzA0+z56Thew4XoBeq3CdFx5HYqsA5l7fE4B3fj/kLHf2hA2VWY7d4kMI9XfdCxDRfAxIDicsQE9eqZlNR/K8vR0hhBD1pA3agyHidwDKT17vkinVDhps3K/72v6PwfdRrvjGda3NFI/p1FWAPeCq8T/itb2UY+QT6ygA7tQtBSRpSAhvkaBjHQUYdNw8oA0A76857OXd+D5HtlZnD/VzdGgqfR0d/Rw9VVoN9kE7of56Kqw255Cf2jgmVH+7/fSE6ocv63zeALKzvDrf18urfePizEFRFJ6/rjshfjp2phfw7upDtR67ZFs6qmrvr9g63DU9geqjdXgA7aMCsdpU1jai39zCjfYsx0u7xBDhpaE+l3eP4+YB9l6SD3+1nWIP9ex19nOU0mpRC51Ww8jO9mzH5bvkjU4hhGhKFF0+/nFfAlCROxhLUXeXnn+sZgPtNScp0QRD/ztdeu7GMucPwFzQC0Wx4Z/wGXixv+PHltGUq3p6aw4xUEn12j6EaOkk6FgPkwcnodMo/HE4l7/SGzaMo6VwTq6O9Uw/R4fkJjLBOrPIXuYbHeK5YIuiKFVKrPNrPe5cE6rPJ6Ey6Hgyv9wnSwLTfaynY1XRIX48WVlmPW/Ffg5knh0YVlWVxVvSARjvwQEyZ3JkO65MbVhfR5PFypJt9sdR1+8td3niyq4ktvLneF4Zz32/xyNrrj8kQ2TE+TlKrJfvznDZtHghhBDuVtnHUVeKtSwRU+YVLj27UiXLcWX4DeDn2dda56dQnnGds7+jPfjqnb9huYTwlXUo4Mh2FEJ4gwQd6yEu1J8re8YBku14Pp6eXO3QpqlkOjqHyHg2+OUIOu6spa/j+oOnJ1S3Dq95QvW5RAf7odcqWGwqp3ywr6Yj09FTfUbra/wFCQxPiaLCauOhL3ec1T92x/ECDmQWY9RpGNMj1ku7hOGOvo77shoUDFmx+xT5pWZiQ/wY2jHK1durlyCjjpeu7wXA538eZZULBuScy4n8Mo7klKJRoF+y9HMUtRvaMQo/vYbjeWXsPnn+Xq9CCCG8zxC1HG3AEVSrkbL0m0HVufT8V2j+pKMmnQI1gN/DrnPpuV2man/H4FSv9nd8z3oFNlXhUu1WOigyEFYIb5CgYz1NuagtAN9tP8GpwnIv78Y3FZWbnT39PF1e7cx0zPbxTEcvlFcD9Kzs61hTpuOizceZ9MHpCdVf31PzhOpz0WoUZ+ny8Vzf+hoUmywUltvLZ+N8NOioKApzxvUg2Khj27F83l9Tvcx68Rb7xdJl3WIJ9vNeL8ABbcPx12vJKjKx60T9gyGO0urr+yai9VDP13MZ1D6C2wcnA/Dooh0UlDa8V+X5OPo59kgIJcSLX0Ph+/wNWmdQXkqshRDC95Xp/sIY+Rvg6OPo2ooGBRv/0C0G4APLGMq1QS49vyvZ+zuOBcAY/RMav6Ne2UeaGsdyWz8Apmp/8MoehGjpJOhYTz0Tw+if3AqLTeXj9Wne3o5P2nfKnuUYG+JHWIDBo2tX7enoy+VojvJqT02udnAMk9mfWUxZhRWo/4Tq83H2dfSxYTInK7McQ/31BBld+66zK8WF+vN/Y7sA8MryfRzKKgagwmLj2+0nABh3gecHr1Rl1GkZ0sF+If3bvvpNsU7PL2NNZS/IG/t5t7S6qkcv70zbyEBOFZqY9d0ut63j6Od4oZRWizoY3c2e0bx8twQdhRDCl2WUZJDj/xEAFbmDsBT1cPkal2k2kaI5TqHqz4fWy11+flcz5w/EXNjzdH9HjXcSEt612Kd7X6ddQxQynE0IT5OgYwM4sh3/+8dRZ+BGnOat0mqA1uH+KAqUVFjJLq7w+Pp15SyvDvFseXVsqB/RwUasNpVdJwoaNKH6fBLDfHOCtaOfY1yo7/VzPNON/VpzccdITBYbj3xlL7NetTeTvFIzUcFGLqpHybu7OPo61rcc+atNx1FV+xCVNhGeH4RTG3+Dlpdv6IVGga+3pvPTXxluWWfD4cqgowyREXUwsnM0GsU+7f2Yj2WPCyGEsLPYLDz6+6PYNCVYyxIwZV7p8jUUbPyzMsvxQ+vlFBLo8jVcT6H85DhsFRFoDPn4xXunv+MWtRObbJ0wKhYm65Z7fH0hWjoJOjbAqK6xtA73J7/UzKIt0hviTKeHyHg+6GjUaYkPtWfaHc313b6OWUXeKa+G0yXWq/ZmVZ9QfX3dJlSfz+lMR996gXwi355d6qv9HKtSFIUXxvck0KBl05E8PlqX5hwgc23veHRa7//qdvR13Hwkr87lyDabypeb7aXVN/b33iCc2vRNasW0Ye0BeOLrneQUu7Yv6fG8Uo7llqHVKPSXfo6iDloFGhjQ1v69ItmOQgjhm97c9iZbMregqPZehq7u4wgwSrOZLpqjFKn+fGAZ4/Lzu42zv6MWffAe9K3WemUb/6nMdrxV+zMBSIs0ITzJ+69cmyCtRuFvg+3Zjh+sPYzN5rtlvN6QetJ7mY4AyZG+39cxs7IfqHeCjvZhMv9eecA5ofrjOwa4rNQ1Mdw3y6tPOCdX+37QEezB0ZlX2Mus5y5L5ZdUe8BhnBenVleV2CqAjtFB2FRYfaBuJdbrD+VwPK+MYD8dY7rHuXmHDTP90o6kxASTU1LBE1//5dI2DRsO5QL2n0FfLvEXvmV0V3uJ9bJd7sm+FUII0XBr09fy3s73AIgovdXlfRztVP5RObH6I+toCvDdXo41sZUnYMqs7O8Y8yMav2Me38MKW18O2WIJU0q4UbvK4+sL0ZI1uaDj/Pnzadu2LX5+fvTt25fVq70zDevG/q0JNuo4lFVS755mzZmqqqRm2AdLdI4N8coeknx8gnWJyUJJZVm+p8ur4XTQEXBOqB7swnLdxFb2oK+jnNlXNLWgI8DEAW0Y3D6CcrMNs1WlS1wIXeK883NVE0e248rUuv0OdAyQuaZ3fKNK+N3JqNPyyo290GkUftqV4eyj6QrOfo5SWi3qYXS3GAA2peW6PPtWCCFEw50qOcXM1TMBmJAygQDLBW5ZZ6RmC901aRSrfrxnucIta7ibOe9CzIU9UBRrZX9Hz75OsKHhfav9uZui/REt0iJNCE9pUkHHhQsXMn36dJ544gm2bt3KxRdfzJgxYzh61PPTsIKMOm4aYM8Me3/NYY+v76syCsspLLeg1Si0j/ZOr5Gk8MpMxxzfzHR09HMMMGi9ku00oG04HaODGNIhokETqs/HUV59Ir8Mqw9lAac7g46+39PRQaNReHF8TwIM9gDdeC8PkDmTo6/jb/uyzpvxXVBq5qfKTK0J/dq4fW+N0T0hlH+M7AjAv5b8xanCxpfhqKrqnFw9SIKOoh4SWwXQLT4Emwq/pNavh6oQQgj3sNgsPLr6UfJMeXQO78zD/R9200qqs5fjx9bR5OOdSrLGUyg/OR5bRTgaQx5+cV/h6f6OX1mHkqMG01qTxRjNnx5dW4iWrEnVd7366qtMmTKFqVOnAjBv3jyWLVvGW2+9xZw5c+p8ngqLjQqLrdH7mTiwDe+tPsyaA9nsOJ7vtcw+X/JXegEAbSMCUFBc8jzXl6Nn3+HsYq+sfz4nKnsdRgUZvLI/nUbD0vsvQlHsvRtdvYcwfwM6DVhsKsfzSokL9Y3MwvR8+/MeHWz0ye+L2sSE+PH6Tb1ZmZrF9X0TfWrvPRNDCdBryC42se1YPt0TQms9dtHWY1RYbKTEBNEpJsinHkdNplzUluW7M/grvZCHv9rOf27r5/yZaYjjeaWk55ehVaBHQqjPP37hW0Z2jmHXiUJ++iuDS9o11RecQgjRfLy1/S02n9pMgC6Al4e9jFHrnpZJIzTb6Kk5TKlqbLJZjk6V/R0Dkt9CH7ILa+k6zHlDPLa8CQMfW0bzgH4Rd+mWsrTiQqBxveyFEOfXZIKOFRUVbN68mccee6za7aNHj2bdunU13sdkMmEynS5FKiy0l/3+5/dD+AW6phdGu6hADmaVMPv7PZK9gr38C+yDMN5cecAre8iuLD/bd6rYa3s4l32n7D0vzVbVJ/fnCgEGHYXlFt749YBPDG5RVdU5SGbF7lPO3npNSVSwkQ/Xpnl7G2eJDfXnUHYJLy1LZUDb2n8HfvbHkcrj/Zi/6qCnttcofVqHsftEIb/vy+ae/245Z1D1fHadsL8hEx3ix4J1aS7aoWgpckrsf9d+25vJ/JXyAkkIIbxpU8Ym/rPjPwDMGjyLpJAkN61UNctxFLk0/QQXW3kiplNX4Bf7HcaYH7CWtsdmivXY+h9bR/F33bf01BzmQs0eNti6emxtIVqqJlNenZ2djdVqJSYmptrtMTExZGTU3Fx9zpw5hIaGOj9at3bNoIxq61f25Cssq9v01ubOEfCL8sKAFIdQfz0AJouNcrPv9esoMVkACGzGgyRCKr8GvvJzUVphxVH925yfd29IjrS3UTicXXsP1cyicrKKK9Ao3uv12hDhgUaGtLf3O/19X1ajvp8dg5Uc7QeEqI/IIAMhfjqsKhzL9c1+xUII0RKYrWae3fAsKirjOo5jTFv3TZIeptlBb81BylQD71VOX24OzHmDMRd1QVGsGGO/BjxX/ZFHCF9ahwFwp/Z7j60rREvW5F59n1nepqpqrSVvM2fOZMaMGc5/FxYW0rp1a+4c2o6QENe88P1uezrrDuYQ7Kfj3hEdXHLOpuynv04CMOnCJC7pEnOeo93nq83HyCyqYFTXGHomhnltHzWZuyyV3/dnM6h9RLP9njmeV8rxvHS6xIX4xGPcdiyP99YcJi7EyP2XdPT2dpqVkwVl/JqayalCE7de2IZQf8NZxzzz3S4ALusWy4OjUzy9xUax2lRufX8Dm4/ks+tkAR//bSAaTf0yzVRVZeFGe+/he4d3cOngJtFyFJZZ+HBdGjpNk3m/WAghmp2Pdn/EoYJDhPuFM6PvjPPfocFU/qlbBMCn1kvJpuHVFr5HwZRxDbrAg+gCjqAL3YyloL/HVn/PegW3aH9hpHYrHSzHOaAmemxtIVqiJhN0jIyMRKvVnpXVmJmZeVb2o4PRaMRoPDvjzqDTYNC55qLdkeVzsqDcZedsqsxWG4cqs526JYR69flIjgwisyiX9Pwy+iWHe20fNcktrgAgLtS/2X7POCaInywo84nHmFVkf84TWgX4xH6ak6SIQFJigtl7qoj1h3K5uld8tc+Xm618t8P+ZsTNA9o0yef/1Rt7c/m81fx5OI8vNh7l9iFt63X/tOwSMgpN6LUKA9tFNMnnQHjfmB5xfLgujdUHsr29FSGEaJHSi9N5Z/s7ADzU7yFCje4LBF6k+YsLNAcoV/W8axnrtnW8RbWEYcq6FL+YHzBG/4iluCtYPTOE9IgayzJbP8ZoN3Kn9gcetdzlkXWFaKmazCsfg8FA3759WbFiRbXbV6xYweDBg720K0gIs09Kzigox2Jt2YMBDmWVYLaqBBl1Xi8hTI6wf12O+OAEa8f06mgvlqC7m+Pr7ygp9bYTzsnVUtrqDsNTogBYVcNk3WW7MigoM5MQ5s+QJprhlxQRyONXdAbghZ9SOZRVXK/7r6+cWt2ndSv8KyeRC1FffZNaER5ooLDc4u2tCCFEi/TCHy9Qbi2nf2x/xrZzZyDwdJbjZ9aRZBHmxrW8x5w7BGt5LBpdKcboHz26tiOQe612DVHkeXRtIVqaJhN0BJgxYwbvvfceH3zwAXv27OGBBx7g6NGj3H333V7bU3SwEb1WwWJTOVVkOv8dmrHUDPugnpTY4EZNeXUFR6ZdWo7v9b7KLLIPNIkOac5BR3vQ11eCjukSdHSrYZVBx9/2ZWFzNM+s9OWm4wCM75uItp5lyb7kloFJXNQhknKzjQe/3I71jMd5Lhsqg44XtvOtrGvRtGg1Cpd2ifb2NoQQokX69eivrDq+Cp1Gx/8N/D+3vtYZpNlNf80+TKqety1XuW0d79NiyrgWAEPYJrT+aR5beavakY22ThgVC7frlnlsXSFaoiYVdJwwYQLz5s3jmWeeoXfv3vz+++/88MMPJCW5a2LY+Wk0CnGh9kBGuo8EWLxlb4Z9KnNKbLCXdwJJTSLT0c/LO3EfR6bjifyyegVn3MWR6ZgQ1nyfc2/qlxROkFFHTkkFO9MLnLcfyy1lzYFsFAVu6Nu0++VoNAovXt+TYKOOrUfzeff3Q3W6n6qqrD9YGXRsX/t0byHq4rJunpvwKYQQwq7UXMoLf74AwO3dbqddWDu3rje9Msvxc+sIMmnl1rW8zVqWTEV+PwCMsUsAzw0BdWQ73qr9mUBa9ut4IdypSQUdAe655x7S0tIwmUxs3ryZoUOHentLJFRmT6Xn+16Ay5NSK4OOnX0g6Jhcmel4xMcyHU0WK/ml9gm4zbm8OibED52mMgO4sNzb2+FkgX0PkunoHgadhiEd7AG1VXuznLd/udme5TikfSStwwO8sjdXSgjz58mrugLw2op9zuzuczmcXUJmkQmDVsMFbZr3CwfhfkM6ROJvaHKXbkII0aS9veNtTpacJCEogbt6urf/X38llYGaVEyqrplnOZ5myhyDzRKA1i8Dffhaj637s+0CDtliCVVKuVG7ymPrCtHSyJWrCyS0kkxHOJ3p2DnWNZPBG6NNZaZjdnEFxSbf6X+VVZnlaNBqCAvQe3k37qPVKM4An6O02ZscmY6OrGTheiNS7GWfK/fa+zpabSpfbToGwA39mnaWY1XX903k0i7RVFhtPPi/7VRYzt3L19nPsU0Yfnrp5ygax0+v5aIm2htVCCGaov15+/lk1ycAzBwwE3+de68l/6b7CYBF1qFk0EIqJKyBmDLHAGCM+hlFl++RZVU0vGe9EoDJ2uUotOz5DEK4iwQdXSDBh4Ir3lJYbnY+/pQY72c6hvjpiQg0AL6V7egorY4KNnq976W7nR4m490M4HKzlZySyunVkunoNo6+jtuP55NbUsHaA9mcKCgn1F/frEpCFUXh+XE9CAvQs+tEIf9eeeCcxztKqwdJabVwkWt6J3h7C0II0SKoqsrsDbOxqBYuaX0Jw1oPc+t6ceQwWrMJgAXWy9y6lq+xFPTFUpqEoqnAGPOdx9b92jqEQtWfZM0pLtTs8di6QrQkEnR0gQQfm9TrDfsqsxzjQv0I9ZEMPl/s65hZeDro2Nw5AnzHc737c+HIcgw0aAnx13l1L81ZXKg/nWODUVX4fV8WCyuzHK/tHd/sMvyig/2YfW13AN5ceYAdx/NrPE5VVTYcygXgwnYSdBSuMTxFhskIIYQnfHPwG7ZkbsFf589jAx5z+3q36H5Gp9hYb+3KPrW129fzLRpMGdehqhr0IbvQBqZ6ZNUy/PjWOhiAm7W/emRNIVoaCTq6QKJkOrLHh/o5OiT74ATrLMfk6hYQdPSVCdYn8k/3c2zu2aXe5giGfL01nRW7TgFwQ7/medE8tmc8Y3vGYbWpzPjfdsrNZzc+P5hVTHaxCaNOQ582YZ7fpBBCCCEaJL88n1c3vQrA33v9nbigOLeuZ6TCGfRaYB3t1rV8lc0Uizn3IgD8Yr8FpcIj635uvQSAyzQbacX5+3ULIepHgo4ukFBlUq+qen9SrzfsrRyokOID/RwdHH0dj2T7UKajY3J1SEsIOlZmOnp5wJIj01GGyLjf8MoS69/2ZVFhtdEtPoTuCaFe3pX7PHtNdyKDjBzILOa1FfvO+ryjtLpvUiuMuuaV7SmEEEI0Z/O2zCPPlEeHsA7c2vVWt683VrOBCKWIdDWCn2193b6erzJljcRmDkVjyMUQudIja+5S27LTloxRsTBOu8YjawrRkkjQ0QXiQv1RFCg325y941qavZLpWCeO8uroYD8v78T9En2k7UC6BB09pm9SK4KNp0vYJ/RvnlmODq0CDbwwrgcA764+xKa03Gqfl9JqIYQQounZlrmNRfsXAfB/F/4feo27W0epTNYtA+BTyyistOA3KlUjplP2qd2GiN/RGDI9suwXldmON2lXAi0ziUgId5GgowsYdBpnuWxLnGCtqiqplUHHFB8KOvpkT8eWVF4dbn/+T+SXYbV574/3yQL7z2RCWPMP9HqbXqvhoo72yboGnYZrejX/gReXdo3hhr6JqCo8+OV2SissgKOfowyREUIIIZoSi83C7A2zAbim/TX0jXF/1mEf5QA9NYcxqXq+sA53+3q+zlLUDUtxCopixRi7BE8EAb+xDqZUNdJRk05f5ezqFSFEw0nQ0UVa8gTrEwXlFJVb0GkU2kcFeXs7To5Mx4zC8hr7rXlDSyqvjgk2otMomK2qM9jqDY6ejnGhkunoCVf3igdgXJ8Enxkq5W7/uqor8aF+HMkp5YUf7Y3P950qJqekAj+9hp6JzbfEXAghhGhOPk/9nL15ewkxhDCj3wyPrOnIcvzWOog8fKdVlfcolGdcjWrToQs8hC5ku9tXLCaApdYLAbhZ55mybiFaCgk6ukhC5dCMlpjp6Ojn2D4qCIPOd76lwgL0hPjZSz2P5vpGtqMz6NgCyqt1Wg1xldmF3iyxlp6OnjWmRxw//vNinr6mm7e34jEhfnrmXt8LgI/XH2HN/mxnlmO/pHDp5yiEEEI0AadKTvHvrf8G4IG+DxDuF+72NaPI5wrNHwAssF7m9vWaCtUcQUW2veTZGLMUNO5/LfGFdQQAV2o2EILvtOcSoqnznQhRE9dSMx3LzVaWbD0B+FZpNYCiKCRHVvZ1zPb+Hw6rTSWn2BF0bP6ZjgCJYY4J1t4J+qqq6vyZTJCgo8d0iQtpcYG2izpGctuFSQA88tV2ft5jn94tpdVCCCFE0zB341xKLaX0iurFuI7jPLLmRO0vGBQrm2yd2KW29ciaTUVF7lCspig0umKMUcvdvt4WtSN7bYn4KxVco13r9vWEaCkk6OgiCT4yNMOTNqXlcsXrq/l2uz3oOLpbjJd3dLakyhJrX+jrmFNswqaCRoGIoBYSdKz8ufBWBnBuSQUmiw1FgZjQlvGcC+95bExnkiICOFFQzur92QBc2M79WRJCCCGEaJy16WtZfmQ5WkXLvy78FxrF/S+T9Vi4RfcLAB9bRrt9vSZH1WHKuAYAfasNFNoOu3lBxZnteLMMlBHCZSTo6CKJLSjTscRkYda3u7jhnfUcyi4hOtjIu7f1ZWzPeG9v7SxJlcNMfGGCtaO0OiLIiFajeHk3npHYypHp6J2fC0c/x6ggY4vLvBOeF2jU8fINvVAqf7wDDFp6JoZ5dU9CCCGEODezzcycP+cAMLHLRFLCUzyy7uWaP4lW8slUw/jRNsAjazY11tIOmAt6oygq+62foKruDQQutl6MSdXTVXOEnsoht64lREshQUcXSXBmdHk/o86d1uzP5rJ5v7NgXRqqCjf2S2TFA8MY3S3W21urkS9NsG5Jk6sdvJ0BnC79HIWH9U8O586L2wEwqF0Eeq38mRXC182fP5+2bdvi5+dH3759Wb16da3HrlmzhiFDhhAREYG/vz+dO3fmtdde8+BuhRCu9uXeLzlSeIRwv3Du6XWPx9adrLOXDP/XMhIzOo+t29SYTl2JajNQqB5k2ZFlbl2rgCB+tPUH4Cbtr25dS4iWQn67uYijX1xhuYWicjPBfs1ramtBmZnnv9/Dwk3HAPvjnTOuB0M7RXl5Z+fm7OnoC5mOhS2rnyOcLq/2Vk/HkwXSz1F43iOXpdAtPoQBbaW0Wghft3DhQqZPn878+fMZMmQI77zzDmPGjGH37t20adPmrOMDAwO577776NmzJ4GBgaxZs4Zp06YRGBjIXXfd5YVHIIRojKKKIt7e/jYA9/a+lyBDkEfW7aYcpp9mHxWqls+sIz2yZlOlWoOpyBmKMepnXt/8OgoPu3W9L6yXcK12HVdr1zPbchvIRHEhGkVSMFwk0KgjLMAeaGxuJdYrdp9i9Gu/OQOOkwclsfyBoT4fcITTmY4n8sswWaxe3UtLmlzt4OzpmF+Gzeb5viiOydVxoS3nORfep9NquKZ3AnGhEuwWwte9+uqrTJkyhalTp9KlSxfmzZtH69ateeutt2o8vk+fPtx8881069aN5ORkbr31Vi677LJzZkcKIXzXB399QJ4pj+SQZI8NjwGYrLVnOf5oG0gWYR5bt6mqyBmKgVCOFx+nyODe37cbbF04ZIslSCnnKu16t64lREsgQUcXck6wbibDZHKKTfzj863c+fEmThWaaBsZyP+mDeLpa7oTaGwaSbJRQUYCDFpsqveH/DjLq0NaTqZjbIgfWo2C2ao6g66e5OjpKOXVQgghzlRRUcHmzZsZPbr6AIfRo0ezbt26Op1j69atrFu3jmHDhtV6jMlkorCwsNqHEML7Mkoy+GT3JwA80PcBdBrPvL5pRSHXaO2/Yz6SATJ1oxpoq7UHhQuNP4LGna/rFBY6B8pIibUQjSVBRxdKaCbDZFRV5dvtJxj12u98u/0EGgWmDWvHj/+8uMmVCyqK4pxgfdTLfR1bYnm1TqtxZhl6o8RaejoKIYSoTXZ2NlarlZiYmGq3x8TEkJGRcc77JiYmYjQa6devH/feey9Tp06t9dg5c+YQGhrq/GjdurVL9i+EaJw3tr6ByWrigugLGNF6hMfWvUm7CqNiZoetLVvUjh5bt6mL1VxM+9D22DQlGCNXunWtRdahmFUtvTUHSba4e2q2EM2bBB1d6PQwmaYbdDxVWM5dn2zmH59vJbekgpSYYL6+Zwgzx3TBT980p/8mR/jGBGtHpl9UCyqvhqp9HT3/c+Eor5aejkIIIWqjOEbOV1JV9azbzrR69Wo2bdrE22+/zbx58/j8889rPXbmzJkUFBQ4P44dO+aSfQshGm5v7l6+O/gdAA/1e+i8P/OuosXKrboVAHxkuQzwzLrNgUbRMqPfDAD0rdah6PLctlY2oayw9QXgcpN7h9cI0dw1jRrZJsIR2DjeBDMdVVXly03Hefb73RSVW9BrFe4d0YF7hnfAoGvasek2PjLBOsvR07EFlVcDJLYKAHI9nulYYbGRVWx/zuPDWlagVwghxPlFRkai1WrPymrMzMw8K/vxTG3btgWgR48enDp1ilmzZnHzzTfXeKzRaMRobFl/+4Xwda9ufhUVlcuTL6dHVA+PrXupZgsJSg45ajBLbRd6bN3m4uKEizFaOmHS7cMYvZzyExPcttbn1ku4QvsnIypWgrkM9JLEIERDNO1oko9JbKKZjsdyS5n0wZ88smgHReUWeiaG8t39FzH90k5NPuAIkBzh/QnWqqqeDjq2oPJq8F6m46nCclQVjDoN4YEGj64thBDC9xkMBvr27cuKFSuq3b5ixQoGDx5c5/OoqorJ5Pm+xUKIhlmXvo51J9ah0+j4xwX/8Ojak7X2rLkvrCMwIden9aUoCq3K7L0d9aFb0filu22tNbbuHLNFEaSWwO5v3LaOEM2dZDq6UEKYPaOuqfR0tNlUPv3jCC/8mEpphRWjTsOMUZ2YclFbdNqmH2x0SPKBTMf8UjMVVhsAUS0u6Oidn4v0KqXVniqZEUII0bTMmDGD2267jX79+jFo0CDeffddjh49yt133w3YS6PT09P5+OOPAXjzzTdp06YNnTt3BmDNmjW8/PLL3H///V57DEKIurParLyy+RUAbu58M62DPddjtZNyjMHa3VhVhU8tozy2bnNjsLXBXNAbfeg2jNE/UHZ0Ku4oU1fRsNA6nIc0X8Lmj6DXTS5fQ4iWQIKOLuTo6ZhVZKLcbPXpHoiHsop5bNFO/kzLBaB/citeHN+TdlFBXt6Z6zkyHY/llmKx2rwSUHX0cwwL0GPU+e73hTt4K9PR0c8xTkqrhRBC1GLChAnk5OTwzDPPcPLkSbp3784PP/xAUlISACdPnuTo0aPO4202GzNnzuTw4cPodDrat2/PCy+8wLRp07z1EIQQ9fDdoe/Yl7ePYEMw03p69ud2knY5AMtt/ThJhEfXbm5MmZehC/4LXeBBtIF7sZZ0dss6X1qH8YB+Edqj6yBrH0R1css6QjRnEnR0oVYBevz1WsrMVk4WlNM2MtDbWzqLxWrjvTWHeW3FPkwWGwEGLY+N6cytA5PQaJpnNlhsiB8GnYYKi40T+eXOHo+elFlUDrS80mqoMtU9rwybTfXY95kj6BgfKv1XhBBC1O6ee+7hnnvuqfFzCxYsqPbv+++/X7IahWiiyixlvLH1DQDu6nEXocZQj60dQgnjtGsA+Mh6mcfWba5USyvMeYMxRPyOMfpHSg93BFyf2HGKcDbp+zHQ/Cds+Qgue87lawjR3DWfGlofoCiKT0+wrrDYuOndDbzwYyomi42LO0aybPpQJg1KbrYBRwCNRiEpvLLEOtc7fR0zCx39HFte1l1cqB9ajUKF9fRgF09Iz7cHeuNlcrUQQgghRIv36e5PySzNJD4wnpu71Dz4yV1u0P5GgGIi1daaDbYuHl27uTJlj0C1BKD1O4U+bLPb1vnJWBkk3vYZWKR/rxD1JUFHF3NmdeV7d1JyTdYdzGbTkTwCDVrmXt+Tj+8YQOtwz2f9eUOSc5iMd74umS10iAyATqshNsQebPXkBOsTVXo6CiGEEEKIliunLIf3/3ofgPsvuB+j1nPX5Ao2btPaB1Z9ZB2NO/oPtkg2f0w5IwAwRK4ApcIty2zS94PgOCjLhdSlbllDiOZMgo4u5suZjoez7Vl+F3eM4sZ+rVvUcA3nMJlsL2U6VpZXR4W0vKAjeKevo7O8+v+zd99hTpVpH8e/KZPpMzAdho5IbwIiWAAVBCxrWcVVUVbUVURFrKy7tncVxYYN+4KuIrhrw4aiAhZA6SBNkQ4zDNN7SXLePzIJjMAwQJKTmfl9rivXJCcnz7kTncOZO/fz3Eo6ioiIiDRqL69+mZKqEjondGZk25FBPfYg62raWPdSYETxkevUoB67oavKG4C7MgFrWBGOxO8Ccgy3xQa9r/I8WP5mQI4h0pAp6ehn3qqqXSHYwdqbdGwTgmtNBlqb6qSj+ZWOjW96NezvYB2spKNhGAckHRvnZy4iIiIisK1gG//79X8A3Nn3TqyW4P4JfE11A5n3XIMpQ9elfmXYqcjyTH92JH6HxVYUmOP0Hg1YYOtCyN0SmGOINFBKOvpZi3pQ6diuESYdvdOrt+eYU+m4r7DxTq+GAysdg5P0LSx3UlLpAlTpKCIiItKYPbviWZyGkzNanMHJzU4O6rFbWLIYZF0DwH9cQ4N67MbCWdQDV1lLLNZKHMlfB+YgTVtDe89Ublb8JzDHEGmglHT0s/1rOoZu0rFtcuNLOrbxJh1zS3G7jaAfvzF3r4bgT6/2VjkmRDuICPN/JzsRERERCX0rs1by9Y6vsVqsTOwzMejHv9w2H6vF4DtXd3YYqUE/fuNgoWKvZ8p8WJOlWB1ZgTnMSdd4fq56B1xVgTmGSAOkpKOfedd0zCwox2VCcutwyqtcvkSoNwHXmDRvEoHdaqHS6SazsDzox/dNr45rnFMqgj29WlOrRURERBo3wzB4atlTAFx0wkW0b9I+qMe34+Qy20IA3nWdGdRjNzausrZUFXXBYnHjSPkiMAfpOBKik6F4L/z2VWCOIdIAKenoZymxnuSW022w14Tk1uHszC3FMCA23E5SjMPscILObrP6OnVvD/K6jsUVTkqrp/o29krH3fllQak09SUd4zW1WkRERKQxmrd9Hqv3rSbSHsnNvW4O+vHPsq4kxZLPPiOeee4+QT9+Y1ORNQLDsBIWuwFbZADWXbQ7oOflnvsr3/b/+CINlJKOfmazWmhWXV0VSlOstxwwtboxda0+kK+DdZDXdcyqTj5HO2xEh9uDeuxQ0Sw+Alt1pWl2cUXAj7c73/OZaz1HERERkcanylXF1BVTARjTdQzJUclBj+EK2zcA/Nc1CCeN82+AYDIqk6nK96zZGZ76OeD2/0F6VXex/vVLKNrr//FFGiAlHQPAt65jCDWT8a3n2AibyHi1TjCng3Vjn1oNnkrTtOr3vzMIvxfeSsd0JR1FREREGp3//fY/dhbtJDEikTFdxwT9+C0sWZxuXQvALNeQoB+/sarcdxaGy4Etchf22F/8f4CUTtCiHxguWDPb/+OLNEBKOgZAehNPciuUKh237vMkHRvjeo5eZnWw9iYdkxvp1Gqv9CB2sM4o8K7pqKSjiIiISGNSWlXKK6tfAeCmnjcRFRYV9BjUQMYchiuWytwzAAhP/gpw+f8gvaurHVe+DUbo9HAQCVVKOgZAepA79dbF1upEW7tG2Lnaq02SSZWOhY27c7VXMDtY7/FNr2681aUiIiIijdE7G94hpzyHFjEtuLjDxUE/vhrImKsy93Tczmis4dmENVnu/wN0vRjskZC9CXYt8//4Ig2Mko4B0KLJ/qYZoULTq2tWOhpB/FZqn3d6dWzjToAFq4O107W/Q7kqHUVEREQaj4KKAqb/Mh2Am3vfTJgtLOgxqIGMydzhVOYMBsCR9A1Yqvw7fkQcdL3Qc3/lf/w7tkgDpKRjAHgrHXcHYRppXRSVV/kSX20acdKxRdNIrBYorXSxLwjNTLz2r+moSkcI/PTqrKIKXG6DMJuF5JjG/ZmLiIiINCb//uXfFFUV0aFpB0a2HWlKDGogY76qvFNwV8VjDSsgrOkS/x+g15Wen798AJXBXbpLpL5R0jEA0g+odAxmRd3hbK+eTpwU4yAuIvjf9oWKcLvNV/m2I4hTrLOKNL0a9icdA91gydtEJi0+Aqu1cXZqFxEREWls9pXuY+aGmQDc2vtWrJbg/6mrBjIhwgijYt/ZADgS54O13L/jtz4VmraByiJYP8e/Y4s0MEo6BkCz6nXkyqvc5JZUmhwNbNHUah9vI51gruuYVajp1QAtvdOr88twuwOXjPcua9A8XlOrRURERBqLV9a8QrmrnJ7JPRnUYpApMaiBTOhwFpyEqyIZq70UR8L3/h3caoVeBzSUEZHDUtIxAMLtNl9VWyis6+jtXK2kI7RK9CS+gtnBWtOrPdLiI7BaoNLpJjuA09u9TWTStZ6jiIiISKOws3An7//6PgC3nXQbFkvwZ7vYDDWQCS02KvcNA8CR8D0WW7F/h+/1F8AC23+AnN/9O7ZIA6KkY4CkB2kqaV1sq06wNeb1HL3aJAa3g3V5lYuCMs/ixY19enWYzUqz6urDXQFMxmcUVFc6KukoIiIi0ii8uPpFnIaTU5ufSr+0fqbEcHLVz2ogE2KcRd1wlaVjsVXiSFzg38HjW0D76uTyqpn+HVukAVHSMUDSQ6iDtXd6dTslHWt0sA4GbwMfh91KfGTjXU/TK93XTCZwvxfeNR2VdBQRERFp+DblbuLzLZ8DcOtJt5oWx4iKuYAayIQWCxX7zgEgrOliLPZ8/w7fu3qK9aqZ4Hb5d2yRBkJJxwAJRnKlLgzDYOs+Tyl526QYU2MJBR1SPJ/BxowiCsurAn4879Tq5JhwU6Z5hJpgdLDeXT292ru2qoiIiIg0XM+vfB4Dg3PanEOXxC7mBJG3jd5VKwE1kAk1rpIOOEvaYbG6cCR/7d/BO50LkU2haA/8Pt+/Y4s0EEo6BkiLEKl0zC2ppLDcCUDr6qnFjVnbpGjaJ0dT6XLz9fq9AT/ePm/n6ka+nqOX9/ciGJWOWtNRREREpGFbmbWShbsWYrPYGN9rvHmBrHgLK2ogE5osVGQNByAsfjlWR5b/hraHQ/fLPPdX/sd/44o0IEo6BkiorOnoXc8xvUkkEWE2U2MJBRaLhXN7NAfg87UZAT+er4lMI1/P0auFt4N1gH4viiucvjU0m8Wr0lFERESkoTIMg2dXPAvAhSdcSJv4NuYE4qrydTBWA5nQ5C5vRVVRZywWA0fyPP8O7p1ivelzKM3179giDYCSjgHiTa6YXem4RZ2rD3Jej2YAfPdrti9BFShZhd6koxJgEPjp1RnVv29xEXZiI7SGpoiIiEhD9eOeH1m+dzkOq4Mbe95oXiC/zoXiveRZmqiBTAir3HcOhmEhLG4t1ohd/hu4WQ9I6wGuSlj7X/+NK9JAKOkYIN6pnQVlVRRXOE2LY2u2ko5/dGJqLCekxARlinWWd3q1Kh2BA5LxeWUYhuH38XeriYyIiIhIg+c23Dy34jkALu90OWnRaeYFs2w6APPCz1YDmRDmrkjDWdgLgPDkL/07eO/Rnp+aYi1yECUdAyQ63E6TKE+llZlTrL3Tq9so6VjDud091Y6BnmLtm16tNR0BSIuPwGqBCqebfcUVfh8/o8CT5NV6jiIiIiIN11fbv2JD7gaiw6K5rvt15gWStw1+/xaAL8PPMS8OqZOKfWdjGFbsMb9hi/rdfwN3/zPYHJC5FjJW+29ckQZASccASvc1kwlcp94j8U6vbqekYw3neqdY/7YvoFOsNb26JofdSlqc57MIxLqOe1TpKCIiItKgOd1OXlz5IgDXdLmGphFNzQtmxVuAAe2GkGlrZl4cUidGVSJVef0Bb7Wjn2ZeRSVAp/M896vX9xQRDyUdA8iXdDSp0tHtNnyVjppeXdOJqbF0SImhymUwL4BTrL2VjsmaXu0TyGYy3unVzZooySsiIiLSEH28+WO2FW6jaXhTru56tXmBHNBAhj5jzItDjkpl9pkY7jBsUTuwxWzw38DehjJr3oOqcv+NK1LPKekYQN4O1rtMaiaTWVhOeZUbu9Xia+Ah+3mrHQM1xdrpcpNTounVf9QigJ3dvZWOml4tIiIi0vCUO8uZtnoaANd1v47oMBMLK6obyBCdAp3ONS8OOSqGK5bK3FMBb7Wj2z8DtxsMcS2gPB82feafMUUaACUdA8jsSsdt1U1kWiVEYbfpP/Ufedd1/P63fRSU+n+KdU5JJYYBVgskRivp6BXIDtZ78j3fKmp6tYiIiEjDM3vTbLJKs0iLTmNUp1HmBlPdQIbeV4ItzNxY5KhU5pyB4YrAFrEXe9wq/wxqtUGvKzz3NcVaxEeZqADyVXSZVOm4RZ2ra9UhNZaOqbFUuQy+Wp/p9/G96zkmxYRjs1r8Pn59Fajp1W63QUaB1nQUERERaYiKK4t5fe3rANzU8ybCbSZ+qX9AAxlOMnGKtxwbdxSVOYMBCE/+GnD6Z1xv0vH3+ZC/0z9jitRzSjoGUHoTT3LFrErHrUo6HtHIAHaxziryVN1panVN6QGqdMwurqDKZWC1QKrW0BQRERFpUN5c/yb5Ffm0iWvDBe0vMDeYAxrIkNDO3FjkmFTmDsTtjMXqyCWs6VL/DJrQFtqcDhiw+l3/jClSzynpGEDe5EpWUQUVTlfQj++dXt1GScfDOrdHGgDf/5bt9ynW3iYy6lxd0/7p1WUYhp86xgF7CjxJ3rS4CC0nICIiItKA5JTl8Na6twAY33s8dqvdvGDUQKZhMBxUZp8JgCPpG7BU+Gfc3qM9P1e+DW4/rRcpUo/pL/MAahoVRmSYDYCM/OB3sPJWOrZT0vGwTkiJpVNaLE63wZd+nmLtnV6doqq7GprFR2KxQIXTTXZxpd/G9TaR0dRqERERkYbltbWvUeospUtiF4a2HmpuMJu+UAOZBqIqrx/uygSs9mIcCT/6Z9DO50N4HORvh+0/+GdMkXpMSccAslgsvmrHYK/rWOVysyPXM321bbKSjrUJ1BRr3/RqJR1rcNitpMV5qj/9OcXam3RspqSjiIiISIOxq2gXszfNBmDCSROwWkz+E3apZ11Jel+lBjL1np2KfcMAcCQuBFvJ8Q/piIJul3jur3zn+McTqefqTdLxkUceYeDAgURFRdGkSROzw6kzszpY78orw+k2iAizkqrpvbXyJh1/+C2b/FL/Vd55p1cnx+nz/6MDp1j7y25fpaM+bxEREZGG4sVVL+J0Ozml2SkMaD7A3GCyf4OtCwEL9P2rubGIXzgLe+Aqb4bFVkF44nz/DOqdYr3+Yygv8M+YIvVUvUk6VlZWcumll3LTTTeZHcpR8TXNCHKlo289x8RorOqcXKsTUmJ8U6y/WrfXb+PuX9NRlY5/FIgO1t5Kx3RVOoqIiIg0CJtyN/HZls8AT5Wj6Zb92/PzxOHQpJW5sYifWKnIGg5AWNPFWOz5xz9k+kmQ3BmcZfDLB8c/nkg9Vm+Sjg899BC333473bt3NzuUo2JWpeMW73qOmlpdJ+dWVzt+5scp1vsKNb36cFoEoIP1nup1U5vHK+koIiIi0hA8t/I5DAyGtR5G16Su5gZTWbJ/umy/68yNRfzKVXIizpJ2WKwuwpPnHf+AFotn+j1UdzoXabzqTdLxWFRUVFBYWFjjFmwtfGs6+i+5Uhdbs4sBaKsmMnUysocn6fjj5mzySo5/irVhGOwrrq501PTqg7QIwFqnGQVqJCMiIiLSUCzfu5zvdn2HzWLjlt63mB0O/PI+VBRA0zbQ/kyzoxG/sviqHe3xK7A6/DD7reflYHPAnhWwZ9XxjydSTzXopOPkyZOJj4/33Vq2bBn0GHyVjkGfXu1JcrZJVNKxLtonx9C5WZxnirUfuljnlVZR5TIASI5RpeMf+Xt6dXmVy9cJW9OrRUREROo3wzCYunwqABd3uJg28W1MjQfDgJ9f89zvey1YG/Sf0Y2Su7wVVYVdsVgMHClfHv+A0UmeTtYAy6cf/3gi9ZSpZ8sHH3wQi8VS623ZsmXHPP6kSZMoKCjw3Xbu3OnH6OvGu6ZjRn45LrcRtONu1fTqo3Zu9zQAPlt7/ElHb+fqplFhOOy6KPmjA6dXG8bx/15kFHg+72iHjbhI+3GPJyIiIiLmWbBzAav2rSLCFsGNPW80OxzYvRwy14AtHHpdZXY0EiCV+87BMCyExa7HGrn9+Afse63n59r/QUXR8Y8nUg+Z+tf5+PHjufzyy2vdp02bNsc8fnh4OOHh5laZpcRGYLdacLoNsorKaRaE9ebKq1y+ysq2STEBP15DMbJ7M5786lffFOum0Y5jHiur0NtERlOrD6VZfCQWC5RXuckpqSTpOKtBvU1kmjWJxGJR4yQRERGR+srldvHcyucAuLLzlaREpZgcEbD0Dc/PbhdDdKK5sUjAuCtTqCrog6PJMsKT51K244bjG7D1qZB0ImT/Cmveg35j/ROoSD1iatIxKSmJpKQkM0MIOJvVQrMmEezMLWN3XllQko7bcjxVjnERdppGhQX8eA1Fu+QYujSLY31GIV+uy+Tyk4+9I52vc3WcplYfisNuJTU2gszCcnbllR130tGbZNd6jiIiIiL126dbPmVz/mbiHHFc2/1as8OB0lzPeo6gBjKNQOW+swmLW4U9eiu26E3Aycc+mMUCff4KX06CZdM9lY8qkJBGpt7M+9yxYwerVq1ix44duFwuVq1axapVqyguLjY7tCMK9rqO26qnVrdNjlHV11E6t4d/ulh7p1cnq3P1Yfmzg7W30jG9iSpLRUREROqrClcFL656EYCx3ccS54gzOSJg5dvgqoBmPSG9j9nRSIAZziZU5Q0EIDxlLgbu4xuw5+Vgj4C9az3T9EUamXqTdLz//vvp3bs3DzzwAMXFxfTu3ZvevXsf15qPwZLexL9NM45ki3c9R3WuPmoju3uSjot+zyH3OLpYa3r1ke1POh7/74U36dg8CJXEIiIiIhIYszfOJqMkg5SoFK7odIXZ4YDbDcuqp1b3u05Vao1ERfZgDFcEtohMSsOOM98QlQBdL/LcX/bv4w9OpJ6pN0nHGTNmYBjGQbfBgwebHdoReZvJBKvSces+T9JRnauPXtukaLo2j8PlNvhy3bE3lNnnnV6tSsfD2t/B+vgrHb2NZDS9WkRERKR+Kq4s5rW1ng7R43qOI8IeAl/e//4t5G2D8HjodonZ0UiwuKOozBkEQH7EJ1S5qo5vPG9DmV8+gLK84wxOpH6pN0nH+qyFd3p1kCodvWs6tlXn6mPim2K95tinWHunV2tNx8PzZ6Wj1nQUERERqd9mrJtBfkU+beLa8KcT/mR2OB5LX/f87HUFOPS3VWNSmXsqbmcsLmsO7/363vEN1qIfpHQFZxmsnu2fAEXqCSUdgyDolY6aXn1czq2eYr14Sw45xRXHNIavkYymVx/W/krH4/u9MAzjgDUdlXQUEZGjM23aNNq2bUtERAR9+vTh+++/P+y+H3zwAUOHDiU5OZm4uDgGDBjAl19+GcRoRRqm7LJs3lr/FgC3nnQrdqup/U498nfAb9W/3+o63PgYDir3nQXAq2tepaSq5NjHslig718995dPB8PwQ4Ai9YOSjkGQfkCloxHgE0xheRXZxZ61CNso6XhMWidG0y3dO8V671G/3jCMA9Z0VKXj4XgrHY/39yKvtIryKs8Cz6nx+rxFRKTuZs+ezYQJE7jvvvtYuXIlp59+OiNGjGDHjh2H3P+7775j6NChfP755yxfvpwhQ4Zw/vnns3LlyiBHLtKwvLrmVcqcZXRP6s7Zrc42OxyP5TPAcEPbQZDUwexoxARV+f2wu5LJLc/1JcWPWY9REBYN+zbCjsX+CVCkHlDSMQiaVXfULatykVd6nOtBHIG3c3VybDgx4SHwDWE9dW735gB8tnbPUb+2uMJJWZUL0PTq2jRrEoHF4vm9OJ6mPd4qx+TYcMLtNn+FJyIijcDTTz/N2LFjue666+jcuTNTp06lZcuWvPTSS4fcf+rUqdx9993069ePDh068Oijj9KhQwc++eSTIEcu0nDsLNrJf3/9LwATTpqAJRSatTgrYEV1kqnfdebGIiayEV9xPgAzfplBbnnusQ8VEQfdq9cFXTbdD7GJ1A9KOgZBuN3mq3gL9LqO3qnVbVXleFx8U6x/P/op1t6p1THhdqIcSvweTrjdRmr19PPjmWKt9RxFRORYVFZWsnz5coYNG1Zj+7Bhw1i0aFGdxnC73RQVFZGQkHDYfSoqKigsLKxxE5H9Xlj5Ak63k1Obn8rJzU42OxyPDZ9AyT6IbQYdR5odjZgoquokOid0ptRZymtrXju+wbwNZdZ/BCU5xx2bSH2gpGOQpPuaZhx/p97abNmn9Rz9oVViFN3T43EbMPcou1hranXdpfuhmcz+9Ry1fqaIiNRddnY2LpeL1NTUGttTU1PJzKzbv/1PPfUUJSUlXHbZZYfdZ/LkycTHx/tuLVu2PK64RRqSjbkb+Xzr5wDcdtJtJkdzAG8DmT5jwKYigsbMgpUJJ00AYPam2ewu3n3sgzXvDc16gasSVr3jl/hEQp2SjkHiW9cxwM1kvJWOWs/x+B1rF2tv5+pkJR2PqIUfkvEZBZ7Pu3m8Kh1FROTo/XEqp2EYdZre+e677/Lggw8ye/ZsUlJSDrvfpEmTKCgo8N127tx53DGLNBTPrngWgBFtRtA5sbPJ0VTbu86z5p7FBiddY3Y0EgIGNB9A/7T+VLmrmLZq2vEN5q12XD4D3O7jjk0k1CnpGCT+qOiqi205ml7tL94p1ku25JB9FFOs93k7V8ep8u5IWvjh90LTq0VE5FgkJSVhs9kOqmrMyso6qPrxj2bPns3YsWN57733OPvs2ptehIeHExcXV+MmIrA0cyk/7P4Bu8XO+N7jzQ5nv6VveH52Pg/impkbi4QEi8XChD4TAPjk90/YlLvp2AfrdgmEx0Hu77DtO/8EKBLClHQMkhZBqHQ0DIOtml7tNy0ToujRonqK9S91n2LtXdNR06uPrEXTKOD4Kh33KOkoIiLHwOFw0KdPH+bNm1dj+7x58xg4cOBhX/fuu+8yZswYZs6cybnnnhvoMEUaJJfbxRNLnwDgkhMvoVVcK5MjqlZeCGtme+6rgYwcoFtSN4a2HoqBwZPLnsQwjGMbKDwGelQvyaGGMtIIKOkYJN5Kx0A2kskurqSowonF4lmTUI6ft9rxaKZYZxV6pvsq6Xhk/qh03J90VGWpiIgcnYkTJ/L666/z73//mw0bNnD77bezY8cObrzxRsAzNfrqq6/27f/uu+9y9dVX89RTT3HKKaeQmZlJZmYmBQUFZr0FkXppzu9z2JC7gdiwWMb1Gmd2OPutmQ2VxZB0IrQ53exoJMTc3ud2wqxhLMlYwne7jqNKsc9fPT83fgpFe/0TnEiIUtIxSNKbeJKAgax09E6tTm8SSbjdFrDjNCYjq5OOP23N8U2bPhJfpWOcko5Hsr/SseyYvi2sdLp9n7cqHUVE5GiNGjWKqVOn8vDDD9OrVy++++47Pv/8c1q3bg1ARkYGO3bs8O3/yiuv4HQ6ufnmm2nWrJnvdtttIdQAQyTElVaV8tzK5wC4occNJEQcvvt7UBnG/qnVfcdCHdZ2lcalZWxLrup8FQBPLnuSKnfVsQ2U1g1anAxuJ6z8jx8jFAk9SjoGibfSsaCsiuIKZ0CO4Z1arfUc/adlQhQ9WxxdF+v906tVeXck3urEsioXuSWVR/36vYXlGAY47FYSox3+Dk9ERBqBcePGsW3bNioqKli+fDlnnHGG77kZM2awYMEC3+MFCxZgGMZBtxkzZgQ/cJF66o1f3iC7LJuWsS25ovMVZoez3/ZFsG8DhEVBz8vNjkZC1PU9richIoFthdt4b9N7xz6Qt6HMijfB7fJPcCIhSEnHIIkJtxMfGQYEbor1lmyt5xgI+7tY76nT/ppeXXfhdhup1RWhx1IF7H1NepPIOnUaFRERERHzZBRn8Oa6NwGY2GciDlsIfWm8rLrKsfulENnE1FAkdMU6Yrm5180ATFs1jYKKY1xeo+uFENEE8nfA79/6LT6RUKOkYxCl+5rJHHvTjNpszS4GoI2Sjn41opsn6fjz1lyyispr3be8ykVhuaeSVZWOdXPgFOujlVGg9RxFRERE6oupK6ZS4aqgb2pfzmp1ltnh7Fe0F9bP8dxXAxk5gos7XMwJTU6gsLKQl1e/fGyDhEVCr+pKXzWUkQZMSccgCnQzmW3ZnmSmplf7V8uEKHq2bILbgC+P0MXau+6jw24lLtIejPDqvf3NZI4+Gb8n35MEbh6v9RxFREREQtmafWv4fOvnWLBwV7+7QmuWysq3wF3lWWevWQ+zo5EQZ7fauavvXQDM2jiLbQXbjm0gb0OZX7+Agt3+CU4kxCjpGETeSsddAWgm43YbbM3xTq+O8fv4jd151Q1lPj1CF2tvJWRKbHhoXUiFMN/vxTEk473Tq5upiYyIiIhIyDIMgylLpwBwQfsL6JLYxeSIDuCsgKX/9tzvN9bcWKTeGJg+kNPTT8dpOHlq+VPHNkjyidD6NDDcaigjDZaSjkHUIoCVjnsKyqh0ugmzWXwVleI/I7qnAfDztlzfmo2HklXobSKj9Rzr6nimV+/xremo6dUiIiIioerLbV+yet9qIu2R3HrSrWaHU9Oa96BoD8Q2g64XmR2N1CN39r0Tm8XGgp0L+Cnjp2MbpG91tePyN8EVmIazImZS0jGI9q/p6P+ko3dqdauEKGxWVdj5W4umUfRq2QTjCF2s1bn66B3f9Grvmo5KtIuIiIiEogpXBc8sfwaAv3b7KylRKSZHdAC3C36c6rk/4Gawq3BA6q5dk3ZceuKlAExZOgXXsXSh7nw+RCV6Et+/fennCEXMp6RjEAVyTUdvE5m2mlodMOf1OPIUa9/06jhdsNTV/qRjGYZh1Pl1hmH4fpeUdBQREZEjcbnrfp3REI4bKv6z/j/sKdlDalQqY7qOMTucmjZ8AjmbPV2E+4wxOxoJQckx4bX+Do/rNY7YsFh+zfuVjzZ/dPQHsIdD76s89//QUKaxnzukYVCniyDyVjpmFVVQ4XQRbrf5bewt2dXrOSariUygjOjejH99toGl1VOsU+IOrmbU9Oqj500Ylla6yCutIiHaUafXFZY7Kan0fJuoRjIiIiJyJDarhdtmrWRzVnHQjnlCSgzPXt47aMcLNdll2by25jUAbjvpNiLtIXTNZhjwg6cCk5NvgPBYc+ORkBQXaT/iucPmGAaR7/Pwj0/z+tw4rBzdrLdmrq68Drg3f811z/yXvba0Rn/ukIZDSccgSoh2EBFmpbzKTUZ+OW382GV6a3XSsU2iko6Bkt4kkt6tmrByRz5f/JLJNQPbHLSPplcfvYgwGymx4WQVVbArr7TOSceMAk+VY0K0g0iH/xL4IiIi0nBtzipm3Z5Cs8NoNF5Y+QKlzlK6JXbj3Hbnmh1OTVvmQ8YqsEdC/xvNjkZCXO3njt5Et18Ajhx+r/qEyn3nHNXY64hhYVgPBtnWcHrOf3nIec3xhisSMjS9OogsFkvA1nXcVp10bOvHRKYc7NzqLtafHWaKtTfpmKzp1UflwCnWdbV/PUcleEVERERCzabcTXzw2wcA3H3y3VgtIfanp7fKsc81EJ1obixSz9mp2DsSAEfC91jseUc9wmsuT1J+lG0BTSjyZ3AipgqxM3/Dl17dqdef6zpWOt3srB5P06sDa2R10nHp9lz2HqKL9T7vmo6aXn1UWhzD78XufM9n3UxTq0VERERCimEYPLH0CQwMzmlzDr1TQmya6K7lsPU7sNphwHizo5EGwFncBWdJOyxWJ+Epc4/69T+4u7HO3ZooSwVX2b4OQIQi5lDSMci8lY67/FjpuDOvFJfbIMphU7IrwJo3ieSkVp4u1l+srVnt6HS5ySmpBDS9+mgdSwdrb6VjuprIiIiIiISUBTsX8FPmTzisDm7vc7vZ4Rzsh6c9P7tfBk1amhuLNBAWKvaeh2FYCItfjTVy+1G//hXn+QBcY/8Sh1Hh/xBFTKCkY5C1CEAH620HrOdosVj8Nq4c2rk9mgPw2R+SjtnFlRiGZ5HyxDquSyge3kpHTa8WERERqd+qXFU8tfwpAEZ3GU16TLrJEf3Bvk2w8VPP/dMmmBqKNCzuiuZUFfQBICL1U8B9VK//zN2fXUYSyZZCzqz4NgARigSfko5Btn9Nx7pXdB2Jt4lMW02tDoqR3dMAWLotj8yC/VOss6qnVifFOLBalfw9GunHtaajKh1FREREQsWsTbPYXridhIgErut+ndnhHOyHqZ6fnc6D5I6mhiINT+W+YRhuB7bIndjj1hzVa13YeN3pWRvy4vIPwO0KRIgiQaWkY5B5kyv+bCSzpTrp2E5NZIKiWXwkfVo3BeCLX/ZXO2YVqnP1sTpwerVhGHV6zZ7qNR2VdBQREREJDfnl+by0+iUAxvceT4wjxuSI/iB/J6x9z3P/tInmxiINkuGMozJ7EADhKV+ApfKoXv+eazD5RjTp7gzY+FkgQhQJKiUdg8xb6ZiRX47LXbfkypFs3bd/erUEx6G6WHs7V2tdzaPn/b0oqXSRX1p1xP1dboPM6kY+WtNRREREJDS8tPoliiqL6NC0AxefcLHZ4Rxs8QvgdkLbM6BFH7OjkQaqMvcM3FXxWMMKcCR8f1SvLSWCt1xDPQ9+fBbqWJAhEqqUdAyy1LgI7FYLTrfhm457vLblaHp1sHm7WC/bnkdGgadq1fvfMyVOScejFRFmI7k6WVuXKdZZRZ6kfZjNQnKMPm8RERERs23I2cCsTbMAuKvvXdisNpMj+oOSbFj+puf+aSHY3EYaDiOMiqwRADiSFmAJyzmql7/lPIdKwmD3MtixOBARigSNko5BZrNaSIv3TL/1RzOZ0konGdXrCmp6dfCkxUfQr031FOu1mcD+SsdkTa8+JkfTwdq7nmNqXITWzxQRERExmcvt4qHFD+E23AxvM5wBzQeYHdLBfnoFnGXQrBe0G2J2NNLAOQt74ixph8VaRUTax0DdKxaziefr8LM8D358NjABigSJko4m2N9M5viTjtuyPQmaJlFhNIlSx+Rg8lY7ertY71/TUZV3x+JoOljv1nqOIiIiIiFj1qZZrMtZR2xYLHf3u9vscA5WUQQ/v+K5f9rtYNGX1hJoFsozL8Jw27DH/Io99uiaynwYcRFggV/nQtbGwIQoEgRKOprgWDr1Ho5varWqHINuRLdmWCywfHsee/LL2OedXq2k4zE5lkpHrecoIiIiYq7MkkyeX/k8ABP6TCA5KtnkiA5h+QwoL4DEE6Dz+WZHI42EUZlMZY6nqjY87ROw1v3v/z22dOh8nufBoucDEZ5IUCjpaIIWfqx03JqtpKNZ0uIj6Nc6AYAvfsnc30gmTtOrj0WLo0jGe5OOzZvosxYREREx0+M/P05JVQk9knvw5xP/bHY4B3NWwOIXPfdPnQChttakNGiVOYNxVSRjtRcTnjL36F586gTPzzWzoXCP32MTCQYlHU3grXT0x5qOW6o7V2s9R3OM7J4GwCer97BP3auPi3d6dV2S8Xs0vVpERETEdPN3zOfrHV9jt9h5YMADWC0h+Ofl6llQlAGxzaHHKLOjkcbGsFOReREAjqY/YY3cXvfXtugLrQaCuwp+ejlAAYoEVgj+q9DwpTepe3LlSLZmFwPQRklHU4zo7plivWpnPk63Z3HgJHVTPiYHVjoaRu0LLe+vdFTSUURERMQMpVWlPPrzowBc3fVqTmx6oskRHYLbtb8Rx8DxYNca+BJ8rtJ2VOX3ASAi7QPAVfcXn3qb5+ey6VBe6P/gRAJMSUcTHFjpeKTkypFsy/Gsf6fp1eZIjYugX5sE3+OEaAcOu36tjoV3fcbiCicFZVW17runQGs6ioiIiJjpxVUvklmSSXpMOjf2vNHscA5t/ceQ+ztENoWTrjE7GmnEyrNG4nZGY4vYiyPx+7q/sMMwSOoIFYWetUlF6hllR0zQLN6zDl1ZlYu80tqTK7XJL60kt6QSgDaJSjqa5dzqLtagqdXHIyLM5qsSrW1dx5IKJ/nVvzfe3yURERERCZ4NORt4e8PbANzX/z4i7SH4RbBhwA/PeO6f/DcIjzE3HmncXNFUZI0EwJH0DZawnLq9zmqFU2/13F/yEjgrAxSgSGAo6WiCiDAbydXJqeNZ19HbRCY1LpzocLtfYpOjN6JbGhaL536yko7HpS4drDOqqxxjI+zERoQFJS4RERER8XC5XTy0+CHchpvhbYZzeovTzQ7p0H7/BjLXQFgU9P+b2dGI4Cw4CWdJOyzWKiLSPgbqOOux+6UQkwZFe+CX/wU0RhF/U9LRJOm+DtaHT64cybYcda4OBSlxEZxcPcU6JVaVd8ejLh2sd1c3kdHUahEREZHgm7VpFuty1hEbFsvd/e42O5zD+2Gq52efMRCVUNueIkFioTzzIgy3DXvMr9hj19TtZfZwOOUmz/0fnwO3O3AhiviZko4mSa9DcuVItu7zJh01VcBsN5zRjiiHjbM6p5gdSr3m7WBd2++FmsiIiIiImCOzJJPnVz4PwIQ+E0iOSjY5osPYvhi2fQ/WMBgw3uxoRHyMymQqc4YAEJ72CVjrmA/o+1dwxMK+DbB5XgAjFPEvJR1N0sJX6XjsScct1dOr26nS0XRndU5l3UPnMPKA9R3l6NVperUv6aiqUhEREZFgevznxympKqFHcg/+fOKfzQ7n0Nwu+KK6ArPXFRCfbm48In9QmTMYV0UyVnsx4Slz6/aiiHjoO8Zz/8fnAhabiL8p6WiSAztYHyvv9Oo2SjqGBIt3YUc5ZkczvVqVjiIiIiLBM3/HfL7e8TV2i50HBjyA1RKif0ou+7dnLceIeDjzn2ZHI3Iww05F5kUAOJr+hDVye91e1/8mT/Xu9h9g1/IABijiPyH6L0XDl36clY6GYRwwvVpJR2kYDpxebRiHXljZO71aazqKiIiIBEdpVSmP/vwoAFd3vZoTm55ockSHUZIN3/6f5/6Qf0BMiE7/lkbPVdqOqvw+AESkfQC4jvyi+HRPUxmARc8GLjgRP1LS0SS+SsdjTDruK6qgpNKF1QKtEqL8GZqIabyVjsUVTgrLnIfcZ0919+pm8Uo6ioiIiATDi6teJLMkk/SYdG7seaPZ4Rze1w9CeQGkdYe+15odjUityrNG4nZGY4vYiyPx+7q9aOAtnp/r50DO74ELTsRPlHQ0ibdKK7+0ipKKQydXauNdz7FF0ygcdv1nlIYhIsxGUkw4ADsPsa6j222Q4ZterTUdRURERAJtQ84G3t7wNgD39b+PSHuIfvG7cyms/I/n/sinwGY3Nx6RI3FFU7H3XAAcSd9gCcs58mtSu0CHYYABi7S2o4Q+ZatMEhsRRlyE5x/CY6l23JatqdXSMNXW2T27pIJKlxurBVLjlHQUERERCSSX28VDix/CbbgZ3mY4p7c43eyQDs3tgs/v8NzveQW06m9uPCJ15CzsjbOkPRZrFRFpHwOHXmKqhtNu9/xc+TZkbw5ofCLHS0lHE6VXr193LM1ktirpKA1UbR2s91RXOabGRRBm0+lLREREJJBmrJvBupx1xIbFcne/u80O5/CWz4CM1RAeD0MfMjsakaNgoTzzQgy3HXvMr9jj69AgpvVAT7Wj2wnfPBjwCEWOh/5qN5F3ivWuY6h09E6vbpespKM0LLV1sM6o/l1R52oRERGRwFqXvY4XVr4AwJ397iQ5KkSbspTkwDcPe+6feR/EpJgbj8hRMiqTqcw+G4CItDlYwrKP/KKhD4PFChs+gR1LAhyhyLFT0tFE3uTKsVQ6eqdXt0lU0lEalgM7WP/RbiUdRURERAKutKqUe76/B6fhZGjroVx0wkVmh3R43zwE5fmQ2g36jjU7GpFjUplzBs6SdlislUSmz8LgCH0fUjpD79Ge+1/9A4w6TMsWMYGSjibyVjoe7ZqOLrfB9hzP1FNNr5aGpi7Tq9VERkRERCRwHvv5MbYXbic1KpUHBjyAxWIxO6RD27UcVrzluT/ySTWPkXrMSvmeURiuSGyRuygI//TILxnydwiLhl1LYf1HAY9Q5Fgo6WiidF+l48HJldrsyS+j0uXGYbeq4ksanJYHVAAbf/jGbo+30jFe/9+LiIiIBMKX277kw80fYsHC5NMnEx8eb3ZIh+ZrHmNAj8uh9QCzIxI5LoYznvKMSwAoDJ/Hzxk/1/6C2DQYeIvn/tcPgrMysAGKHAMlHU10rJWO3vUcWydEYbOG6LeOIscovYlnenVRhZPCsprTCvYUaHq1iIiISKBkFGfw0GJPI5brul9Hv7R+JkdUixVvwZ6VEB7nWd9OpAFwFnWjMu9ksBhM+mES+eX5tb9g4C0Qkwp522Dp68EIUeSoKOloIm+lY1ZRBZVOd51ft02dq6UBi3TYSIpxALDzD1XAvkpHTa8WERER8SuX28W9399LUWUR3ZO6c1Ovm8wO6fBKcz1rOYJnimlsqrnxiPhRxd7zsLtSySrN4sHFDx40+6uG8BjP7wDAd1OgLD8oMYrUlZKOJkqMdhARZsUwIKOg7tWOW71JR3WulgYqvbqZzIFVwOVVLrKLPVMG0lXpKCIiIuJXb/zyBiuyVhBlj+Lx0x8nzBpmdkiH981DUJYHKV2h3/VmRyPiX4aDpNJrsVvtfLPjG97/7f3a9+91FSR38vxOfP9UcGIUqSMlHU1ksVh800SPpoO1d3p1O1U6SgO1v5nM/t+LzAJPE5koh434yBC+CBYRERGpZ1bvW820VdMAuO+U+2gZ19LkiGqxewUsf9Nzf+QTah4jDZLD3ZIJJ00A4PGfH2dLwZbD72yz719i4KdXIG974AMUqSMlHU3mrdjadRTrOnqnV7dJVNJRGqYWTQ7uYL1/anVk6HZQFBEREalniiuLuee7e3AZLka0HcH57c43O6TDc7vh8zsBA7pfBm1ONTsikYAZ3WU0A5oNoNxVzj3f3UOlq5ZGMR2GQdszwFUB3/5f8IIUOQIlHU3WounRVTpWOF2+RIymV0tDdahKx935aiIjIiIi4m+P/vQou4t30zy6Of885Z+h/eXuyv/A7uXgiIVhSqxIw2a1WHnktEdoGt6UjbkbeW7Fc4ff2WKBodW/E2v/66kIFgkBSjqa7Gg7WO/MLcVtQEy4neSY8ECGJmKaFtVrOh6YdNyT75le3TxeTWRERMR/pk2bRtu2bYmIiKBPnz58//33h903IyODK664go4dO2K1WpkwYULwAhUJgM+2fMYnWz7BarHy2BmPEeuINTukwyvNha8f9NwfMgli00wNRyQYkqOSeWigp2nSm+vfZNHuRYffuXkv6DHKc3/e/VBbAxqRIKkXScdt27YxduxY2rZtS2RkJO3bt+eBBx6gsrKW8uJ6Iv0oKx237KueWp0UFdrfQooch/2VjoeeXi0iIuIPs2fPZsKECdx3332sXLmS008/nREjRrBjx45D7l9RUUFycjL33XcfPXv2DHK0Iv61q2gX/1ryLwBu7HEjvVN6mxzREcy7H8pyIbkznHyD2dGIBM2QVkMY1dGTTLzvx/vILc89/M5n/gNs4bDte/h1bpAiFDm8epF03LhxI263m1deeYV169bxzDPP8PLLL/P3v//d7NCOW4tDdOmtzbac6s7VSTEBi0nEbN5kfFG5k4KyKgD2FCjpKCIi/vX0008zduxYrrvuOjp37szUqVNp2bIlL7300iH3b9OmDc8++yxXX3018fHxQY5WxH+cbif3fn8vxVXF9E7pzfU9QrwD9E+veKZWA5z7JNjUVFAalzv73kn7+PZkl2Vz/4/3YxyuirFJKzjlJs/9efeDyxm8IEUOoV4kHYcPH8706dMZNmwY7dq144ILLuDOO+/kgw8+qPV1FRUVFBYW1riFGu/06oyCMtzuI5c/b832Jh21nqM0XFEOO4nRDmB/teP+SkdNrxYRkeNXWVnJ8uXLGTZsWI3tw4YNY9GiWqavHaX6cD0qjc+ra15l9b7VxITFMPn0yditIdwBeuPnMPdez/2z7oc2p5kbj4gJIuwRPH7G4zisDhbuWsjsTbMPv/PpEyEyAbJ/hZVvBS9IkUOoF0nHQykoKCAhIaHWfSZPnkx8fLzv1rJlyyBFV3epcRHYrRaqXAZZRRVH3N87vbptUlSgQxMx1YHNZAzD8K3pmK5KRxER8YPs7GxcLhepqak1tqemppKZmem349SH61FpXFbsXcEra14B4J+n/JP0mHSTI6rFnpXw/lgw3HDS1XDaRLMjEjFNx4SO3N7ndgCeXPYkm/M2H3rHiHgYdI/n/vxHoaIoSBGKHKxeJh1///13nn/+eW688cZa95s0aRIFBQW+286dO4MUYd3ZrBbSqhtj7M4vPcLeml4tjceBzWTyS6soq3IB+H5fRERE/OGPa2QbhuHXdbPrw/WoNB5ZpVnc9d1duA03F7S/gJHtRpod0uHl74CZo6CqFNqfCec+7enQK9KIXdn5Sk5LP40KVwW3L7idgoqCQ+/Y91pIaAcl++DHWrpeiwSYqUnHBx98EIvFUutt2bJlNV6zZ88ehg8fzqWXXsp1111X6/jh4eHExcXVuIUib+XWriM0kympcLK30FMN2TZR06ulYWtxQJMl75qnybHhhNttZoYlIiINRFJSEjab7aCqxqysrIOqH49HfbkelYavtKqU8d+MJ6s0i3bx7Zh08iSzQzq88gJ45zIo3gspXeHSN7WOowieL8r+79T/Iy06jW2F27hjwR1UuasO3tHugLMe8Nxf/AIUZgQ3UJFqpiYdx48fz4YNG2q9devWzbf/nj17GDJkCAMGDODVV181MXL/8nWwPkIzGe96jonRDuKj9I+uNGwHdrD2reeoKkcREfETh8NBnz59mDdvXo3t8+bNY+DAgSZFJRIYLreLe7+/lw25G0iISODFs14kxhGiM6eclTB7NOzbADFpcOV7EKFkvYhXUmQSL5z5AlH2KH7K/Il/LfnXoRvLdPkTtDjZUy08/5HgByoCmLpicFJSEklJSXXad/fu3QwZMoQ+ffowffp0rNZ6OTP8kFo02V/RVRtv0rGNmshII3Dg9Or9TWS0nqOIiPjPxIkTGT16NH379vV9qb1jxw7fEj6TJk1i9+7dvPXW/oX4V61aBUBxcTH79u1j1apVOBwOunTpYsZbEKmTZ5Y/w/yd83FYHTw75FlaxLYwO6RDMwz49HbYuhDCoj0Jx/gQjVXERB0TOvLEoCe45dtb+OC3D2gd15pru11bcyeLBYb9C/49DFa+Df3GQvPe5gQsjVYItynbb8+ePQwePJhWrVrx5JNPsm/fPt9zaWlpJkbmH3WtdNymztXSiKQfWOlY4Gkio6SjiIj406hRo8jJyeHhhx8mIyODbt268fnnn9O6dWsAMjIy2LFjR43X9O69/w+25cuXM3PmTFq3bs22bduCGbpInb236T3eXP8mAP867V/0SullbkC1+e5JWPU2WKxw6Qxo1tPsiERC1hktzuDufnfz2M+P8czyZ2gV24qzW59dc6dW/aHbJfDL+/DB3+BvCyFMf1NJ8NSLpONXX33F5s2b2bx5My1a1Pym65BlxPVMehNPRVddKx2VdJTGwLvWaWG5k42Zno5rSjqKiIi/jRs3jnHjxh3yuRkzZhy0rSFce0rjsWjPIh796VEAxvcaz4i2I0yOqBZr3oP5//LcHzEFThxmbjwi9cCVna9kR+EOZm6cyaTvJ5EWnUa3pG41dxrxBGz7AbI3wdcPwojHTYlVGqd6MUd5zJgxGIZxyFtDcGClY23vaYuSjtKIRIfbSYh2ALBiex4A6U20pqOIiIhIXWzK/Y07FtyBy3BxfrvzuaHHDUE5rst9DH+jbfsRPr7Zc3/gLXDy9cE5rkgDcFe/uzg9/XTKXeXc8u0tZBT/oWlMdCL86UXP/Z9eht+/DX6Q0mjVi0rHhq5ZdXOM0koX+aVVNK1OtPzRthwlHaVxadE0ktySSoornIAqHUVERETqIrssm1u/HU9xVTHhzhNYtfJszlv5Q8CPe0JKDM9efpRrxmX/BrOuAFcldL4Azn74mI5ts1q4bdZKNmcVH9Prj9XgjsncdU6noB5T5EB2q50nBj3B6C9G81veb9z87c28Nfytms2iOgyFftfB0tfho3Fw0yKISjAvaGk0lHQMARFhNpJjw9lXVMHu/LJDJh3zSirJL60CoE2iko7SOLRoGsmaXQW+x0o6ioiIiNSu3FnObfNvY0/JHuyuZLK3/IVsVxlQ+1JOpijeB+/8GcrzoUU/uPhVOI6GoZuzilm3p9B/8dVB+2T9bSbmiw6L5sUzX+SKz6/gt7zfuOu7u3j+zOexWw9I+Qx9GLYsgJzN8Nkd8Od/e5rNiARQvZhe3Rh416/bdZh1Hb1Tq5vHRxDpsAUtLhEzeTtYAzjsVhIPUwUsIiIiIuA23Pzzx3+yZt8a4hxxJJeOA1eIJsXKC2DWXyBvGzRtA5e/qwYXIsehWUwzXjjzBSJsEfyw+wemLJ1ScwdHNFz0KlhssO4DWPs/cwKVRkVJxxBxpA7W3iYybTS1WhqRFk33X3g2j4/Aom/iRERERA7rhZUvMHfbXOxWO1OHTCXMnWp2SIe2+WuYNgB2LYWIJnDl/yAm2eyoROq9rkldeez0x7Bg4d2N7/LOhndq7tCiDwy6x3P/szugYFfwg5RGRUnHENGiutLxcB2st6mJjDRCNZKOmlotIiIiclgfb/6Y19a+BsADAx6gX1o/kyM6hPJCmHMLvH0JFO6Gpm1h9AeQ1MHsyEQajLNan8XtfW4HYMrSKSzcubDmDqffAel9oaIAPrwR3G4TopTGQknHELG/0rH0kM9vVdJRGqEDp1cr6SgiIiJyaEszl/Lg4gcBuL779Vx4woWmxnNIm7/xVDeueMvzuP9NnmYW6X3MjUukARrTdQyXdLgEt+Hmru/uYlPupv1P2uye9VPDomDb9/DTS+YFKg2eko4hwrum4+GmV29R0lEaofQmqnQUERERqc3mvM3cvuB2nG4n57Q5h/G9x5sdUk3lhTDnVnj7Yijc5Vm/ccznMOIxcEQd8eUicvQsFgv3nXIf/Zv1p8xZxs3f3Mzu4t37d0hsD+c84rn/9UOwd705gUqDp6RjiPBVOh5ierVhGJpeLY1SdLidplFhAKQ3iTA5GhEREZHQsi5nHX/98q8UVBTQI6kH/zr1X1gtIfQn3u/z4aWBsOJNz+OT/+apbmxzqrlxiTQCYdYwnh78NO3i27G3dC/XfHEN2wq27d+hz1+hwzngqoAPbgBnhWmxSsMVQv8iNW7eiq680ipKK501nttbWEFZlQub1ULLBH0bKI1Lx7RYAE5IiTU5EhEREZHQsTJrJdd9eR35Ffl0S+zGtLOnEWEPkS9pK4rgkwnwnwuhYCc0aQ3XfAojp3g66IpIUMQ54nht2Gu+xOOYuWP4Ne9Xz5MWC1zwPEQlwt61MP9Rc4OVBklJxxARGxFGXIQdOLjacUt2MQCtEqIIs+k/mTQuT13Wi3+P6ctJrZqYHYqIiIhISFiSsYS/zfsbxVXFnJRyEq8Ne4348Hizw/LYsgCmDYTl0z2P+13vqW5se7qpYYk0VilRKUwfPp1OCZ3IKc/h2i+vZV32Os+Tsalw/rOe+z8+C9sXmReoNEh2swOQ/dKbRlGYUciu/DI6pO6v6tqW7Wku0yZRVY7S+KQ3iayxtqOIiIiI2cJw0smyg1aWLGIsZcRSSqyljBg8t1hLKTGUkVJQCS8AFYVQWQJhkRDRBCKbHPlnVBI0aQVhNasXF+5cyMQFE6l0VzKw+UCmDplKpN3ca6UWln2cYV3DBUW/wFs/eTY2aQV/ehHanmFqbCICCREJvD7sdcZ9PY412WsY+9VYpp01jZNST4LO50Ovq2DV2/DB3+CmHyEizuyQpYFQ0jGEpDeJZENG4UGVjlurKx3bJsWYEZaIiIiISKNlw0UHy266W7fQ0/I73a1b6WTZQbjFeeQXu4DsAx5XFELx3qMLILaZp/lK0zZ86bBwb/YinLgZ0mwATw5+FocJU6ojqOAU6wbOsK5hkHU17a0ZnieqqnfoOxaGPgzh+vtFJFTEh8fz6rBXueXbW1iauZS/zfsbz575LAObD/Q0dtr2PeRvh7n3woXTzA5XGgglHUNIi+pmMrsOSjpWN5FJ1vonIiIiIiKBYsFNO0sGPSxb6GHdQnfrVrpathFpqTxo3zwjhl+NFhQaURQRRbERSTGRFBuRFFX/bJqQxP2X9IfwWHDEQFUplOdDWf6RfxbvhcpiKMqAogw+zl3D/UkJuC0WRhSX8Mii2YT99JGnorBpG4hvAfHpELf/Fm6U++mTMehg2c0Z1tUMsq6hv3Uj4ZYq37NOw8oKowMbo/tx9TU3QVo3Px1XRPwpOiyaaWdN4/YFt/PD7h8Y/814nh78NINbDoaLXoHpI2DVO3DiOdDlT2aHKw2Ako4hxDuFdHf+H9d0rE46JirpKCIiIiLiTzZcnGr9hQtsixlqXUa8pfSgfQqNSH5xt2WN0Y417nasMdqxy0gGLLWO3dURd+xrGRoGlOZC/jZmbXqPR3Z+DsDFxHB/Fdgs+Z6uszm/eW6H8AGQFx5DhpFIhpFAhpHAHiORAmKw4SIMF/bqW5jFuf8+Luw4CcNFlKWck60baW7JrTH2biORha4eLHT3ZLG7K4VE0zUpjquVcBQJaRH2CJ4d8iz3fHcPX+/4mtvn387k0yczvO1wOG0C/PAMfHiT58uLFn3NDlfqOSUdQ0h6daXj7rz9FzpOl5uduZ7HqnQUERERETl+FtycZPmNC2yLGGn7iWRLoe+5MsPBL0Yb1rrbsdrdjrVGO7YaaRjB7sFpsUB0ItO3zuHp6oTjlZ2v5O5+d2O1WMHlhMJdkLcd8rZB4W4o2O356b1fVUJTSzFNLcV0YftxhVNuhPGTuzPfuXuwwN2T343mHCnpKiKhyWFz8MSgJ/jnj//k0y2fcvd3d1PmLOOiwX+HPatgy3x458/w17mQ0snscKUeU9IxhByq0nF3fhlVLoNwu5VmccFfr0VEREREpEEwDNo5t3C+fR7n2RbTwrJ/scUcI5bPXf2Z4xrICqMDLmwmBuphGAbTVk/j5dUvA3B99+u5pfctWCzViT6b3bfWIww61ABc9uxc8vdup7klhzRLLs0sOTQnhzhLKVXYcGLDiZ0qw3vfRhV2XFg9zxt2qrCzzmjNT+7OVOAI1tsXkQCzW+08ctojRNgj+N+v/+P+RfdT5izjilFvw1sXwO7l8J+LYOyXnmUcRI6Bko4hxFvpmFVUQaXTjcNu3T+1Oikaq1XfJIqIiIiIHJWc32Ht/+CX//F84a++v4CKjEi+cvdljmsgP7q74gyhP40Mw+CpZU/x5vo3Abi1961c3+P6oxvEYqHEGsOvRkt+NVoGIEoRqe+sFiv3n3I/kfZI/rP+P0z+eTJlzjLGXvk/z/qO+zbCWxfCtV9CTLLZ4Uo9FDr/sgqJ0Q4iwqyUV7nJKCijdWI026qTjm20nqOIiIiISN243fDrF7Doedix2Le5kjC+dvVmjmsg8929QrJyr9xZziM/PcJHmz8C4N6T7+XKzleaG5SINFgWi4W7+t5FlD2KV9a8wtQVU8ktz2XClf8lbPq5kPs7vH0xjPkMIuLMDlfqGSUdQ4jFYqF5k0i27Cthd54n6ajO1SIiIiIidVRVBqvfhUUveP5QBrDYoP0Q6PZnrliYwLIMp7kx1mJ74XbuWHAHm/I2YcHCgwMf5OIOF5sdlog0cBaLhfG9xxNpj2Tqiqm8tf4t1mavZcqfXyPt3Sshcw28+xe46n8QFml2uFKPBHk1ZDkS77qOu6rXddx6wPRqERERERE5hJJsWPAYPNMVPr3dk3CMiIfTJsLE9XDV+9DrL5RZosyO9LDmbp3LZZ9cxqa8TSREJPDy2S8r4SgiQTW2+1ieHPQk0WHRrMxayWU/3s0PIx6A8DjY/gP871pPEyuROlKlY4hp4etg7Uk6btmnpKOIiIiIyCFlb4YlL8KqmeAs92xr0gpOuRl6XwXhMebGVwcVrgqm/DyF9359D4A+qX2YcsYUUqJSTI5MRBqjc9qcQ+eEzty58E425G7gphVPcF3/Udz841vYN30Oc26BP70IVtWwyZEp6RhiDuxgXV7lYk+BJ/mopKOIiIiICGAYsPMnz3qNGz8DDM/25r1h4K3Q+QJPZ+d6YHvhdu5ceCcbczdiwcJ13a9jXK9x2K31I34RaZhaxbXiPyP/w5NLn2TWplm8vvNLVnTtz5T1i0ldPRMim8I5j4BFzW6ldvrXLMSkH1DpuCO3FMOA2Ag7idGht8i1iIiIiEjQGAb89hV89wTsWrp/+4kjYOAt0HpgvfoDeO7WuTy4+EFKqkpoGt6UyadP5tT0U80OS0QEgHBbOPedch990/rywKIHWFG0jUvbtOPR3ds5bcmLEJ0Ip99hdpgS4pR0DDHpTTzrzOzOL6sxtdpSjy6gRERERET8xptsXDAZ9qz0bLM5oOflMGA8JHc0N76jVOGq4ImlTzB702zAM5368dMfJzU61eTIREQOdtB067QUrs8vYNw3D2OPbAp9rzU7RAlhSjqGGG+lY0ZBGVuyiwFNrRYRERGRRuhQycawKOh3nSfZGFv/knQ7Cndwx8I72Ji7EYDru1+v6dQiEvK80629X5i81iSe5RHhTPniLlIjm0LXi8wOUUKU/nULMamx4disFqpcBj9tyQWUdBQRERGRRqS2ZOPAWyEm2dz4jtGX277kgUUPaDq1iNRL4bZw/nHKP+ib1pcHFz3ICuDS9FQmf3Yzp5YXwEnX1KslLiQ4lHQMMXablbS4CHbnl/HzViUdRURERKSRaKDJxh2FO3hi2RMs2LkAgJNSTmLKGVM0nVpE6qXhbYbTJaELdyyYyMa8TdyYmsi5Sx5mwvbvSTvveXBEmR2ihBAlHUNQetNIdueXUVblApR0FBEREZEGrIEmG7GWkxfxNX/6eAFOtxObxca13a7VdGoRqfdaxbXi7XPf4cnq6dafxUTzTcESrn3zDMb86S0iU7qYHaKECP1rF4JaNInk5wMet1HSUUREREQaGrcbNn0G3z0JGas82xpCshE3YU2W4kj+iiJ7Cbjh1Oancle/u2jfpL3ZwYmI+IWnu/U/uLDDRTz+3d9ZWbiFaY4KPvjkUm7veAUjTv27GuKKko6hyNtMBiApJpy4iDAToxERERER8SOXE9Z9AN8/Dfs2eLY1iGQj2KJ+Jzz1U2wRGQDYXak8O+x+Tk8/XX98i0iD1DWxK29e+BFfbpjF0z8/ToYd7vl9FjN3fsW9Zz5Ht9SeZocoJlLSMQSlN9mfdGybpPUQRERERKQBcFbA6nfhh6mQt9WzLTwOTr4BTrkJopNMDe94WMJyCE/5nLC4dQAYrggq9p1Nh8hzOKPFGSZHJyISWBaLheFd/sLg9ufx5id/5Y2iDayuzOUvc6/iglZDufXke7SObSOlpGMIOrDSUes5ioiIiEi9VlkKK96CRc9B4W7PtsgEGDAO+l0PkU1MDe+4WMtxJM7HkfADFqsLw7BQldefyuyhGK5oLJE2syMUEQmaiPBY/vbn/3Hhihk8t+QR5kRHMGfHPObtWsjYHjdwTddriLBHmB2mBJGSjiGoZqVjjImRiIiIiIgco/JCWPo6LH4RSrM922LS4NRboc8YcNTjL9etFYTFL8eR9C1WezEAzuIOVGSdi7sizeTgRETMlXrSGB5pOYDL/3slj9sKWR0BL6x6gfd/e58be97IyLYjlXxsJJR0DEHNm6jSUURERETqqaK9sOwN+OllKC/wbGvSCk6dAL2uhLD6+4emxbEPR9PFhMUvx2KrAMBdkUR51khcxZ0BrdsoIgJAcke6j13Afz4ezxfbv+TphCZklGTwwKIHeHr501zc4WIu73g5zWOamx2pBJCSjiEoIsxG68QotueU0rlZrNnhiIiIiIjUzjBg2w+eZOOGT8Dt9GxP7ACnT4Tul4KtvjZHdGOL2YSj6SLsMb/t31qRRGXeqVTl9UN/VomIHEJ4DJZLpzPy51cZ8tV9zIqJYFZ8E/ZUFDD9l+m8ue5NBrUYxBWdr6B/Wn813GqA9K9jiHp1dF/2FJTROlGVjiIiIiISosoLYPVszzTq7E37t7c42dMcpsufwFpP1zW0lhLWZBmOpkuwOnIBMAwLruJOVOYNwFVyAmA1N0YRkVBnsUD/vxHZrBd//eA6rt6xg4VRkcxMSOanMDfzd85n/s75tItvx186/YXz259PdJjyIA2Fko4hqmNaLB3TVOUoIiIiIiEoY42nqnHNf6GqxLMtLBp6XAp9x0KzHubGdxys4RmENV1MWPxKLNYqAAxXJFX5/ajM649RlWhyhCIi9VCr/jB+GbYVb3Hmd09w5q4dbAmzMzOlBXMibGwp2MIjPz3Csyue5U8n/InLO15Om/g2Zkctx0lJRxERERERObKqclj/ESx9A3b9vH97cidPorHnKIiINy2842EJy8UeswF73FrsUdt8213laVTlDaSqoBcYDtPiExFpEOzhcPL1nvV9l75Oux+e4R+7t3GbxcKc5h2YFRfDtvJs3tnwDu9seIdTmp3C0NZDGdxyMClRKWZHL8dASUcRERERETk0lxN2LIaNn8Ka96DMM80Yqx06XwD9xkLrUz3T5+oVN9aI3dhj12OP2YAtItP3jGFYcRZ1pSp3IK6yNqg5jIiInzmi4NRboc8Y+OllYhc9z5W7f+Uvu2FJi+7MTGnBd3nrWZKxhCUZS/i/Jf9H18SuDG45mCEth3Bi0xO1/mM9oaSjiIiIiIjsV1UOW+bDhk9h0+f7E40AcS2g7xjofTXEppoW4rEod5ZTZl9LeNpy7LEbsNqLfM8ZhgVXaRucxZ1xFvbEcNbPik0RkXolIg4G3Q39roNFz2H96RUG7lrLwF1r2dn6FL5sfzLzi7awNnst63LWsS5nHS+uepFm0c0Y3HIwg1sOpl9qP8LqbaOyhk9JRxERERGRxq68AH79CjZ+Ar99vX+dRoDIptBxpKey8YSzwVY//oQwDIPMkkyWZCxh/s75LN6zmPLochzV/QkMVzjOkhNxFnXBWXIiuNS4QETEFFEJcPaD0P8m+OEZWPYGLbcv4brtS7guvhXZJw7j+6RmzC/eweKMxWSUZPDuxnd5d+O7RIdFc2rzUxnccjCnNDuF5Khks9+NHKB+XDGIiIiIiIh/FWXCxs88U6e3fg/uqv3PxbWATudC5/Og1cB6kWgsrCzkl+xf+CX7F9Zmr2XtvrXklOfU2MfmTqAsvyPO4s64StuBEfrvS0Sk0YhNhRGPwcDx8N0TnmU9CnaQtPR1LgIuikmlvOMIfkrrwPzKfSzc/R3ZZdl8tf0rvtr+FQCpUal0T+pO9+TudE/qTpfELuqGbSL9KysiIiIi0tC5qiBzLexaBruXwa6lkLul5j5JHT1Jxk7nQfPeIb1OY6Wrkl/zfmXNvjW+JOO2wm0H7We32OmU0IlBLQcxpOUQbn97L+v3Fh08oIiIhI74FnD+s3DOZPj9G9jwCWyaC8V7iVg+g0HAoMgE3B1HsK59b+YbxXy350d+y/+NvaV72btjL1/v+BoACxbaN2lP96TudEvqRvek7pzQ9ATCrJqSHQxKOoqIiIiINDQFuz2JxV1LPYnGjFXgLD94v/Q+niRj5/MhqUPQwzySgooCdhbtZHvhdnYU7mB70Xa2FWzj17xfqTqwMrNay9iWvj8quyd1p1NCJyLsEb7nLWQFM3wRETkejijPv0+dzwdnJWxdCOs/9lTpl+ViXfUO3Ve9Q/fwOG498RxKO9/C+sgo1rqKWZu3kV+yfyGjJIPN+ZvZnL+ZDzd/CECELYITE06kTVwbWsW2onVca1rGtaR1bGtiHDEmv+mGRUlHEREREZH6yDCgJBvytkLuVs/Pves8ScaiPQfvH9EEWvSFFv08P9P7eNZrNJHbcJNXnkdmSSbbC7ezvWg7Owt3sr3Ik2TMr8g/7GubhDfxJRe7JXWjW1I3mkaY+35ERCRA7A7oMNRzO28q7FgE6+d4qiCLM2Htf4la+1/6An0tNs8XaWndyW49mLWR0ayljF8KtvBL9i8UVRWxZt8a1uxbc9BhEiISaB3XmlaxrWgV57m1jm1NWnQa8eHxWC3WoL/1+kxJRxERERFptKZNm8YTTzxBRkYGXbt2ZerUqZx++umH3X/hwoVMnDiRdevW0bx5c+6++25uvPHGwAXockLBzgMSi9uq71f/rCw+9OssNkjtuj/B2KIfJLQHa+D/WDIMg5KqEnLLc8kuyya7LJt9ZfvIKcvxPc4uyyanLIec8hxchqvW8VIiUzwVKAf8EdgpoRMtYlpgCeEp4CIiEiA2O7Q9w3MbMcVT1b/pc09Vf+ZaKM2BfRth30aSgCHVN2JScad2Y0fKKWyMjGUnVWx3FrOjIpvtxbvJLc/13VZmrTzosHarncSIRJIik3y3xMhEkiOTazxOjEgk0h6pf6NQ0lFEREREGqnZs2czYcIEpk2bxqmnnsorr7zCiBEjWL9+Pa1atTpo/61btzJy5Eiuv/563n77bX788UfGjRtHcnIyl1xyydEdfOcysJV7/jAqy/X8LM2B0rz998tyoSwPDHctA1kgLh0S2kLT1pDYwZNgbN4LX5vmI3AbbipcFVQ4Kyh3lVPmLKPCVUG5s+b9UmcpRZVFFFUWUVxV7Lv/x8clVSVHTCTWfAcWEiMTfVPcWsW12j/dLbYlUWFRdR5LREQaGasVWvX33MAzC6Ao05N83LvW8zNzLeT8DsV7sRbvpc3v0OaP49gjKY5JZkdsEjsiY9geFsYOq5sd7nJ2VBWQW1WM0+30rBlZuveIYdksNmIdscSExRDriD34viOG2DDP/ciwSCJtkYTbw4mwRRBpjyTcFk6Eff/9cFt4vUxiKukoIiIiIo3S008/zdixY7nuuusAmDp1Kl9++SUvvfQSkydPPmj/l19+mVatWjF16lQAOnfuzLJly3jyySePOuk4++OrCI+wYgBuC7gBAwvu6scG4HZYcIXH4rbYcUfG44yIwx0ehys8Fld4NG5HDK6wSFyAy3B5blXbqfp9M87f/kOVu8pzc1X57jvdzv3b3VW+RGMgRNojSYpMIjkymcTI/ZUhf3zcNKKpFvQXERH/sFggrpnnduKw/dsrS2Dv+v2JyOzfoHgvFO2FigJwlhGTv4Mu+Tvocohhq4Acm40cm41sm5V9dhvZdgfZYeHk2MM8j62QjUGFxcBluMivyK91mZCjeltAhCUMh9VGmOWA2wGP7YfYZrPYsFos2LBis+y/WbHsf1z9nNViwVr9nMViwYql5n2LBUv1trLSyjrF3aiSjoZhAFBYWGhyJCIiIiJHz3sN472mkWNXWVnJ8uXLuffee2tsHzZsGIsWLTrkaxYvXsywYcNqbDvnnHN44403qKqqIizs4MRZRUUFFRUVvscFBQUAPBkZiy3SVveAXRVQss9zC6AwaxjhVk91RbjdU1nhrbKItEcSHRbtq86IccQQHRZ92Pt1qlB0QllxGWWUBfR9ebWMgaqEo/jc/XA8M//20PsNvORwN4WFhUE/to7bsI9r9u9SgxXf0XM78c81t1eVeZKPJfs8iciSrJqPi7OgsoioihKiykto6T78v1kGUIaFYquVIquFEqvnvvdWZLVSYrVQZPE8LrFaKbNYqLBCucVChcVCucXq+Wm14DygurGYus8iCDRXmSeWI12TNqqkY1FREQAtW7Y0ORIRERGRY1dUVER8fLzZYdRr2dnZuFwuUlNTa2xPTU0lMzPzkK/JzMw85P5Op5Ps7GyaNWt20GsmT57MQw89dND2Xyf+ehzRS33yylizIwiuxvZ+5wH367g6bgA0tt8lqZ+OdE3aqJKOzZs3p3379ixfvtyvc+H79evH0qVL/TZefRw3EGMWFhbSsmVLdu7cSVxcnF/HbuyfbX0btz7FGqhx61OsgRhX54PAjVnfxq1PsQZiXMMw6NOnD82bN/fbmI3dH68JDcOo9TrxUPsfarvXpEmTmDhxou+x2+0mNzeXxMTEerk2k78E8rzeEOjzqZ0+n9rp86mdPp/a6fOpnT4fD8MwKCoqOuI1aaNKOlqtVhwOh98rA2w2W0D+Z6tP4wYqVoC4uLh6E299+mzr07j1KdZAjVufYg3kuDof1J9YAzVufYo1UOM6HA6sQehA3NAlJSVhs9kOqmrMyso6qJrRKy0t7ZD72+12EhMTD/ma8PBwwsPDa2xr0qTJsQfewATivN6Q6POpnT6f2unzqZ0+n9rp86mdPh/qlFtrdFesN998c70Ys76NG6hYA0Wfbf0atz7FGqhx61OsgRw3EOrTZ1CfYg3UuPUp1kCNW59+v0KZw+GgT58+zJs3r8b2efPmMXDgwEO+ZsCAAQft/9VXX9G3b99DrucoIiIi0phZDK1ELiGqsLCQ+Ph4CgoKGv03CCKNnc4HIhIIs2fPZvTo0bz88ssMGDCAV199lddee41169bRunVrJk2axO7du3nrrbcA2Lp1K926deNvf/sb119/PYsXL+bGG2/k3XffPeru1Y2dzuu10+dTO30+tdPnUzt9PrXT51M7fT5Hp1FNr5b6JTw8nAceeOCgKUki0vjofCAigTBq1ChycnJ4+OGHycjIoFu3bnz++ee0bt0agIyMDHbs2OHbv23btnz++efcfvvtvPjiizRv3pznnntOCcdjoPN67fT51E6fT+30+dROn0/t9PnUTp/P0VGlo4iIiIiIiIiIiPhVo1vTUURERERERERERAJLSUcRqZcsFgsfffSR2WGISAjQ+UBEREREJPQo6WiSnTt3MnbsWJo3b47D4aB169bcdttt5OTk1On1CxYswGKxkJ+fH9hAJaAWLVqEzWZj+PDhZodiujFjxnDhhReaHYYpdD4Q0PngQDof6HwgIiIiIvWfko4m2LJlC3379uXXX3/l3XffZfPmzbz88st88803DBgwgNzcXLNDlCD597//zS233MIPP/xQY6H6Y+FyuXC73X6KTIJF5wPx0vlAdD4QERERkYZESUcT3HzzzTgcDr766isGDRpEq1atGDFiBF9//TW7d+/mvvvuA6CiooK7776bli1bEh4eTocOHXjjjTfYtm0bQ4YMAaBp06ZYLBbGjBlj4js6No25kgWgpKSE9957j5tuuonzzjuPGTNm+J7zVqp89tln9OzZk4iICPr378/atWt9+8yYMYMmTZrw6aef0qVLF8LDw9m+fbsJ78T/2rRpw9SpU2ts69WrFw8++KAp8QSSzgceOh/ofHA4Oh80vvOBNE4XXHABrVq1IiIigmbNmjF69Gj27Nljdlim27ZtG2PHjqVt27ZERkbSvn17HnjgASorK80OLWQ88sgjDBw4kKioKJo0aWJ2OKabNm0abdu2JSIigj59+vD999+bHVLI+O677zj//PNp3ry5lmb5g8mTJ9OvXz9iY2NJSUnhwgsvZNOmTWaHFTJeeuklevToQVxcHHFxcQwYMIAvvvjC7LDqBSUdgyw3N5cvv/yScePGERkZWeO5tLQ0rrzySmbPno1hGFx99dXMmjWL5557jg0bNvDyyy8TExNDy5Ytef/99wHYtGkTGRkZPPvss2a8HTkOs2fPpmPHjnTs2JGrrrqK6dOn88dm8nfddRdPPvkkS5cuJSUlhQsuuICqqirf86WlpUyePJnXX3+ddevWkZKSEuy3IcdB5wPx0vlAdD6Qxm7IkCG89957bNq0iffff5/ff/+dP//5z2aHZbqNGzfidrt55ZVXWLduHc888wwvv/wyf//7380OLWRUVlZy6aWXctNNN5kdiulmz57NhAkTuO+++1i5ciWnn346I0aMOO4ZFA1FSUkJPXv25IUXXjA7lJCzcOFCbr75ZpYsWcK8efNwOp0MGzaMkpISs0MLCS1atOCxxx5j2bJlLFu2jDPPPJM//elPrFu3zuzQQp8hQbVkyRIDMD788MNDPv/0008bgPHTTz8ZgDFv3rxD7jd//nwDMPLy8gIXbIBdc801xp/+9CfDMAzjiy++ME499VQjPj7eSEhIMM4991xj8+bNvn23bt1qAMb7779vDB482IiMjDR69OhhLFq0yKToj9/AgQONqVOnGoZhGFVVVUZSUpLvv7f3v++sWbN8++fk5BiRkZHG7NmzDcMwjOnTpxuAsWrVquAHHwAH/v/QunVr45lnnqnxfM+ePY0HHnjA97i236P6QueD/XQ+0PngQDofHKwxnQ9EDMMwPv74Y8NisRiVlZVmhxJypkyZYrRt29bsMELO9OnTjfj4eLPDMNXJJ59s3HjjjTW2derUybj33ntNiih0NYRrh0DKysoyAGPhwoVmhxKymjZtarz++utmhxHyVOkYYozqypatW7dis9kYNGiQyREFR0lJCRMnTmTp0qV88803WK1WLrroooPWJLvvvvu48847WbVqFSeeeCJ/+ctfcDqdJkV97DZt2sTPP//M5ZdfDoDdbmfUqFH8+9//rrHfgAEDfPcTEhLo2LEjGzZs8G1zOBz06NEjOEFL0Ol8oPPBgXQ+aNwa6/lAGqfc3FzeeecdBg4cSFhYmNnhhJyCggISEhLMDkNCTGVlJcuXL2fYsGE1tg8bNoxFixaZFJXUVwUFBQA61xyCy+Vi1qxZlJSU1Lg+l0Ozmx1AY3PCCSdgsVhYv379Idcv27hxI02bNiUqKir4wZnokksuqfH4jTfeICUlhfXr19OtWzff9jvvvJNzzz0XgIceeoiuXbuyefNmOnXqFNR4j9cbb7yB0+kkPT3dt80wDMLCwsjLy6v1tRaLxXc/MjKyxuOGwmq1HjS19MBppA2FzgeHpvOBzgcH0vnAo7GeD6Rxueeee3jhhRcoLS3llFNO4dNPPzU7pJDz+++/8/zzz/PUU0+ZHYqEmOzsbFwuF6mpqTW2p6amkpmZaVJUUh8ZhsHEiRM57bTTalx7N3Zr165lwIABlJeXExMTw4cffkiXLl3MDivkqdIxyBITExk6dCjTpk2jrKysxnOZmZm88847jBo1iu7du+N2u1m4cOEhx3E4HIAny94Q/P7771xxxRW0a9eOuLg42rZtC3DQ+iMHVvE0a9YMgKysrOAF6gdOp5O33nqLp556ilWrVvluq1evpnXr1rzzzju+fZcsWeK7n5eXx6+//lrvEirHIjk5mYyMDN/jwsJCtm7damJEgaHzwaHpfKDzwYF0Pmjc5wOp3x588EEsFkutt2XLlvn2v+uuu1i5ciVfffUVNpuNq6+++qAvHRqKo/1sAPbs2cPw4cO59NJLue6660yKPDiO5fMRjz9+AWkYRoP8UlICZ/z48axZs4Z3333X7FBCSseOHVm1ahVLlizhpptu4pprrmH9+vVmhxXyVOloghdeeIGBAwdyzjnn8K9//Yu2bduybt067rrrLtLT03nkkUdISEjgmmuu4dprr+W5556jZ8+ebN++naysLC677DJat26NxWLh008/ZeTIkURGRhITE2P2Wztm559/Pi1btuS1116jefPmuN1uunXrdlBnvgOn2Hj/8fzjlMtQ9+mnn5KXl8fYsWOJj4+v8dyf//xn3njjDZ555hkAHn74YRITE0lNTeW+++4jKSmpUXT4PfPMM5kxYwbnn38+TZs25Z///Cc2m83ssAJC54OD6XzgofOBh84Hjft8IPXb+PHjfUtHHE6bNm1895OSkkhKSuLEE0+kc+fOtGzZkiVLljTI6WtH+9ns2bOHIUOGMGDAAF599dUAR2e+o/18xPP7Y7PZDqpqzMrKOqj6UeRwbrnlFubMmcN3331HixYtzA4npDgcDk444QQA+vbty9KlS3n22Wd55ZVXTI4stKnS0QQdOnRg2bJltG/fnlGjRtG+fXtuuOEGhgwZwuLFi33rJrz00kv8+c9/Zty4cXTq1Inrr7/e1z0qPT2dhx56iHvvvZfU1FTGjx9v5ls6Ljk5OWzYsIF//OMfnHXWWXTu3PmIUwrrszfeeIOzzz77oAQDeKaVrlq1ihUrVgDw2GOPcdttt9GnTx8yMjKYM2eOr4qloXG73djtnu9BJk2axBlnnMF5553HyJEjufDCC2nfvr3JEQaGzgc16Xywn84HOh809vOB1H9JSUl06tSp1ltERMQhX+utcKyoqAhmyEFzNJ/N7t27GTx4MCeddBLTp0/Ham34f8Idz/87jZXD4aBPnz7MmzevxvZ58+YxcOBAk6KS+sIwDMaPH88HH3zAt99+65tpJIdnGEaD/TfKnyxGQ52zICFvzJgx5Ofn88EHH5CSksKIESN44IEH2LFjB/feey9Lly7lww8/5MILL2Tbtm20bduWlStX0qtXLwDy8/Np2rQp8+fPZ/Dgwaa+F39bsGABQ4YMIS8vjyZNmpgdTlAMHz6cE044gRdeeMHsUMQEOh8cns4HItLQ/fzzz/z888+cdtppNG3alC1btnD//feTkZHBunXrCA8PNztE0+zZs4dBgwbRqlUr3nrrrRqV3mlpaSZGFjp27NhBbm4uc+bM4YknnuD7778HPGvlNrZK79mzZzN69GhefvllX1Xsa6+9xrp162jdurXZ4ZmuuLiYzZs3A9C7d2+efvpphgwZQkJCAq1atTI5OnONGzeOmTNn8vHHH9OxY0ff9vj4eCIjI02MLDT8/e9/Z8SIEbRs2ZKioiJmzZrFY489xty5cxk6dKjZ4YU0Ta8W03grWaxWK7NmzeLWW2+lW7dudOzYkeeee67BJQ7k0PLy8li0aBELFizgxhtvNDscMYnOBwI6H4g0VpGRkXzwwQc88MADlJSU0KxZM4YPH86sWbMadcIR4KuvvmLz5s1s3rz5oKmOqh3xuP/++3nzzTd9j3v37g3QIL+IPJJRo0aRk5PDww8/TEZGBt26dePzzz9XwrHasmXLGDJkiO/xxIkTAbjmmmuYMWOGSVGFhpdeegngoN+Z6dOnM2bMmOAHFGL27t3L6NGjycjIID4+nh49eijhWEeqdBTTqJLl8BpTZdNFF13E0qVLueaaa/jXv/6lha4bKZ0PDk/nAxERERERqY+UdJSg81ayXHLJJcyaNatRNEIQkUPT+UBERERERKRh0vRqCbprr72WpUuXcscdd/CnP/3J7HBExEQ6H4iIiIiIiDRMqnQUERERERERERERv7KaHYCIiIiIiIiIiIg0LEo6ioiIiIiIiIiIiF8p6SgBM3nyZPr160dsbCwpKSlceOGFbNq0qcY+hmHw4IMP0rx5cyIjIxk8eDDr1q3zPZ+bm8stt9xCx44diYqKolWrVtx6660UFBTUGCcvL4/Ro0cTHx9PfHw8o0ePJj8/PxhvU0TqKJjnhEceeYSBAwcSFRXV4Ds+i4iIiIiIhCIlHSVgFi5cyM0338ySJUuYN28eTqeTYcOGUVJS4ttnypQpPP3007zwwgssXbqUtLQ0hg4dSlFREQB79uxhz549PPnkk6xdu5YZM2Ywd+5cxo4dW+NYV1xxBatWrWLu3LnMnTuXVatWMXr06KC+XxGpXTDPCZWVlVx66aXcdNNNQX2PIiIiIiIi4qFGMhI0+/btIyUlhYULF3LGGWdgGAbNmzdnwoQJ3HPPPQBUVFSQmprK448/zt/+9rdDjvPf//6Xq666ipKSEux2Oxs2bKBLly4sWbKE/v37A7BkyRIGDBjAxo0b6dixY9Deo4jUXaDOCQeaMWMGEyZMUOWziIiIiIhIkKnSUYLGO/0xISEBgK1bt5KZmcmwYcN8+4SHhzNo0CAWLVpU6zhxcXG+5MLixYuJj4/3JRwBTjnlFOLj42sdR0TMFahzgoiIiIiIiJhPSUcJCsMwmDhxIqeddhrdunUDIDMzE4DU1NQa+6ampvqe+6OcnBz+7//+r0bFU2ZmJikpKQftm5KScthxRMRcgTwniIiIiIiIiPlUFiJBMX78eNasWcMPP/xw0HMWi6XGY8MwDtoGUFhYyLnnnkuXLl144IEHah2jtnFExHyBPieIiIiIiIiIuVTpKAF3yy23MGfOHObPn0+LFi1829PS0gAOqmDKyso6qNKpqKiI4cOHExMTw4cffkhYWFiNcfbu3XvQcfft23fQOCJivkCfE0RERERERMR8SjpKwBiGwfjx4/nggw/49ttvadu2bY3n27ZtS1paGvPmzfNtq6ysZOHChQwcONC3rbCwkGHDhuFwOJgzZw4RERE1xhkwYAAFBQX8/PPPvm0//fQTBQUFNcYREXMF65wgIiIiIiIi5tP0agmYm2++mZkzZ/Lxxx8TGxvrq16Kj48nMjISi8XChAkTePTRR+nQoQMdOnTg0UcfJSoqiiuuuALwVDMNGzaM0tJS3n77bQoLCyksLAQgOTkZm81G586dGT58ONdffz2vvPIKADfccAPnnXeeOleLhJBgnRMAduzYQW5uLjt27MDlcrFq1SoATjjhBGJiYoL/5kVERERERBoZi2EYhtlBSMN0uPUUp0+fzpgxYwBP5dNDDz3EK6+8Ql5eHv379+fFF1/0NZZYsGABQ4YMOeQ4W7dupU2bNgDk5uZy6623MmfOHAAuuOACXnjhBZo0aeLX9yQixy6Y54QxY8bw5ptvHrTP/PnzGTx48HG/FxEREREREamdko4iIiIiIiIiIiLiV1rTUURERERERERERPxKSUcRERERERERERHxKyUdRURERERERERExK+UdBQRERERERERERG/UtJRRERERERERERE/EpJRxEJKTNmzMBisRAREcH27dsPen7w4MF069bNhMj8Y8yYMbRp06ZO+xqGwcyZMznzzDNp2rQpERERtG/fnltuuYXdu3cf0/GXLFnCpZdeSrNmzXA4HDRr1ozLLruMpUuXHtN4IiIiIg3RmjVr+Otf/0rbtm2JiIggJiaGk046iSlTppCbm2t2eD4LFizAYrGwYMECs0MRETmIko4iEpIqKir4xz/+YXYYpnG73fzlL3/hyiuvJC0tjRkzZjB37lxuu+02PvroI3r27MnPP/98VGM+//zznHrqqezatYspU6bw9ddf88QTT7Bz505OOeUUXn311QC9GxEREZH647XXXqNPnz4sXbqUu+66i7lz5/Lhhx9y6aWX8vLLLzN27FizQxQRqRfsZgcgInIow4cPZ+bMmdx555307NkzYMcpKysjMjIyYOMfq8cff5zZs2fz2GOPcc899/i2Dx48mFGjRtG/f38uvvhiNmzYQGxs7BHH+/HHH5kwYQIjR47kww8/xG7ff/q//PLLueiiixg3bhy9e/emX79+AXlPIiIiIqFu8eLF3HTTTQwdOpSPPvqI8PBw33NDhw7ljjvuYO7cucd9nNLSUqKiog7a7nK5cDqdNY4bigzDoLy8PCSvo0UkdKjSUURC0t13301iYmKNhNvhlJeXM2nSJNq2bYvD4SA9PZ2bb76Z/Pz8Gvu1adOG8847jw8++IDevXsTERHBQw895JuWMnPmTO655x6aNWtGTEwM559/Pnv37qWoqIjzzjsPi8VCYmIif/3rXykuLq4x9osvvsgZZ5xBSkoK0dHRdO/enSlTplBVVXXU772yspInnniCzp07c/fddx/0fGpqKpMnT2b37t1Mnz69TmNOnjwZi8XCSy+9VCPhCGC325k2bZpvPxEREZHG6tFHH8VisfDqq68eMvHncDi44IILAM/MlClTptCpUyfCw8NJSUnh6quvZteuXTVe410e6LvvvmPgwIFERUVx7bXXsm3bNiwWC1OmTOFf//oXbdu2JTw8nPnz5wOwbNkyLrjgAhISEoiIiKB379689957dXofc+bMYcCAAURFRREbG8vQoUNZvHjxQft9/PHH9OjRg/DwcNq1a8ezzz7Lgw8+iMViqbGfxWJh/PjxvPzyy3Tu3Jnw8HDefPNNAB566CH69+9PQkICcXFxnHTSSbzxxhsYhlFjDO+1+Keffkrv3r2JjIykc+fOfPrpp4BnmaXOnTsTHR3NySefzLJly+r0XkUkdKnSUURCUmxsLP/4xz+47bbb+PbbbznzzDMPuZ9hGFx44YV88803TJo0idNPP501a9bwwAMPsHjxYhYvXlzjgnHFihVs2LCBf/zjH7Rt25bo6GhKSkoA+Pvf/86QIUOYMWMGt9xyC19++SV/+ctfsNvtdOvWjdGjR7Nt2zbuu+8+YmNjee6553zj/v7771xxxRW+xOfq1at55JFH2LhxI//+97+P6r0vX76cvLw8brjhhoMu+LzOP/98rFYrX375Jbfeemut47lcLubPn0/fvn1p0aLFIfdp2bIlffr04euvv8btdmO16jspERERaVxcLhfffvstffr0oWXLlkfc/6abbuLVV19l/PjxnHfeeWzbto1//vOfLFiwgBUrVpCUlOTbNyMjg6uuuoq7776bRx99tMa11nPPPceJJ57Ik08+SVxcHB06dGD+/PkMHz6c/v378/LLLxMfH8+sWbMYNWoUpaWljBkz5rBxzZw5kyuvvJJhw4bx7rvvUlFRwZQpUxg8eDDffPMNp512GgBz587l4osv5owzzmD27Nk4nU6efPJJ9u7de8hxP/roI77//nvuv/9+0tLSSElJAWDbtm387W9/o1WrVoBnDXHvGuT3339/jTFWr17NpEmTuO+++4iPj+ehhx7i4osvZtKkSXzzzTe+pO8999zDeeedx9atW1VNKVKfGSIiIWT69OkGYCxdutSoqKgw2rVrZ/Tt29dwu92GYRjGoEGDjK5du/r2nzt3rgEYU6ZMqTHO7NmzDcB49dVXfdtat25t2Gw2Y9OmTTX2nT9/vgEY559/vm/boEGDjF69ehmAceutt9bY/8ILLzQSEhIO+x5cLpdRVVVlvPXWW4bNZjNyc3N9z11zzTVG69ata/0MZs2aZQDGyy+/XOt+qampNT6Lw8nMzDQA4/LLL691v1GjRhmAsW/fviOOKSIiItLQ1PWayTAMY8OGDQZgjBs3rsb2n376yQCMv//9775tgwYNMgDjm2++qbHv1q1bDcBo3769UVlZWeO5Tp06Gb179zaqqqpqbD/vvPOMZs2aGS6XyzCM/dex8+fPNwzDcx3avHlzo3v37r59DMMwioqKjJSUFGPgwIG+bf369TNatmxpVFRU1NgvMTHR+GOqADDi4+NrXNceivc6+OGHHzYSExN91/CG4bkWj4yMNHbt2uXbtmrVKgMwmjVrZpSUlPi2f/TRRwZgzJkzp9bjiUhoUymLiIQsh8PBv/71L5YtW3bYqSTffvstwEHf9l566aVER0fzzTff1Njeo0cPTjzxxEOOdd555/nGWrhwIatWrQI83z57u2rn5+fTuXNncnNziY+P59NPP6Vjx45ERETQvHlzEhMTsdlshIWFcfXVV+NyudiwYYPvGG63m7y8PNLT04mOjqZ///7H3G3QMIwalZDeNYC8N7fbfdTjAYetrhQRERERD+8U6D9eg5588sl07tz5oGvQpk2bHnbmzgUXXEBYWJjv8ebNm9m4cSNXXnklQI3ru5EjR5KRkcGmTZsOOdamTZvYs2cPo0ePrlFNGRMTwyWXXMKSJUsoLS2lpKSEZcuWceGFF+JwOGrsd/755x9y7DPPPJOmTZsetP3bb7/l7LPPJj4+3ncdfP/995OTk0NWVlaNfXv16kV6errvcefOnQHPFPQD17j0bt++ffshjdx2oQAAiI1JREFUYxGR+kFJRxEJaZdffjknnXQS99133yHXR8zJycFut5OcnFxju8ViIS0tjZycnBrbmzVrdthjJSQkAPDss88yYMAABg0aBMAXX3xRY4qN98KstLSU5557jmeeeQar1UpWVhbNmzdnyJAhzJ49mxtvvBGgxmLjP/zwAxUVFcyaNYs1a9Zw6aWXMnz4cH777TffPt6pKVu3bj1srCUlJWRnZ9eIq3379oSFhfluDz/8MABJSUlERUXVOh54psZERkaSmJhY634iIiIiDVFdr5kA3zXmoa4tmzdvflTXoH98zju9+c4776xxbRcWFsa4ceMAyM7OPqa4vF+A5+XlYRgGqampB+13qG2HG/Pnn39m2LBhgKfr948//sjSpUu57777AE/TxgN5r7e9vNfVh9teXl5+yFhEpH7Qmo4iEtIsFguPP/44Q4cO5dVXXz3o+cTERJxOJ/v27auReDQMg8zMzIM6Mdelii8+Ph6Hw+G72ElKSjqocQx4vnV+6aWX+OyzzygrK+OKK67go48+YvHixcTExFBYWAjgq5j8/fff2bp1Ky1atOD0008HPBeTc+fOZfr06Tz66KMA9OnTh4SEBObMmeNrAPNHc+bMwe121/jG/JNPPqGiosL3uHnz5gDYbDbOPPNMvvjiC3bt2nXIdR137drF8uXLGT58+BE/HxEREZGGyGazcdZZZ9V6zeTl/ZI2IyPjoP327NlTYz1HqP0a9I/PeV87adIkLr744kO+pmPHjkeM64/27NmD1WqladOmvhkzh1q/MTMzs05xAsyaNYuwsDA+/fRTIiIifNs/+uijQ44hIo2LKh1FJOSdffbZDB06lIcffvig5N9ZZ50FwNtvv11j+/vvv09JSYnv+UCIjIykffv2vguwtLQ02rRpQ0xMDIZh8NprrwGQl5cHeJrYAOzevZuYmBjfbeHChfz+++++cR0OB3fddRcbNmzgiSeeOOi4WVlZTJo0iSZNmtSY0tO9e3f69u3ru3mTjgD33nsvhmEwbtw4XC5XjfFcLhc33XQTLpeL2267zT8fjoiIiEg9NGnSJAzD4Prrr6eysvKg56uqqvjkk098X/z+8Rp06dKlbNiw4biuQTt27EiHDh1YvXp1jWu7A2+xsbGHfW16ejozZ86s0T26pKSE999/39fROjo6mr59+/LRRx/VeJ/FxcW+btJ1YbFYsNvt2Gw237aysjL+85//HMM7F5GGRpWOIlIvPP744/Tp04esrCy6du3q2z506FDOOecc7rnnHgoLCzn11FN93at79+7N6NGjAxaT3W73xeBwOPjggw+wWCx8+OGHvPTSS75ko/eCz+12Y7FYaNasGQsXLqwxVkxMTI3Hd999N6tWreKee+5h9erVjBo1ivj4eNasWcMTTzzB3r17+fTTTw/6Fv1wTj31VKZOncptt93Gaaedxvjx42nVqhU7duzgxRdfZPHixTz44IMMHTr0eD8WERERkXprwIABvPTSS4wbN44+ffpw00030bVrV6qqqli5ciWvvvoq3bp148MPP+SGG27g+eefx2q1MmLECF/36pYtW3L77bcfVxyvvPIKI0aM4JxzzmHMmDGkp6eTm5vLhg0bWLFiBf/9738P+Tqr1cqUKVO48sorOe+88/jb3/5GRUUFTzzxBPn5+Tz22GO+fR9++GHOPfdczjnnHG677TZcLhdPPPEEMTEx5Obm1inOc889l6effporrriCG264gZycHJ588knCw8OP6/2LSMOgpKOI1Au9e/fmL3/5CzNnzqyx3WKx8NFHH/Hggw8yffp0HnnkEZKSkhg9ejSPPvroMV/wOByOOjdi6dSpE++//z7XXXcdWVlZ3HLLLVxxxRVMnDiRESNG1HgPhmHgdrs54YQTah3TarXy7rvvct555/H6669z9dVXU1BQAHi+wV69ejWdOnU6qvd0yy230LdvX5566inuuOMO9u3bh9vtJiIigs8++4yRI0ce1XgiIiIiDdH111/PySefzDPPPMPjjz9OZmYmYWFhnHjiiVxxxRWMHz8egJdeeon27dvzxhtv8OKLLxIfH8/w4cOZPHnyca+RPWTIEH7++WceeeQRJkyYQF5eHomJiXTp0oXLLrus1tdeccUVREdHM3nyZEaNGoXNZuOUU05h/vz5DBw40Lff8OHDef/997n//vsZNWoUaWlpjBs3jj179tS5UvHMM8/k3//+N48//jjnn38+6enpXH/99aSkpDB27Njj+gxEpP6zGAfWXIuICAA33HADq1at4r333iMmJoY1a9Zw1llnkZeXR5MmTZgxYwYTJkwgPz/f95oHH3yQjz76yLeGI3g6Gubn5/vWtbnqqqv48ccfeeqpp+jduzfZ2dl8++23dO/evU5Jv+uuu44333yT999/nwsuuOC43+dbb73FNddcw913383jjz9+3OOJiIiISP1VVVXl6zD91VdfmR2OiNRzWtNRROQQ7rzzTmw2G126dCE5OZkdO3b4Zdzp06dz9dVXc8cdd9CxY0cuuOACfvrppxpdqGvzyiuvMHz4cC677DLmzZt33PFcffXVPPbYY0yZMsXX7VpEREREGoexY8cya9YsFi5cyOzZsxk2bBgbNmzg7rvvNjs0EWkAVOkoIiIiIiIi0ghddtllLFq0iH379hEWFsZJJ53E3//+d4YPH252aCLSACjpKCIiIiIiIiIiIn6l6dUiIiIi0uB89913nH/++TRv3tzXdOxIFi5cSJ8+fYiIiKBdu3a8/PLLB+3z/vvv06VLF8LDw+nSpQsffvhhAKIXERERqf+UdBQRERGRBqekpISePXvywgsv1Gn/rVu3MnLkSE4//XRWrlzJ3//+d2699Vbef/993z6LFy9m1KhRjB49mtWrVzN69Gguu+wyfvrpp0C9DREREZF6S9OrRURERKRBs1gsfPjhh1x44YWH3eeee+5hzpw5bNiwwbftxhtvZPXq1SxevBiAUaNGUVhYyBdffOHbZ/jw4TRt2pR33303YPGLiIiI1Ed2swMIJrfbzZ49e4iNjcVisZgdjoiIiMhRMQyDoqIimjdvjtWqCSv+tHjxYoYNG1Zj2znnnMMbb7xBVVUVYWFhLF68mNtvv/2gfaZOnXrYcSsqKqioqPA9drvd5ObmkpiYqOtRERERqZfqek3aqJKOe/bsoWXLlmaHISIiInJcdu7cSYsWLcwOo0HJzMwkNTW1xrbU1FScTifZ2dk0a9bssPtkZmYedtzJkyfz0EMPBSRmERERETMd6Zq0USUdY2NjAc+HEhcXZ3I0IiIiIkensLCQli1b+q5pxL/+WHnoXYXowO2H2qe2isVJkyYxceJE3+OCggJatWoVkOvRZ+b9yoxF23C5D149yWa1MGZgG24feqJfjykiIiKNT12vSRtV0tF7QRgXF6eko4iIiNRbmpbrf2lpaQdVLGZlZWG320lMTKx1nz9WPx4oPDyc8PDwg7YH4nr06kGdeXPZXqyHWLHdYoFrBnUmLi7ar8cUERGRxutI16RaDEhEREREGr0BAwYwb968Gtu++uor+vbtS1hYWK37DBw4MGhx1qZtUjSPX9ID6wHX/zaLBasFHr+kB22SlHAUERGR4GlUlY4iIiIi0jgUFxezefNm3+OtW7eyatUqEhISaNWqFZMmTWL37t289dZbgKdT9QsvvMDEiRO5/vrrWbx4MW+88UaNrtS33XYbZ5xxBo8//jh/+tOf+Pjjj/n666/54Ycfgv7+DufSvi3plh7HiGc9Mf31tDZc1b+1Eo4iIiISdPWm0nHy5Mn069eP2NhYUlJSuPDCC9m0aZPZYYmIiIhICFq2bBm9e/emd+/eAEycOJHevXtz//33A5CRkcGOHTt8+7dt25bPP/+cBQsW0KtXL/7v//6P5557jksuucS3z8CBA5k1axbTp0+nR48ezJgxg9mzZ9O/f//gvrkjaJ24P8E4ceiJSjiKiIiIKSyGd4XsEDd8+HAuv/xy+vXrh9Pp5L777mPt2rWsX7+e6Oi6XUgVFhYSHx9PQUGB1nQUERGRekfXMvVfMP4bllY66XL/lwCsf/gcohya3CQiIiL+U9frmXpzBTJ37twaj6dPn05KSgrLly/njDPOMCkqERERERERERER+aN6k3T8o4KCAgASEhIOu09FRQUVFRW+x4WFhQGPS0REREREREREpLGrN2s6HsgwDCZOnMhpp51Gt27dDrvf5MmTiY+P991atmwZxChFREREREREREQap3qZdBw/fjxr1qyp0U3wUCZNmkRBQYHvtnPnziBFKCIiIiIiIiIi0njVu+nVt9xyC3PmzOG7776jRYsWte4bHh5OeHh4kCITERERERERERERqEeVjoZhMH78eD744AO+/fZb2rZta3ZIIiIiIv6xdy/k55sdhYiIiIiI39SbpOPNN9/M22+/zcyZM4mNjSUzM5PMzEzKysrMDk1ERETk6BkGLFoEV14JLVvCtGlmRyQiIiIi4jf1Znr1Sy+9BMDgwYNrbJ8+fTpjxowJfkAiIiIix6K0FGbOhBdfhFWr9m9fscK0kERERERE/K3eJB0NwzA7BBEREZFj99tv8NJLMH36/qnUERHwl7/AzTdDnz6mhiciIiIi4k/1JukoIiIiUu+4XPD5556qxi+/3L+9XTu46Sb4618hMdG8+EREREREAkRJRxERERF/y86GN97wVDZu3+7ZZrHA8OEwfrznp7XeLK0tIiIiInLUlHQUERER8Zeff/ZUNc6eDRUVnm1Nm8LYsXDjjdC+vbnxiYiIiIgEiZKOIiIiIsejrMyTZHzxRVi2bP/2k07yVDVefjlERpoXn4iIiIiICZR0FBERETkWW7d6pk+/8Qbk5nq2ORwwapSnMczJJ3umVIuIiIiINEJKOoqIiIjUldvtaQjz4oueBjGG4dneqpWnMczYsZCcbG6MIiIiIiIhQElHERERkSPJzYXp0z2Vjb//vn/7sGGeqsZzzwWbzbz4RERERERCjJKOIiIiIoezYoWnqnHmTCgv92yLj4e//tVT2XjiiebGJyIiIiISopR0FBERETlQRQX897+eZOOSJfu39+zpqWq84gqIjjYvPhERERGRekBJRxERERGAHTvg5Zfh9ddh3z7PtrAw+POfPcnGgQPVGEZEREREpI6UdBQREZHGyzDg6689VY2ffOJpFAOQng433gjXXQdpaebGKCIiIiJSDynpKCIiIo1Pfj68+SZMmwa//rp/+5lneqoaL7gA7LpMEhERERE5VrqaFhERkcZjzRpPVePbb0NpqWdbbCxccw2MGwedO5sbn4iIiIhIA6Gko4iIiDRslZXwwQeeZOMPP+zf3rWrp6rxqqs8iUcREREREfEbJR1FRESkYdq9G155BV57DTIzPdtsNrj4Yk+y8Ywz1BhGRERERCRAlHQUERGRhsMwYMECT1XjRx+By+XZ3qwZ3HCD59a8uZkRHsTlNvh5ay5ZReWkxEZwctsEbFYlQ0VERESkflPSUUREROq/oiJ46y1PY5j16/dvP+MMT1XjRRdBWJh58R3G3F8yeOiT9WQUlPu2NYuP4IHzuzC8WzMTIxMREREROT5KOoqIiEi9460OLFu1hi4fvk3qx+9hKS72PBkdDaNHexrDdO9ubqC1mPtLBje9vQLjD9szC8q56e0VvHTVSUo8ioiIiEi9paSjiIiI1CtfrtrJgide5/wfPuLMHWt824vbtCdm4m1w9dUQH29ihEfmchs89Mn6gxKOAAZgAR76ZD1Du6RpqrWIiIiI1EtWswMQERERqZPMTH4bfzc9Tu/N5JkPM3DHGlwWK3NPHMCVo/5F98umMnfIn0M+4Qjw89bcGlOq/8gAMgrK+XlrbvCCaoCmTZtG27ZtiYiIoE+fPnz//feH3XfMmDFYLJaDbl27dvXtM2PGjEPuU15++P+WIiIiIo2VKh1FREQkdBkG/PgjvPgixv/+RwenE4B9UU2Y1fMcZvYaTkZcMlC/qgOziuqWpKrrfnKw2bNnM2HCBKZNm8app57KK6+8wogRI1i/fj2tWrU6aP9nn32Wxx57zPfY6XTSs2dPLr300hr7xcXFsWnTphrbIiIiAvMmRERERP6/vTuPi7Je/z/+HlDABccFWUxUtNQQK5dUNLdyQdPMyi01TTOXPGbWr5PfzjlqnbI9T4uoZZlp5ikzs4yyjkvmliKZYWZKYQbhCm6Awv37445BZHEGZ5gZeD0fj3nofOa+77numWGYubg+n8uLkXQEAACe58wZaelSswv1bnMKtUXSjquu1eLWtyquaSdlVyrYGObi6sDoJnXKPmYHBAfal6SydzsU9tJLL2ns2LG67777JElz5szRF198odjYWM2ePbvQ9larVdaLqmQ//vhjnThxQvfee2+B7SwWi0JDQ10bPAAAQDlA0hEAAHiOn382O1AvWiSlp5tjVapIw4dr/S13aXTChcsewhuqA9tF1FaYNUCp6ZlFrutokRRqDVC7iNplHVq5kJ2drZ07d+qxxx4rMN6rVy9t3rzZrmMsXLhQPXr0UMOGDQuMnz59Wg0bNlROTo5uuOEGPfnkk2rVqlWxx8nKylJWVpbtekZGhgNnAgAA4L1Y0xEAALhXTo60apXUq5fUrJn0n/+YCcerr5Zeekk6fFh64w3539jWrsN5Q3Wgr49FM/pHSjITjBfLuz6jf6THTxP3VEePHlVOTo5CQkIKjIeEhCg1NfWy+6ekpOjzzz+3VUnmad68uRYtWqRPPvlEy5YtU0BAgDp16qT9+/cXe6zZs2fbqiitVqvCw8NLd1IAAABehqQjAABwjyNHpNmzpcaNpdtvl9aulSwWqX9/KS5O2rdPeughqVYtSfnVgcWl4SySwryoOjAmKkyxI1or1FowSRpqDVDsiNaKiQpzU2Tlh8VS8NViGEahsaIsWrRINWvW1O23315gvEOHDhoxYoSuv/56de7cWf/973/VtGlTvfrqq8Uea/r06UpPT7ddDh06VKpzAQAA8DZMrwYAAGXHMKRt28y1Gv/7Xyk72xyvU0e67z5pwgSpUaMid82rDpy4JF4WqcC0ZG+tDoyJClPPyFBtTzqutFOZCg40k6bedA6eKCgoSL6+voWqGtPS0gpVP17KMAy99dZbGjlypPz8/Erc1sfHRzfeeGOJlY7+/v7y9/e3P3gAAIBygkpHAADgeufOSW+9JbVtK0VHS0uWmAnHG2+U3nlH+v136Zlnik045imP1YG+PhZFN6mjATdcpegmdUg4OoGfn5/atGmjtWvXFhhfu3atOnbsWOK+GzZs0C+//KKxY8de9n4Mw1BCQoLCwrzvdQcAAOBqVDoCAADXOXBAio01E44nTphj/v7SsGHSpElm0tFBVAfCHtOmTdPIkSPVtm1bRUdHa8GCBUpOTtaECRMkmdOeDx8+rMWLFxfYb+HChWrfvr2ioqIKHXPWrFnq0KGDrrnmGmVkZOiVV15RQkKCXn/99TI5JwAAAG9C0hEAADhXTo65JuPrr5v/Gn9NhG7USJo4URozRgoKuqK7yKsOBIozZMgQHTt2TE888YRSUlIUFRWlNWvW2LpRp6SkKDk5ucA+6enpWrFihf7zn/8UecyTJ0/q/vvvV2pqqqxWq1q1aqWNGzeqXbt2Lj8fAAAAb2MxDMO4/GblQ0ZGhqxWq9LT01WjRg13hwMAQPly7JhZ0RgbKyUl5Y/36WNWNfbpI/n6ui++coDPMt6vLJ7Ds9kXFPmvLyRJiU/0VlU/6gwAAIDz2Pt5hk8gAADgyuzYYVY1vv++lJlpjtWsaVY0TpwoXX21W8MDAAAAUPZIOgIAAMdlZprdp19/Xdq+PX+8VSvpgQfMNRurVnVffAAAAADciqQjAACw36+/SvPmSQsXSkePmmN+ftKgQWaysUMHyUJDFwAAAKCiI+kIAABKlpsrrV1rVjV++ml+Y5jwcGnCBOm++6TgYPfGCAAAAMCjkHQEAABFO3FCWrRImjtX+uWX/PEePcyqxn79pEp8lAAAAABQGN8UAABAQQkJZlXj0qXSuXPmWI0a0ujRZhfqZs3cGR0AAAAAL0DSEQAASNnZ0ocfmsnGzZvzx1u2NKsahw+Xqld3X3wAAAAAvApJRwAAKrJDh6T586U33pDS0syxSpWkO+80k4033URjGAAAAAAOI+kIAEBFYxjS//5nVjWuWmU2ipGkevWk8eOlceOksDD3xggAAADAq5F0BACgokhPlxYvNhvD/PRT/ni3bmZV44ABUuXKbgsPAAAAQPlB0hEAgPJuzx6zqvHdd6UzZ8yx6tWle+4xG8O0aOHe+AAAAACUOyQdAQAoj86flz76yKxq3Lgxfzwy0qxqHDHC7EgNAAAAAC5A0hEAgPLkjz/MxjALFkipqeaYr680cKCZbOzalcYwAAAAAFyOpCMAAN7OMKQNG8yqxpUrpQsXzPHQUOn++83GMPXruzdGAAAAABUKSUcAALzVqVPmOo1z50o//pg/3rmzWdU4cKDk5+e++AAAAABUWCQdAQDwNnv3mo1hFi82E4+SVLWqNHKk2RjmuuvcGx8AAACACo+kIwAA3uDCBWnVKjPZuG5d/njTpmZV46hRktXqvvgAAAAA4CIkHQEA8GSpqdIbb5jNYQ4fNsd8fKTbbjOTjTffbF4HAAAAAA9C0hEAAE9jGNK335pVjStWSOfPm+N165pNYcaPlxo0cG+MAAAAAFACko4AAHiKM2ekpUvNxjDff58/Hh1tVjXedZfk7++++AAAAADATiQdAQBwt59/NhONixZJ6enmWJUq0t13m41hWrd2a3gAAAAA4CiSjgAAuENOjvTZZ+YU6i+/zB9v0sRMNN57r1SrlvviK0ZOrqHtSceVdipTwYEBahdRW74+FneHBQAAAMDDeFXScePGjXr++ee1c+dOpaSkaOXKlbr99tvdHRYAAPY7ckRauFCaN0/67TdzzGKRbr3VnELdq5fHNoaJ25OiWasTlZKeaRsLswZoRv9IxUSFuTEyAAAAAJ7GM7/VFOPMmTO6/vrr9dprr7k7FAAA7GcY0rZt0j33SPXrS9OnmwnHOnWkRx+VDhyQVq+WYmJKnXDMyTW05cAxrUo4rC0Hjikn13DqKcTtSdHEJfEFEo6SlJqeqYlL4hW3J8Wp9wcAAADAu3lVpWOfPn3Up08fd4cBAIB9zp2T3n/fnEK9c2f++I03mlWNgwebazdeIVdXIObkGpq1OlFFpTENSRZJs1YnqmdkKFOtAQAAAEjysqSjo7KyspSVlWW7npGR4cZoAAAVxoEDUmys9NZb0okT5pi/vzR0qJlsvPFGp91VXgXipQnBvArE2BGtrzjxuD3peKEKx4sZklLSM7U96biim9S5ovsCAAAAUD541fRqR82ePVtWq9V2CQ8Pd3dIAIDyKjfXbAzTt690zTXSiy+aCcdGjaRnn5V+/93sTu3EhOPlKhAlswLxSqdap50qPuFYmu0AAAAAlH/lOuk4ffp0paen2y6HDh1yd0gAgPLm2DHp+eelq6+W+vWTPv/cXMMxJsZcp/GXX8x1G4OCJDl37UVHKhCvRHBggFO3AwAAAFD+levp1f7+/vL393d3GAAAL5eTa2h70nGlncpUcGCA2kXUlm/8TnOtxvfflzL/SvzVrCmNGSNNnGgmIS/h7LUXy6oCsV1EbYVZA5SanllkVaVFUqjVfFwAAAAAQCrnlY4AgIrNGVWFcXtSdNOz/9OwN7bq0SXb9cGDT+mnhpHmNOlFi8yEY6tW0ptvSocPm9Oqi0k4Orv7c1lVIPr6WDSjf6QkM8F4sbzrM/pH0kQGHmfu3LmKiIhQQECA2rRpo2+++abYbdevXy+LxVLo8tNPPxXYbsWKFYqMjJS/v78iIyO1cuVKV58GAACAV/KqSsfTp0/rl19+sV1PSkpSQkKCateurQYNGrgxMgCAp3FGVWFeorBeepoeTVijId9/qTrnzKZk2T6VdLTPbar3+CNShw6SpfiEm6u6P5dlBWJMVJhiR7Qu9JiGOrFLNuBMy5cv19SpUzV37lx16tRJ8+fPV58+fZSYmFji58Z9+/apRo0atut169a1/X/Lli0aMmSInnzySQ0cOFArV67U4MGDtWnTJrVv396l5wMAAOBtLIZhXNnq8mVo/fr16t69e6HxUaNGadGiRZfdPyMjQ1arVenp6QU+TAIAypfiOjrnpfPs6eiccyFHD497XrduWqmbD+yQr5ErSTocWFdLW/XRf6/rpcr1QrXp7zdfNlG45cAxDXtj62XjXjaug8Pdn/POVVKB83XkXB1R5FRzKhzLDJ9l7Ne+fXu1bt1asbGxtrFrr71Wt99+u2bPnl1o+7zPmSdOnFDNmjWLPOaQIUOUkZGhzz//3DYWExOjWrVqadmyZUXuk5WVpaysLNv1jIwMhYeHu/Q5PJt9QZH/+kKSlPhEb1X186o6AwAA4OHs/UzqVdOru3XrJsMwCl3sSTgCACqGK+7ofOKE9PLLyr6mqeYsmq6ev2yXr5GrTQ2v1/0DH1eXCW9qbvRgHa1W0+4mLa5cezGvAjHUWnAKdag1wOkJR8mcah3dpI4G3HCVopvUIeEIj5Sdna2dO3eqV69eBcZ79eqlzZs3l7hvq1atFBYWpltuuUXr1q0rcNuWLVsKHbN3794lHnP27NmyWq22S3h4uINnAwAA4J34sycAoFxxpKNzgarChASzMczSpdK5c6oiKcOvqla0vEVLWvXVgTpFJwrsSRS6eu3FmKgw9YwMpQIR+MvRo0eVk5OjkJCQAuMhISFKTU0tcp+wsDAtWLBAbdq0UVZWlt59913dcsstWr9+vbp06SJJSk1NdeiYkjR9+nRNmzbNdj2v0hEAAKC8I+kIAChXHKoqzM6WPvzQTDZeXKnUsqUODB6l/scb6qxflRKPY0+isCzWXsyrQASQz3LJWquGYRQay9OsWTM1a9bMdj06OlqHDh3SCy+8YEs6OnpMSfL395e/v39pwgcAAPBqXjW9GgCAy7EnCRiWcURt3nhJCg+Xhg83E46VKklDhkgbN0rff69G/zdN1rq1CnVrzmOR2ZjGnkQh3Z+BshUUFCRfX99CFYhpaWmFKhVL0qFDB+3fv992PTQ09IqPCQAAUFGQdAQAlCt5VYWF0neGoY6/Jmjeyqf0zfyxqj/3JSktTapXT5o1S0pOlt5/X+rcWbJYnJ4oLOu1F4GKzM/PT23atNHatWsLjK9du1YdO3a0+zi7du1SWFj+z2Z0dHShY3755ZcOHRMAAKCiYHo1AMBjlaZTcl6ycOKSeFkkVcs6qzv3fK2R8Z/p6uO/52/YrZv0wAPSgAFS5cpFHisvUThrdWKBdSJDrQGa0T/S4UQhay8CZWfatGkaOXKk2rZtq+joaC1YsEDJycmaMGGCJHOtxcOHD2vx4sWSpDlz5qhRo0Zq0aKFsrOztWTJEq1YsUIrVqywHfPBBx9Uly5d9Oyzz2rAgAFatWqVvvrqK23atMkt5wgAAODJSDoCADxS3J6UQsm+MDuTfTFRYXq3fVWlPfOSeu/6StXOm8c441dFRwcOVsN//j+pRQu74nB2opC1F4GyMWTIEB07dkxPPPGEUlJSFBUVpTVr1qhhw4aSpJSUFCUnJ9u2z87O1iOPPKLDhw+rSpUqatGihT777DP17dvXtk3Hjh31/vvv6x//+If++c9/qkmTJlq+fLnat29f5ucHAADg6SyGYRS1pn25lJGRIavVqvT0dNWoUcPd4QBAuVeaSkXJTDhOXBJfqOlK3p7FTkc+f15audJsDLNxo234VMQ1OnLPfWo4dbx8a1pLf0KAm/FZxvuVxXN4NvuCIv/1hSQp8YnequpHnQEAAHAeez/P8AkEAOASpa1UzMk1NGt1YpFdng2ZicdZqxPVMzI0P4H5xx/SggXmJSXFHPP1lW6/XXrgAQV266bAErrLAgAAAACci6QjAMDpiqtUTE3P1MQl8SU2TtmedLxAovJShqSU9ExtP3hM0X8kSq+9ZlY3XrhgbhASIt1/v3mpX985JwQAAAAAcAhJRwCAU5WqUvEiaaeKTzhKUtXscxr44zq16POw9Mu+/BtuuslsDHPHHZKf3xWdAwAAAADgypB0BAA4ld2ViknHi2yoEhwYUOR+TY4d0ohda3TnD1+rRvZZc7BqVWnECGnSJOn6650RPgAAAADACUg6AgCc6nKVipfbrl1EbYVZA5Sanimf3Bz1+GWbRsZ/ppt++962zW9B9RX++MPyGT1aqlnTCVEDAAAAAJyJpCMAwKmKq1S0dztfH4ueiq6r+H+9oGEJcbrq1BFJUo7FR19f3U7vtrpVwx+/Vw2vu8ppMQMAAAAAnIukIwDgsnJyDW1POq60U5kKDgxQu4jaRa7HKBWsVCxqXUeLpFCreYwCDEPaskV6/XXd/MEHuvn8eUnSsSo1tPz6Xlp6Q1/lNmhw2e7XAAAAAAD3I+kIAChR3J4UzVqdWGCdxjBrQLHJP18fi2b0j9TEJfGySAUSj3lpyhn9I/OTlmfPSu+9J73+upSQkL9xhw7KnThJ+9veoquyDb1wmWQnAAAAAMBzkHQEABQrbk+KJi6JL1SxmJqeqYlL4hU7onWRiceYqDDFjmhdKFkZenGycv9+KTZWevtt6eRJc4OAAGnYMLMLdZs28pHUwWVnBwAAAABwFZKOAIAi5eQamrU6scgp0obMqsVZqxPVMzK0yOrDmKgw9YwMLTgtu4FVvnGfS4+8Ln3xRf7GjRtLEydK994r1Snc0RoAAAAA4F1IOgIAirQ96XiBKsVLGZJS0jO1Pem4opsUnSj09bGYtx09Ki18U5o3T/r1V/NGi0Xq08esaoyJkXx8nH8SAAAAAAC3IOkIABWEI81gJCntVPEJR7u3277dXKtx+XIpK8scq11bGjPGrGxs3NiRUwAAAAAAeAmHk47x8fGqXLmyWrZsKUlatWqV3n77bUVGRmrmzJny8/NzepAAgIIcTSA62gxGkoIDA+yKpdB2586ZScbXX5d27Mgfb9PGrGocOlSqUsWuYwMAXG/LgWPuDqFcS0k/p/X7jujI6SzVre6vbs3qKszK70EAgGsUNwvNHRxOOo4fP16PPfaYWrZsqYMHD2ro0KEaOHCgPvjgA509e1Zz5sxxQZgAUD45mjyUHE8glrYZTLuI2gqzBig1PbPIdR0tMhvDtIuobQ4kJZmNYRYulI4fN8f8/KQhQ8xkY7t25pRqAAAqiPX70rTgm4OyKH895NW7/9D4Lo3VtWmwm6MDAMC1HE46/vzzz7rhhhskSR988IG6dOmi9957T99++62GDh1K0hEA7FSa6kNHE4hX0gzG18eiGf0jNXFJvO3LUp68LWfc2ly+X8SZVY1r1kjGX1s1bChNmCCNHSvVrWvHowEAQPmSkn5OC745KMPI/x2a9+/8jQfVLKSGQq32zSoAAMAbObxqv2EYys3NlSR99dVX6tu3ryQpPDxcR48edW50AFBO5SUPL23Ukpc8jNuTUmifyyUQJTOBmJObv4UjzWCKEhMVptgRrQt9KWpaOVuf52xXzB1dpb59pc8+MxOOvXpJq1ZJBw5Ijz1GwhEAUGGt33dExdX3WySt25dWluEAAFDmHK50bNu2rf7973+rR48e2rBhg2JjYyVJSUlJCgkJcXqAAFDelLb6sDTdpJ3RDCYmKkw9I0O1Pem4srZ/p8iPlqjupytkyfxrH6tVuvdeszFM06Z23R8AAOXdkdNZRf6ul8zf2UdOZ5VlOAAAlDmHk45z5szR8OHD9fHHH+vxxx/X1VdfLUn68MMP1bFjR6cHCADlTWmSh1LpEoilbgZzsaws+X7wgaJff13aujV//PrrzbUa775bqlbNrvsBAKCiqFvdv9DyJHksf90OAEB55nDS8brrrtMPP/xQaPz555+Xr6+vU4ICgPKstNWHpUkgOtwM5mLJydK8edKbb0pHjphjlStLgwaZycboaBrDAABQjG7N6mr17j+KvM2Q1L0ZjWQAAOWbw2s6StLJkyf15ptvavr06Tr+V4fSxMREpaWxLgkAXE5pqw/zEoglrQ8VdkkCMa8ZTN7tl24vSTP6R+ZP487NldaulW6/XYqIkGbPNhOO9etL//63dOiQtHSp1LEjCUcAAEoQZq2i8V0aF/h16WMxf32O79KYJjIAgHLP4UrH3bt365ZbblHNmjX166+/aty4capdu7ZWrlyp3377TYsXL3ZFnABQbpS2+tCubtIXJxD/ktcM5tJO2aEXd8o+eVJ65x1p7lzp55/zd77lFrOqsX9/qZLDvzIAAKjQujYNVqM61fTYR+ZMsZioUPW8NpSEIwCgQnD4G+S0adN077336rnnnlNgYKBtvE+fPrr77rudGhwAlEelTR5KdiYQi3BxM5i0U5kKDjSTmr57fpDGz5SWLJHOnjU3DgyURo+WJk2Smjd3xikDAFBhhdTITzAOahOugMosSQUAqBgcTjp+9913mj9/fqHxq666SqmpqU4JCgDKu9ImD/P2LTKBWESS8mK+PhazMU12tvTRR9Lo16VNm/I3aNHCrGocMcJMPAIAAAAAUEoOJx0DAgKUkZFRaHzfvn2qW7euU4ICgIqgtMlD6aIEoiMOH5bmz5feeEPK+yNRpUrSwIFmsrFLF9ZpBAAAAAA4hcNJxwEDBuiJJ57Qf//7X0mSxWJRcnKyHnvsMd15551ODxAAvEVOrlH66kNXMQxp/Xrp9deljz+WcnLM8bAw6f77zUu9eq67fwAAAABAheRw0vGFF15Q3759FRwcrHPnzqlr165KTU1VdHS0nnrqKVfECAAeL25PSqGp0mF2TJV2mVOnpMWLzcYwiYn54126mFWNAwdKlSuXfVwAAAAAgArB4aRjjRo1tGnTJv3vf/9TfHy8cnNz1bp1a/Xo0cMV8QGAx4vbk6KJS+ILdaJOTc/UxCXxih3RuuwSj4mJZlXj4sXS6dPmWLVq0siRZmOYli3LJg4AAAAAQIXmcNIxz80336ybb77ZmbEAgNfJyTU0a3VioYSjZHaltkiatTpRPSND7VqrsVTOn5dWrTKTjevX5483a2ZWNd5zj2S1uua+AQAAAAAogl1Jx1deecXuA06ZMqXUwQCAt9medLzAlOpLGZJS0jO1Pem489duTE2VFiwwm8P88Yc55uMjDRhgJhtvvpnGMAAqtLlz5+r5559XSkqKWrRooTlz5qhz585FbvvRRx8pNjZWCQkJysrKUosWLTRz5kz17t3bts2iRYt07733Ftr33LlzCggIcNl5AAAAeCO7ko4vv/yyXQezWCwkHQFUKGmnik84lma7yzIMadMmc63GFSvMKkdJCg6Wxo2Txo+XwsOdc18A4MWWL1+uqVOnau7cuerUqZPmz5+vPn36KDExUQ0aNCi0/caNG9WzZ089/fTTqlmzpt5++231799f27ZtU6tWrWzb1ahRQ/v27SuwLwlHAACAwuxKOiYlJbk6DgDwSsGB9n3RtHe7Yp0+LS1daiYbd+/OH+/Y0axqvPNOyd//yu4DAMqRl156SWPHjtV9990nSZozZ46++OILxcbGavbs2YW2nzNnToHrTz/9tFatWqXVq1cXSDpaLBaFhoa6NHYAAIDywMfdAQCAN2sXUVth1gAVN4nZIrOLdbuI2qW7g337pAcflK66SpowwUw4Vqki3XeftGuX9O230t13k3AEgItkZ2dr586d6tWrV4HxXr16afPmzXYdIzc3V6dOnVLt2gXfv0+fPq2GDRuqfv366tevn3bt2lXicbKyspSRkVHgAgAAUBHYVek4bdo0Pfnkk6pWrZqmTZtW4rYvvfSSUwIDAG/g62PRjP6RmrgkXhapQEOZvETkjP6RjjWRuXBB+vRTszHMV1/lj199tdmBevRoqVatKw8eAMqpo0ePKicnRyEhIQXGQ0JClJqaatcxXnzxRZ05c0aDBw+2jTVv3lyLFi1Sy5YtlZGRof/85z/q1KmTvv/+e11zzTVFHmf27NmaNWtW6U8GAADAS9mVdNy1a5fO/7Vu2OX+mgsA3i4n19D2pONKO5Wp4ECzSrGkpGFMVJhiR7TWrNWJBZrKhFoDNKN/pGKiwuy747Q06c03pXnzpEOHzDGLRerXz5xC3bOn2SgGAGAXyyXNtAzDKDRWlGXLlmnmzJlatWqVgoODbeMdOnRQhw4dbNc7deqk1q1b69VXXy228eL06dML/NE+IyND4ay969FS0s9p/b4jOnI6S3Wr+6tbs7oKs1Zxd1gAAHgdu5KO69atK/L/AFDexO1JKZQ8DLMjeRgTFaaekaEOJSslmY1htm41qxo/+EDKzjbH69Qxp1BPmCA1auSEMwOAiiMoKEi+vr6FqhrT0tIKVT9eavny5Ro7dqw++OAD9ejRo8RtfXx8dOONN2r//v3FbuPv7y9/lsDwGuv3pWnBNwdtsxcsklbv/kPjuzRW16bBl9kbAABczOGSmTFjxujUqVOFxs+cOaMxY8Y4JSgAcIe4PSmauCS+QMJRklLTMzVxSbzi9qSUuL+vj0XRTepowA1XKbpJnZITjmfPSgsXSm3amM1gli41E47t2knvvCP9/rv0zDMkHAGgFPz8/NSmTRutXbu2wPjatWvVsWPHYvdbtmyZRo8erffee0+33nrrZe/HMAwlJCQoLMzOinZ4tJT0c1rwzUEZhpRrqMC/8zceVOolnw8AAEDJHE46vvPOOzp37lyh8XPnzmnx4sVOCQoAylpOrqFZqxMLrMmYJ29s1upE5eQWtYUDfvlFevhhqX79/GYw/v7mOo3ffSdt2ybdc48UcIXdrgGggps2bZrefPNNvfXWW9q7d68eeughJScna8KECZLMac/33HOPbftly5bpnnvu0YsvvqgOHTooNTVVqampSk9Pt20za9YsffHFFzp48KASEhI0duxYJSQk2I4J77Z+35ESG8Ot25dWluHgIinp57Rse7Je+d9+LduerJT0wt9HAQCex67p1ZK5/oxhGDIMQ6dOnVLARV+Ic3JytGbNmgJr3gCAN9medLxQhePFDEkp6ZnannRc0U3qOHbwnBzp88/NKdRxcfnjERHSxInSmDHmdGoAgNMMGTJEx44d0xNPPKGUlBRFRUVpzZo1atiwoSQpJSVFycnJtu3nz5+vCxcu6IEHHtADDzxgGx81apQWLVokSTp58qTuv/9+paamymq1qlWrVtq4caPatWtXpucG1zhyOqvIPz5K5ueAI6ezyjIc/IUp7wDgvexOOtasWVMWi0UWi0VNmzYtdLvFYqEzHwCvlXbKvilT9m4nSTp2zJxCPW+elJRkjlksUkyM2RgmJkby9S1FtAAAe0yaNEmTJk0q8ra8RGKe9evXX/Z4L7/8sl5++WUnRAZPVLe6vy2xdSnLX7ejbF085T3vecn7d/7Gg2oWUkOhVmaHAICnsjvpuG7dOhmGoZtvvlkrVqxQ7dq1bbf5+fmpYcOGqlevnkuCBABXCw607wOrXdt9951Z1fj++1LWX1URtWqZFY0TJ0pNmlxBpAAAwBW6Naur1bv/KPI2Q1L3ZlTVlbW8Ke/FJYLX7UvTsHYNyjgqAIC97E46du3aVZKUlJSk8PBw+fg4vBwkAHisdhG1FWYNUGp6ZrEfbEOtZkfqImVmSsuXm8nG777LH2/d2qxqHDpUqlrVFaEDAAAnCLNW0fgujTV/o1lZJ0k+FjPhNb5LYyrq3IAp7wDg3exOOuZp2LChTp48qe3btystLU25ubkFbr94QW4A8Ba+PhbN6B+piUviC/1FPW9R+Rn9Iwt3pP71Vyk21pxGfeyYOebnJw0ebCYb27c3p1QDAACP17VpsBrVqabHPvpBkhQTFaqe14aScHQTprwDgHdzOOm4evVqDR8+XGfOnFFgYKAsF32ZtlgsJB0BuEROrqHtSceVdipTwYFmxWGhBOAV7hcTFabYEa01a3VigaYyodYAzegfqZioMHMgN1f68kuzqvGzz2Qrh2jQQJowQRo7VqKxFgAAXimkRn6CcVCbcAVUZv1ld2HKOwB4N4eTjg8//LDGjBmjp59+WlWZKgigDMTtSSmUCAy7NBHopP1iosLUMzK06ETliRPS22+blY2//JK/U8+eZlVjv340hgEAAHASprwDgHdzOOl4+PBhTZkyhYQjgFJxtGIxbk+KJi6JLzStJjU9UxOXxCt2ROsiE4il3U8yp1pHN6mTP7Brl1nV+N570rlz5pjVKo0ebTaGadbs8icOAAAAhzHlHQC8l8PdYHr37q0dO3a4Iha7zJ07VxEREQoICFCbNm30zTffuC0WAI6J25Oim579n4a9sVUPvp+gYW9s1U3P/k9xe1KK3D4n19Cs1YlFruOTNzZrdaJycgtuUdr9CsjKkpYulTp2NJvBLFxoJhyvu06aP186fFiaM4eEIwAAgItdOuWdhCMAeAeHKx1vvfVW/b//9/+UmJioli1bqnLlygVuv+2225wW3KWWL1+uqVOnau7cuerUqZPmz5+vPn36KDExUQ0aNHDZ/QK4cqWpPNyedLzA1OhLGZJS0jO1Pel4gcrE0u4nSTp0SJo3T3rzTSktzRyrVEm66y5zCnWnTjSGAQAAAADgMhxOOo4bN06S9MQTTxS6zWKxKCcn58qjKsZLL72ksWPH6r777pMkzZkzR1988YViY2M1e/Zsl90vgCtzucpDi8zKw56RoQWmWqedKj5xeLFLt3N4P8OQvv7anEL9ySdmoxhJqlfPbAwzbpwUGmrXMQEAAAAAQCmSjrl5X8bLWHZ2tnbu3KnHHnuswHivXr20efPmIvfJyspSVlaW7XpGRoZLYwRQtNJWHgYH2jd15tLt7N0vTNnSK69Ic+dK+/bl39C9u1nVeNtt0iXV3AAAAAAA4PIcTjq6y9GjR5WTk6OQkJAC4yEhIUpNTS1yn9mzZ2vWrFllER6AEpS2YrFdRG2FWQOUmp5ZZJWkRVKo1WxG48h+zY/8qvF74nTja+ukM2fMwerVpVGjpEmTpMhIu+IFAAAAAABFK1XS8cyZM9qwYYOSk5OVnZ1d4LYpU6Y4JbDiWC5ZS80wjEJjeaZPn65p06bZrmdkZCg8PNyl8QEorLQVi74+Fs3oH6mJS+JlkQokEPN+6mf0jyzU/bqo/SrnnFfvn7fonvjP1O73H/M3jow0qxpHjpQCAx09NQAAAAAAUASHk467du1S3759dfbsWZ05c0a1a9fW0aNHVbVqVQUHB7ss6RgUFCRfX99CVY1paWmFqh/z+Pv7y9/f3yXxABVZTq6h7UnHlXYqU8GBZqXhpYm/i5W2YlGSYqLCFDuitWatTiwwRTvUGqAZ/SMLNZ+5dL+5Szbqlm9Wadj3cQo+c0KSlOvrK5+BA81kY9euNIYBAAAAAMDJHE46PvTQQ+rfv79iY2NVs2ZNbd26VZUrV9aIESP04IMPuiJGSZKfn5/atGmjtWvXauDAgbbxtWvXasCAAS67XwAFxe1JKZQADLtMArC0FYt5YqLC1DMy1P5Ep2FIGzYo5vXX1XvlSln+anCVXTdYlSaMl8/48dJVVzl45gAAAIDrpaSf0/p9R3TkdJbqVvdXt2Z1FWat4u6wAMBhDicdExISNH/+fPn6+srX11dZWVlq3LixnnvuOY0aNUp33HGHK+KUJE2bNk0jR45U27ZtFR0drQULFig5OVkTJkxw2X0CyBe3J0UTl8QXqlZMTc/UxCXxih3R+rKVh45WLObx9bEUaDJTpFOnpHffNRvD/GhOobZIUufO0gMPyG/gQMnP7zJnCQAAUHGQ4PIs6/elacE3B21/qLdIWr37D43v0lhdmwa7OToAcIzDScfKlSvb1lAMCQlRcnKyrr32WlmtViUnJzs9wIsNGTJEx44d0xNPPKGUlBRFRUVpzZo1atiwoUvvF4A5pXrW6sQip0fnfSCatTpRPSNDnVexaK+9e6XXX5cWLzYTj5JUrZo0YoQ5hbplyys7PgAAQDnkqgQXiczSSUk/pwXfHJRh5M8Myvt3/saDahZSQ6FW+9ZKBwBP4HDSsVWrVtqxY4eaNm2q7t2761//+peOHj2qd999Vy3L4Iv9pEmTNGnSJJffD4CCticdL1CheClDUkp6prYnHS+xItGuikV7XLggrVplJhvXrcsfb9bM7EA9apRktV75/QAAAJRDrkpwUalXeuv3HSm0FFEei6R1+9I0rF2DMo4KAErPx9Ednn76aYWFmdMgn3zySdWpU0cTJ05UWlqaFixY4PQAAXiGtFPFJxxLs12ppaZKTz4pNWok3XWXmXD08ZFuv11au9asepwyhYQjAABACfISXEXJS3A56uJEZq6hAv/O33hQqSX8ARvSkdNZRSYcJTMReeR0VlmGAwBXzOFKx7Zt29r+X7duXa1Zs8apAQHwTMGB9v2l297tHGIY0ubNZlXjhx9K58+b43XrSuPGSePHSw34qy8AAIC9XJHgolLvytSt7l/i41e3un8ZRwQAV8bhpCOA8iEn13BobcV2EbUVZg1QanpmsR+EQq3mcZzmzBlp6VKzMcz33+ePR0ebazXedZfkz4cvAAAAR7kiwUWl3pXp1qyuVu/+o8jbDEndmzE9HYB3cTjpGBERYWskU5SDBw9eUUAAXC9uT0qhLtJhl+ki7etj0Yz+kZq4JL7QB9S8d4QZ/SOvvCmMJP38s5loXLRISk83x6pUke6+21yvsXXrK78PAACACswVCS4q9a5MmLWKxndprPkbzSnqkuRjMR/P8V0a00QGgNdxOOk4derUAtfPnz+vXbt2KS4uTv/v//0/Z8UFoASOVileLG5PiiYuiS/0YTA1PVMTl8QrdkTrYhOPMVFhih3RulDCMvQyCUu75ORIn35qTqFeuzZ/vEkTM9F4771SrVqlPz4AAABsXJHgolLvynVtGqxGdarpsY9+kCTFRIWq57WhJBwBeCWHk44PPvhgkeOvv/66duzYccUBAShZaaoU8+TkGpq1OrHIvz7ndRectTpRPSNDi01ixkSFqWdkaKmTnoUcOSK9+aY0b56UnGyOWSzSrbeaU6h79TIbxQAAAMCpnJ3golLPOUJq5D9Og9qEK6CyrxujQUr6Oa3fd0RHTmepbnV/dWtWV2HWKu4OCx6M10w+p63p2KdPH02fPl1vv/22sw4JlEvuqlKUpO1JxwskKy9lSEpJz9T2pOOKblKn2O18fSwl3n5ZhiFt22ZWNf73v1J2tjlep440dqw0YYIUEVH64wMAAMAuzk5wUamH8mT9vjQt+OagbdkAi6TVu//Q+C6N1bUplbsojNdMQU5LOn744YeqXduJDSSAcsjdVYppp4pPOJZmO4edOyctW2YmG+Pj88dvvNGsahwyRArgAykAAIA3o1IP5UFK+jkt+Mas2s37Dpb37/yNB9UspAbJdBTAa6Ywh5OOrVq1KtBIxjAMpaam6siRI5o7d65TgwPKE0+oUgwOtO8Nzt7t7HbggBQbK731lnTihDnm7y8NG2au13jjjc69PwAAAAC4Auv3HSmxMdK6fWka1q5BGUcFT+aq14w3T9d2OOl4++23F7ju4+OjunXrqlu3bmrevLmz4gLKFU+pUmwXUVth1gClpmcW+0YYajWnfF+xnBwpLs6saoyLk21hn0aNpIkTpTFjpKCgK78fAAAAAHCyI6ezivzOJJnf4Y6czirLcOAFXPGa8fbp2g4nHWfMmOGKOIByzVOqFH19LJrRP1ITl8QX+gtMXqpzRv/I0jeFkaRjx8yKxthYKSkpfzwmxpxC3aeP5MsUGwAAAADO56yqsLrV/UusWqtb3f9KQ0U54+zXTHmYru1wS9jDhw/rlVde0eTJkzVt2jTNnz9fJ/KmSwIokjOrFItLB1pkrg95uSrFmKgwxY5oXejNKdQacNkp3iXasUO6916pfn3p0UfNhGPNmtK0adL+/dLnn0v9+pFwBACUmblz5yoiIkIBAQFq06aNvvnmmxK337Bhg9q0aaOAgAA1btxY8+bNK7TNihUrFBkZKX9/f0VGRmrlypWuCh8A4KD1+9L08Aff69Pdf2jrwWP6dPcfeviD77Xh5zSHj9WtWd0Sq9a6N/P8KjOULWe/ZvKmaxclb7q2p3Oo0nHu3LmaNm2asrOzZbVaZRiGMjIyNG3aNL355psaNmyYDMNQQkKCWrVq5aqYAa/jaVWKMVFh6hkZWuou2jaZmWb36ddfl7Zvzx9v1cqsahw2TKpa1bFjAgDgBMuXL9fUqVM1d+5cderUSfPnz1efPn2UmJioBg0Kr6eUlJSkvn37aty4cVqyZIm+/fZbTZo0SXXr1tWdd94pSdqyZYuGDBmiJ598UgMHDtTKlSs1ePBgbdq0Se3bty/rUwSAcsFZlYnOrgoLs1bR+C6NNX/jQdtKUT4W85jjuzT2+AozlD1nv2bKwxR/u5OOn332maZMmaKpU6fq4YcfVliYWQ2VkpKi559/XqNGjVJ4eLjmzp2r5s2bk3QELuKstRTzqhQv7YAdamcH7Iv5+liKncp9Wb/+Ks2bJy1cKB09ao75+UmDBpnJxg4dJMsVTNEGAOAKvfTSSxo7dqzuu+8+SdKcOXP0xRdfKDY2VrNnzy60/bx589SgQQPNmTNHknTttddqx44deuGFF2xJxzlz5qhnz56aPn26JGn69OnasGGD5syZo2XLljkU39nsC6qUfeEKzrDkYxf1/+Jkns9xSRzeKuuixyPLCY+Ns4/nbK6Ir6I9hs5Wkc73m/1H9PbmXwutVzemY4Ruusax9d+/2vtniVNb1+5N1aA24Q4ds31EHdWzBuhfnyRKknpeG6LuzYMVUiOA904UyZmvmVpVK5f4mq5VtXKRx7Tnd/+Vsvc+LIZhFJc4LaBr167q3Lmz/v3vfxd5+z/+8Q+9+OKLCg0N1fr169WwYUP7oy0jGRkZslqtSk9PV40aNdwdDiqYvO7VUtFVio5Mbc7JNa68StFRubnS2rVmVeOnn+Y3hgkPlyZMkO67TwpmigEAuBKfZeyTnZ2tqlWr6oMPPtDAgQNt4w8++KASEhK0YcOGQvt06dJFrVq10n/+8x/bWF4l49mzZ1W5cmU1aNBADz30kB566CHbNi+//LLmzJmj3377rchYsrKylJWVX4mQkZGh8PBwhU/9r3z8mQ0AAAC8T27WWR2aM/iyn0ntXtNx165dGjlyZLG3jxw5UllZWdqwYYNHJhwBd3PmWop5VYoDbrhK0U3quDbheOKE9PLLUvPmZjOY1avNhGOPHtLKldLBg9L//R8JRwCAxzh69KhycnIUEhJSYDwkJESpqalF7pOamlrk9hcuXNDRv6r6i9umuGNK0uzZs2W1Wm2X8HDHqmwAAAC8ld3Tq3Nzc1W5cuVib69cubKqVKlS5Bo5AExOW0uxLCQkmFWNS5dK586ZYzVqSKNHS5MmSc2auTM6AAAuy3LJUh+GYRQau9z2l447eszp06dr2rRptut5lY7bH7/FY6pVtx08XuLtycfOaMZqc5pY78gQdWserNAapV/LLOt8jiYsNWd/zBveWv6Vr6zJnLOP5+kq2vk6U2pGpv5v5Q8qaq6fxSLNHthSIaV4bXv6c+KpP3PzNhzQ9l+PF/t8tGtUWxO6NrH7eK56fp3NFa8XZx+zor3ve/rP8J8Zmdq4/4iOnc5Wnep+6nJN3RJfy+0bl7xsmzNkZGQobM7lt7M76diiRQutWrWqwHSSi3388cdq0aKFvYcDvIazpzJf0VqKrpadLX34oZls3Lw5f7xlS3OtxuHDperV3RcfAAB2CAoKkq+vb6EKxLS0tEKVinlCQ0OL3L5SpUqqU6dOidsUd0xJ8vf3l7+/f6Hxqn6VVNXPoZ6OLhNQwper9fvStOCbg7bra/f+qS/3/qnxXRqra9Mrn+XgX9m3xPt39/E8XUU73yu15cCxEtdH23zgmIa1u7IiGk9/TjzpZy6kRkCJz0dIjQCHjt2oTjVbE4+L14jMa+LRsE61UsXpSq54vVzpMSv6+74n/gw3rFNNIx14/ZbF54sLdt6H3ZFMmjRJEydOlL+/v+6//35VqmTueuHCBc2fP1//+Mc/NHfu3NJFC3iouD0phZq2hJWiaYvH+/13af58acECKS3NHKtUSbrzTjPZeNNNNIYBAHgNPz8/tWnTRmvXri2wpuPatWs1YMCAIveJjo7W6tWrC4x9+eWXatu2rW22T3R0tNauXVvgj/BffvmlOnbs6IKzcL+LO8Hmyf3r/6XpBAu4W3noBFuedGtWV6t3/1HkbYak7s0cT3B1bRqsZiE1tG5fmq0bdvdmwbxX2Yn3fTib3UnHUaNG6YcfftDkyZM1ffp0NWliljkfOHBAp0+f1pQpUzR69GhXxQmUubzGL5d+MElNz9TEJfEOr8PocQxDWrfOrGpctUrK+avrVb160vjx0rhxUpgXnx8AoEKbNm2aRo4cqbZt2yo6OloLFixQcnKyJkyYIMmc9nz48GEtXrxYkjRhwgS99tprmjZtmsaNG6ctW7Zo4cKFBbpSP/jgg+rSpYueffZZDRgwQKtWrdJXX32lTZs2ueUcXW39viMlViGt25d2xVVhQFmqW92/xNd03eqFq5LhOmHWKiVWJpY2uRVqDeC9qZR434ezOVRz+cILL+iuu+7SsmXLtH//fklS586dNWzYMHXo0MElAQLukJNraNbqxCLfbPN+Gc5anaiekaGeuR5jSTIypMWLpblzpb1788e7dTOrGgcMkEpYvxUAAG8wZMgQHTt2TE888YRSUlIUFRWlNWvW2BoepqSkKDk52bZ9RESE1qxZo4ceekivv/666tWrp1deeUV33nmnbZuOHTvq/fff1z/+8Q/985//VJMmTbR8+XK1b9++zM+vLFAVhvLGFZV1uDJUJnoW3vfhbA5P9O7QoQMJRpR725OOF5hSfSlDUkp6prYnHffc9Rkv9eOPZlXju+9Kp0+bY9WrS/fcYzaGYU1WAEA5M2nSJE2aNKnI2xYtWlRorGvXroqPjy/xmHfddZfuuusuZ4Tn8agKQ3njqso6XBkqE69cakb+d9cPdh5Sj2tDFGat4vBxeN+Hs3nG6tWAh0k7VXzCsTTbuc3589LHH5vJxg0b8sevvdasahw50uxIDQAAcAmqwlAeUVmH8ubSxi9xe1L1+Z7UUjV+qajv+85K2qIwko5AEYID7fvQYe92ZS4lxWwKs2CB9MdfvzR8faXbbzerGrt3pzEMAAAoEVVhKK+orEN54ezGL6563/fkpJ4zk7YojKQjUIR2EbUVZg1QanpmsaXlodYAtYuoXdahFc8wpG++MasaP/pIunDBHA8Jke6/37zUr+/eGAEAgFehKgwAPJcrGr84+33fk5N6dOt2PZKOQBF8fSya0T9SE5fEF3oTz6sPnNE/0jOayJw+LS1ZYjaG+eGH/PFOncwp1HfeKfn5uS8+AADg1agKAwDP5KrGL85633dVUs9ZlZN063Y9n9LsdOHCBX311VeaP3++Tp06JUn6448/dDqvOQVQDsREhSl2ROtCb4Kh1gDFjmitmKgwN0X2l59+kqZMka66Spo40Uw4Vq0qjRsnJSRImzZJw4aRcAQAAOXapV8+U9LPuTEaACg7eY1fiuIJjV/yknpFyUvqOX7MNP3fyvxim7g9qXr4g++14WfHj0W3btdzuNLxt99+U0xMjJKTk5WVlaWePXsqMDBQzz33nDIzMzVv3jxXxAm4RUxUmHpGhmp70nGlncpUcKA5pdptFY4XLkirV5tTqL/+On/8mmvMtRpHj5Zq1nRPbAAAAGXMk6ftAeWVJ6/PV9F4euMXZyf1nF05Sbdu13O40vHBBx9U27ZtdeLECVWpkv/GMnDgQH19cRIEKCd8fSyKblJHA264StFN6rgn4fjnn9JTT0mNG0t33GEmHH18pNtuk774wqx6nDqVhCMAAKgwivvyaRjml8/U9MzidwZQKs6sMsOVy2v8YrFIPhYV+NcTGn45uxLT2ZWT3ZrVLTEp6u6kbXngcKXjpk2b9O2338rvkimbDRs21OHDh50WGFDhGYa0ZYtZ1fjBB9L58+Z4UJB0333ShAlSw4bujREAAMBNWIsLKFs03fBMntzwy9mVmM6unHRVt27kczjpmJubq5ycnELjv//+uwIDA50SFFChnT0rvfeemWxMSMgfb9/ebAwzaJAUwJsfAADwTs6amslaXEDZItHvuTy14Zezk3qumA7tyUnb8sDhpGPPnj01Z84cLViwQJJksVh0+vRpzZgxQ3379nV6gECFsX+/FBsrvf22dPKkORYQYDaDeeABqU0bt4YHAABwpZy5BiNrcQFli0Q/SsOZST1XrWHpqUnb8sDhpOPLL7+s7t27KzIyUpmZmbr77ru1f/9+BQUFadmyZa6IESi/cnKkNWvMqsYvvsgfb9zY7Eh9771SnTruiw8AAMBJnD0109MbKADlDYl+lJazknpMh/Y+Dicd69Wrp4SEBC1btkzx8fHKzc3V2LFjNXz48AKNZQCU4OhRaeFCs7Lxt9/MMYtF6tPHrGqMiTEbxQAAAJQTzp6ayZdPoGyR6IcnYDq0d3E46ShJVapU0ZgxYzRmzBhnxwOUWk6uoe1Jx5V2KlPBgQFqF1HbPZ2mS7J9u1nVuHy5lPXX9IPataUxY8zKxsaN3RsfAACAi7hiaiZfPoHLc9Y6qiT64SmYDu097Eo6fvLJJ3Yf8Lbbbit1MEBpxe1J0azViUpJz/+FGmYN0Iz+kYqJCnNjZJLOnTOTjK+/Lu3YkT/epo1Z1Th0qESVMAAAKOdcNTWTL59A8Zy5jqpEoh+AY+xKOt5+++12HcxisRTZ2Rpwpbg9KZq4JL7QB9jU9ExNXBKv2BGt3ZN4TEoyp08vXCgdP26O+flJQ4aYycZ27cwp1QAAABUAUzOBsuXsdVTzkOgHYC+7Fo3Lzc2160LCEWUtJ9fQrNWJRf7FPG9s1upE5eQWN5nHyXJzpc8/l/r1k5o0kZ5/3kw4NmwozZ4t/f67tHix1L49CUcAAFCh5E3NtFgkH4sK/MvUTMD58tZRLUreOqoA4EqlWtMR8BTbk44XmFJ9KUNSSnqmticdV3QTF3aBPn5cevtts7LxwIH88V69zKrGW2+VfH1dd/8AAABegKmZQNlxxTqqAOCIUiUdv/76a7388svau3evLBaLmjdvrqlTp6pHjx7Ojg8oUdqp4hOOpdnOYfHx5lqN770nZf51H1ardO+9ZmOYpk1dc78AAABeiqmZQNlw1TqqAGAvu6ZXX+y1115TTEyMAgMD9eCDD2rKlCmqUaOG+vbtq9dee80VMQLFCg6076/i9m5nl6wsackSKTrabAbz1ltmwvH666UFC6TDh6WXXybhCAAAAMBtujWrW2KlI+uousel3cRT0s+5MRrAtRyudJw9e7ZefvllTZ482TY2ZcoUderUSU899VSBccDV2kXUVpg1QKnpmcX+BS/UGqB2EbWv/M6Sk6V586Q335SOHDHHKleW7rrLnELdsSPrNAIAAADwCHnrqM7feNBW8Zj3L+uouoezu4kDns7hpGNGRoZiYmIKjffq1Ut///vfnRIUYC9fH4tm9I/UxCXxhaYO5KX/ZvSPlK9PKZOBubnS11+bU6hXrzavS1L9+tL48dK4cVJIyBWcAQAAAAC4Buuoeg5XdRMHPJnD06tvu+02rVy5stD4qlWr1L9/f6cEBTgiJipMsSNaF3qDDrUGKHZEa8VEhTl+0JMnpf/8R7r2WrMZzKpVZsLx5pulFSukpCTpH/8g4QgAAADAo+Wtozrl5ms0rF0DEltuQjdxVEQOVzpee+21euqpp7R+/XpFR0dLkrZu3apvv/1WDz/8sF555RXbtlOmTHFepEAJYqLC1DMyVNuTjivtVKaCA80p1Q5XOO7ebVY1LlkinT1rjgUGSqNGSZMmmUlIAAAAAAAcQDdxVEQOJx0XLlyoWrVqKTExUYmJibbxmjVrauHChbbrFouFpCPKlK+PRdFN6ji+Y3a29NFHZrJx06b88RYtzLUaR4wwE48AAAAAAJQC3cRRETmcdExKSnJFHEDZO3xYmj/f7Dj955/mWKVK0sCBZrKxSxcawwAAAAAo0aXdiHtcG6IwaxU3RgRP1K1ZXa3e/UeRt9FNHOWVw0lHwKsZhrR+vVnV+PHHUk6OOR4WJt1/v3mpV8+dEQIAAADwEnQjhr3oJo6KyOGko2EY+vDDD7Vu3TqlpaUpN6+b718++ugjpwUHOE1GhvTuu9LcudJFywKoSxezqnHgQKlyZffFBwAAAMCr0I0YjqKbOCoah5OODz74oBYsWKDu3bsrJCREFqafwpP9+KOZaFy8WDp92hyrVk0aOdJsDNOypXvjAwAAAOCV8roRF7dG37p9aRrWrkEZRwVPl9dNHKgIHE46LlmyRB999JH69u3riniAK3f+vLRqlTmFev36/PHmzc1E4z33SFar28IDAAAA4P3oRgwAJfNxdAer1arGjRu7IhbgyqSkSE88ITVqJA0aZCYcfXzMqdNffWVOq/7b30g4AgBQzp04cUIjR46U1WqV1WrVyJEjdfLkyWK3P3/+vP7+97+rZcuWqlatmurVq6d77rlHf/xRcMH/bt26yWKxFLgMHTrUxWcDwFPldSMuCt2IAaAUSceZM2dq1qxZOnfunCviKdZTTz2ljh07qmrVqqpZs2aZ3jc8mGFIGzdKQ4dKDRpIM2ZIf/whBQdLjz8u/fqr9NFH0i230IkaAIAK4u6771ZCQoLi4uIUFxenhIQEjRw5stjtz549q/j4eP3zn/9UfHy8PvroI/3888+67bbbCm07btw4paSk2C7z58935akA8GDdmtUtsdKRbsQAKjqHp1cPGjRIy5YtU3BwsBo1aqTKlzTfiI+Pd1pwF8vOztagQYMUHR2thQsXuuQ+4EVOn5aWLjWnUP/wQ/54x45mY5g775T8+csiAAAVzd69exUXF6etW7eqffv2kqQ33nhD0dHR2rdvn5o1a1ZoH6vVqrVr1xYYe/XVV9WuXTslJyerQYP8tbeqVq2q0NBQ154EAK9AN2IAKJnDScfRo0dr586dGjFiRJk2kpk1a5YkadGiRWVyf/BQP/0kxcZKixaZHaklqUoVafhwM9l4ww3ujA4AALjZli1bZLVabQlHSerQoYOsVqs2b95cZNKxKOnp6bJYLIVm2CxdulRLlixRSEiI+vTpoxkzZigwMLDY42RlZSkrK39dt4y8zy8AygW6EQNA8RxOOn722Wf64osvdNNNN7kiHqfiQ145ceGC9Omn0muvSV9/nT9+9dVmY5jRo6VatdwWHgAA8BypqakKDi48pTE4OFipqal2HSMzM1OPPfaY7r77btWoUcM2Pnz4cEVERCg0NFR79uzR9OnT9f333xeqkrzY7NmzbX88B1A+0Y0YAIrmcNIxPDy8wIcvT8aHPC+Xlia9+aY0b5506JA55uMj9etnJht79jSvAwCAci9vXfGSfPfdd5JU5EwcwzDsmqFz/vx5DR06VLm5uZo7d26B28aNG2f7f1RUlK655hq1bdtW8fHxat26dZHHmz59uqZNm2a7npGRofDw8MvGAQAA4O0czti8+OKLevTRR/Xrr79e8Z3PnDmzUAfASy87duwo9fGnT5+u9PR02+VQXuIKnsswpC1bzOnS9eubzWAOHZLq1JEee0w6cEBatUrq3ZuEIwAAFcjkyZO1d+/eEi9RUVEKDQ3Vn3/+WWj/I0eOKCQkpMT7OH/+vAYPHqykpCStXbv2sn9ob926tSpXrqz9+/cXu42/v79q1KhR4AIAAFAROFzpOGLECJ09e1ZNmjRR1apVCzWSOX78uN3Hmjx5soYOHVriNo0aNXI0RBt/f3/500zEO5w9K733njR3rrRrV/54+/ZmVePgwVIA66IAAFBRBQUFKSgo6LLbRUdHKz09Xdu3b1e7du0kSdu2bVN6ero6duxY7H55Ccf9+/dr3bp1qlOnzmXv68cff9T58+cVFhZm/4kAAABUEA4nHefMmeO0O7f3wyPKsV9+MRONb78tnTxpjgUESMOGmY1h2rRxa3gAAMC7XHvttYqJidG4ceM0f/58SdL999+vfv36FWgi07x5c82ePVsDBw7UhQsXdNdddyk+Pl6ffvqpcnJybOs/1q5dW35+fjpw4ICWLl2qvn37KigoSImJiXr44YfVqlUrderUyS3nCgAA4MkcTjqOGjXKFXFcVnJyso4fP67k5GTl5OQoISFBknT11VerevXqbokJpZSTI61ZYyYb4+Lyxxs3liZOlO6915xODQAAUApLly7VlClT1KtXL0nSbbfdptdee63ANvv27VN6erok6ffff9cnn3wiSbrhhhsKbLdu3Tp169ZNfn5++vrrr/Wf//xHp0+fVnh4uG699VbNmDFDvr6+rj8pAAAAL+Nw0vFi586d0/nz5wuMuWqdmn/961965513bNdbtWolKf+DILzA0aPSwoVmY5i8NUEtFikmRpo82fyXdRoBAMAVql27tpYsWVLiNoZh2P7fqFGjAteLEh4erg0bNjglPgAAgIrA4aTjmTNn9Pe//13//e9/dezYsUK35+TkOCWwSy1atEiLFi1yybHhYtu3m1WN778vZWWZY7VqSWPHShMmSE2auDc+AAAAAAAAOJXDZWWPPvqo/ve//2nu3Lny9/fXm2++qVmzZqlevXpavHixK2KEN8rMlN55R7rxRrMZzDvvmAnH1q2lt96SDh+Wnn+ehCMAAAAAAEA55HCl4+rVq7V48WJ169ZNY8aMUefOnXX11VerYcOGWrp0qYYPH+6KOOEtkpKk2FgzsZhXCevnJw0ZYnahbt/enFINAAAAAACAcsvhpOPx48cVEREhyVy/8fjx45Kkm266SRMnTnRudPAOubnSl19Kr71mNojJWxOpQQOzMczYsVLduu6NEQAAAAAAAGXG4aRj48aN9euvv6phw4aKjIzUf//7X7Vr106rV69WzZo1XRAiPNbx49Lbb5uVjQcO5I/36iU98IB0660S3RwBAAAAAAAqHIeTjvfee6++//57de3aVdOnT9ett96qV199VRcuXNBLL73kihjhaeLjpddfl5Ytk86dM8esVunee83KxqZN3RsfAAAAAAAA3MrhpONDDz1k+3/37t21d+9e7dy5U02aNNH111/v1ODgQbKypA8/NJONW7bkj19/vVnVePfdUrVq7osPAAAAAAAAHsPhpOOlGjZsqIYNGzojFnii5GRp/nzpjTekI0fMscqVpbvuMpONHTvSGAYAAAAAAAAF+Ni74bZt2/T5558XGFu8eLEiIiIUHBys+++/X1lZWU4PEG5gGNJXX0kDB0oREdLTT5sJx6uukp580kxEvvee1KkTCUcAAAAAAAAUYnfScebMmdq9e7ft+g8//KCxY8eqR48eeuyxx7R69WrNnj3bJUGijKSnS6+8Il17rdSzp/Txx2Zn6ptvllaskH79VfrHP6TQUHdHCgAAAAAAAA9m9/TqhIQEPfnkk7br77//vtq3b6833nhDkhQeHq4ZM2Zo5syZTg8SLvbDD+ZajUuWSGfOmGOBgdKoUdKkSWYSEgAAAIDbpWZk2v7/wc5D6nFtiMKsVdwYEQAARbM76XjixAmFhITYrm/YsEExMTG26zfeeKMOHTrk3OjgOtnZ0sqVZrLxm2/yx1u0MNdqHDHCTDwCAAAA8Ajr96VpwTcHbdfj9qTq8z2pGt+lsbo2DXZjZAAAFGb39OqQkBAlJSVJkrKzsxUfH6/o6Gjb7adOnVLlypWdHyGc6/BhacYMqWFDaehQM+Ho6ysNGiStX29WPU6cSMIRAAAA8CAp6ee04JuDMoz8sVzDXI59/saDSk3PLH5nAADcwO5Kx5iYGD322GN69tln9fHHH6tq1arq3Lmz7fbdu3erSZMmLgkSV8gwpA0bzKrGlSulnBxzPDRUGj9euv9+qV4998YIAAAAt4huUsfdIcAOz8b9JB+LRTkXZx3/4mOx6Oe0UxrY+io3RAYAQNHsTjr++9//1h133KGuXbuqevXqeuedd+Tn52e7/a233lKvXr1cEiRK6dQp6d13pblzpR9/zB/v3NmcQj1woHTRcwgAAADAM/1+4pyMIhKOkmQYhn4/ca6MIwIAoGR2Jx3r1q2rb775Runp6apevbp8fX0L3P7BBx+oevXqTg8QpZCYaCYaFy82E4+SVK2auU7jAw9ILVu6Nz4AAAAADqlfq4osFotUROLRYrGofi2ayQAAPIvdScc8Vqu1yPHatWtfcTC4AhcuSKtWmVOo163LH2/WzOxAPWqUVMxzBwAAAMCzDW4brvkbDhR5m2EYGtI2vIwjAgCgZA4nHeFhUlOlN96Q5s83m8RIko+PdNttZlXjLbdIFot7YwQAAABwRSKCqunZO6/T31fslsVikWEYtn+fvfM6NQqq5u4QAQAogKSjNzIM6dtvzarGFSuk8+fN8bp1pXHjzOYwDRq4N0YAAAAATjWobbhubFRby3cc0u8nzql+rSoa0jachCMAwCORdPQmZ85IS5eaycbdu/PHO3Y0p1DfdZfk7++++AAAAAC4VKOgavp7THN3hwEAwGWRdPQGP/9sNoZZtEhKTzfHqlSR7r7bnELdqpVbwwMAAAAAAAAuRtLRU+XkSJ9+alY1rl2bP3711dLEidK990q1arkvPgAAAAAAAKAYJB09zZEj0ptvSvPmScnJ5pjFIt16qzR5stSzp9koBgAAAAAAAPBQJB09gWFI27aZVY3//a+UnW2O16kjjR0rTZggRUS4N0YAAAAAAADATiQd3ensWen9981kY3x8/viNN5pVjYMHSwEB7osPAAAAAAAAKAWSju5w4IAUGyu99ZZ04oQ55u8vDRtmdqG+8Ub3xgcAAAAAAABcAZKOZSUnR4qLM6sa4+LMKdWS1KiR2RhmzBgpKMitIQIAAAAAAADOQNLR1Y4dMysaY2OlpKT88T59zKrGPn0kX1/3xQcAAAAAAAA4GW2QXWXHDunee6X69aVHHzUTjjVrStOmSfv3S2vWSP36kXAEAABwshMnTmjkyJGyWq2yWq0aOXKkTp48WeI+o0ePlsViKXDp0KFDgW2ysrL0t7/9TUFBQapWrZpuu+02/f777y48EwAAAO9F0tGZMjOld96R2rc312VctMgca9VKevNN6fBh6cUXpauvdnekAAAA5dbdd9+thIQExcXFKS4uTgkJCRo5cuRl94uJiVFKSortsmbNmgK3T506VStXrtT777+vTZs26fTp0+rXr59ycnJcdSoAAABei+nVzvDrr9K8eWZi8dgxc8zPTxo0yOxC3b69ZLG4NUQAAICKYO/evYqLi9PWrVvVvn17SdIbb7yh6Oho7du3T82aNSt2X39/f4WGhhZ5W3p6uhYuXKh3331XPXr0kCQtWbJE4eHh+uqrr9S7d2/nnwwAAIAXo9KxtHJzzYYwt90mNW4sPfusmXBs0EB6+mnp0CFpyRKpQwcSjgAAAGVky5YtslqttoSjJHXo0EFWq1WbN28ucd/169crODhYTZs21bhx45SWlma7befOnTp//rx69eplG6tXr56ioqJKPG5WVpYyMjIKXAAAACoCKh0ddeKEOW167lzpl1/yx3v0MKsab71VqsTDerGcXEPbk44r7VSmggMD1C6itnx9SMQCAADnS01NVXBwcKHx4OBgpaamFrtfnz59NGjQIDVs2FBJSUn65z//qZtvvlk7d+6Uv7+/UlNT5efnp1q1ahXYLyQkpMTjzp49W7NmzSr9CQEAAHgpsmP22rXLTDQuXSqdO2eOWa3S6NHSxIlSCVN1KrK4PSmatTpRKemZtrEwa4Bm9I9UTFSYGyMDAADeZObMmZdN3n333XeSJEsRs0wMwyhyPM+QIUNs/4+KilLbtm3VsGFDffbZZ7rjjjuK3e9yx50+fbqmTZtmu56RkaHw8PASzwMAAKA8IOlYkqwsacUK6bXXpC1b8sdbtjSrGocPl6pVc198Hi5uT4omLomXccl4anqmJi6JV+yI1iQeAQCAXSZPnqyhQ4eWuE2jRo20e/du/fnnn4VuO3LkiEJCQuy+v7CwMDVs2FD79++XJIWGhio7O1snTpwoUO2Ylpamjh07Fnscf39/+fv7232/AAAA5QVJx6IcOpTfGCZvLZ9KlaS77pImTZJuuol1Gi8jJ9fQrNWJhRKOkmRIskiatTpRPSNDmWoNAAAuKygoSEFBQZfdLjo6Wunp6dq+fbvatWsnSdq2bZvS09NLTA5e6tixYzp06JDCwsw/kLZp00aVK1fW2rVrNXjwYElSSkqK9uzZo+eee64UZwQAAFC+0UimKK+8YjaDSUuT6tWTnnjCTEQuWyZ17kzC0Q7bk44XmFJ9KUNSSnqmticdL7ugAABAuXfttdcqJiZG48aN09atW7V161aNGzdO/fr1K9C5unnz5lq5cqUk6fTp03rkkUe0ZcsW/frrr1q/fr369++voKAgDRw4UJJktVo1duxYPfzww/r666+1a9cujRgxQi1btrR1swYAAEA+Kh2LMnGitHOnWdU4YIBUubK7I/I6aaeKTziWZjsAAAB7LV26VFOmTLF1mr7tttv02muvFdhm3759Sk9PlyT5+vrqhx9+0OLFi3Xy5EmFhYWpe/fuWr58uQIDA237vPzyy6pUqZIGDx6sc+fO6ZZbbtGiRYvk6+tbdicHAADgJSyGYRQ1A7ZcysjIkNVqVXp6umrUqOHucMq1LQeOadgbWy+73bJxHRTdpE4ZRAQAgPfjs4z34zkEAADezt7PM0yvhku0i6itMGuAipuIbpHZxbpdRO2yDAsAAAAAAABlgKQjXMLXx6IZ/SMlqVDiMe/6jP6RNJEBAAAAAAAoh0g6wmViosIUO6K1Qq0BBcZDrQGKHdFaMVFhbooMAAAAAAAArkQjGbhUTFSYekaGanvScaWdylRwoDmlmgpHAAAAAACA8oukI1zO18dCsxgAAAAAAIAKhOnVAAAAAAAAAJyKpCMAAAAAAAAApyLpCAAAAAAAAMCpSDoCAAAAAAAAcCqSjgAAAAAAAACciqQjAAAAAAAAAKci6QgAAAAAAADAqUg6AgAAAAAAAHAqko4AAAAAAAAAnIqkIwAAAAAAAACn8oqk46+//qqxY8cqIiJCVapUUZMmTTRjxgxlZ2e7OzQAAAAAAAAAl6jk7gDs8dNPPyk3N1fz58/X1VdfrT179mjcuHE6c+aMXnjhBXeHBwAAAAAAAOAiXpF0jImJUUxMjO1648aNtW/fPsXGxpJ0BAAAAAAAADyMVyQdi5Kenq7atWuXuE1WVpaysrJs1zMyMlwdFgAAAAAAAFDhecWajpc6cOCAXn31VU2YMKHE7WbPni2r1Wq7hIeHl1GEAAAAAAAAQMXl1qTjzJkzZbFYSrzs2LGjwD5//PGHYmJiNGjQIN13330lHn/69OlKT0+3XQ4dOuTK0wEAAAAAAAAgN0+vnjx5soYOHVriNo0aNbL9/48//lD37t0VHR2tBQsWXPb4/v7+8vf3v9IwAQAAAAAAADjArUnHoKAgBQUF2bXt4cOH1b17d7Vp00Zvv/22fHy8cmY4AAAAAAAAUO55RSOZP/74Q926dVODBg30wgsv6MiRI7bbQkND3RgZAAAAAAAAgEt5RdLxyy+/1C+//KJffvlF9evXL3CbYRhuigoAAAAAAABAUbxijvLo0aNlGEaRFwAAAAAAAACexSuSjgAAAAAAAAC8B0lHAAAAAAAAAE5F0rEcy8k1tOXAMa1KOKwtB44pJ5fp6AAAoPw7ceKERo4cKavVKqvVqpEjR+rkyZMl7mOxWIq8PP/887ZtunXrVuj2oUOHuvhsAAAAvJNXNJKB4+L2pGjW6kSlpGfaxsKsAZrRP1IxUWFujAwAAMC17r77bv3++++Ki4uTJN1///0aOXKkVq9eXew+KSkpBa5//vnnGjt2rO68884C4+PGjdMTTzxhu16lShUnRg4AAFB+kHQsh+L2pGjiknhdWteYmp6piUviFTuiNYlHAABQLu3du1dxcXHaunWr2rdvL0l64403FB0drX379qlZs2ZF7hcaGlrg+qpVq9S9e3c1bty4wHjVqlULbQsAAIDCmF5dzuTkGpq1OrFQwlGSbWzW6kSmWgMAgHJpy5YtslqttoSjJHXo0EFWq1WbN2+26xh//vmnPvvsM40dO7bQbUuXLlVQUJBatGihRx55RKdOnSrxWFlZWcrIyChwAQAAqAiodCxnticdLzCl+lKGpJT0TG1POq7oJnXKLjAAAIAykJqaquDg4ELjwcHBSk1NtesY77zzjgIDA3XHHXcUGB8+fLgiIiIUGhqqPXv2aPr06fr++++1du3aYo81e/ZszZo1y7GTAAAAKAeodCxn0k4Vn3AszXYAAACeYObMmcU2e8m77NixQ5LZFOZShmEUOV6Ut956S8OHD1dAQECB8XHjxqlHjx6KiorS0KFD9eGHH+qrr75SfHx8sceaPn260tPTbZdDhw45cNYAAADei0rHciY4MODyGzmwHQAAgCeYPHnyZTtFN2rUSLt379aff/5Z6LYjR44oJCTksvfzzTffaN++fVq+fPllt23durUqV66s/fv3q3Xr1kVu4+/vL39//8seCwAAoLwh6VjOtIuorTBrgFLTM4tc19EiKdQaoHYRtcs6NAAAgFILCgpSUFDQZbeLjo5Wenq6tm/frnbt2kmStm3bpvT0dHXs2PGy+y9cuFBt2rTR9ddff9ltf/zxR50/f15hYTToAwAAuBTTq8sZXx+LZvSPlGQmGC+Wd31G/0j5+tg3vQgAAMCbXHvttYqJidG4ceO0detWbd26VePGjVO/fv0KdK5u3ry5Vq5cWWDfjIwMffDBB7rvvvsKHffAgQN64okntGPHDv36669as2aNBg0apFatWqlTp04uPy8AAABvQ9KxHIqJClPsiNYKtRacQh1qDVDsiNaKieKv8QAAoPxaunSpWrZsqV69eqlXr1667rrr9O677xbYZt++fUpPTy8w9v7778swDA0bNqzQMf38/PT111+rd+/eatasmaZMmaJevXrpq6++kq+vr0vPBwAAwBtZDMMoahZuuZSRkSGr1ar09HTVqFHD3eG4XE6uoe1Jx5V2KlPBgeaUaiocAQDwXhXts0x5xHMIAAC8nb2fZ1jTsRzz9bEoukkdd4cBAAAAAACACobp1QAAAAAAAACciqQjAAAAAAAAAKci6QgAAAAAAADAqUg6AgAAAAAAAHAqko4AAAAAAAAAnIqkIwAAAAAAAACnIukIAAAAAAAAwKlIOgIAAAAAAABwKpKOAAAAAAAAAJyKpCMAAAAAAAAApyLpCAAAAAAAAMCpSDoCAAAAAAAAcKpK7g7AE+XkGtqedFxppzIVHBigdhG15etjcXdYAAAAAAAAgFcg6XiJuD0pmrU6USnpmbaxMGuAZvSPVExUmBsjAwAAAAAAALwD06svErcnRROXxBdIOEpSanqmJi6JV9yeFDdFBgAAAAAAAHgPko5/yck1NGt1oowibssbm7U6UTm5RW0BAAAAAAAAIA9Jx79sTzpeqMLxYoaklPRMbU86XnZBAQAAAAAAAF6IpONf0k4Vn3AszXYAAAAAAABARUXS8S/BgQFO3Q4AAAAAAACoqEg6/qVdRG2FWQNkKeZ2i8wu1u0iapdlWAAAAAAAAIDXIen4F18fi2b0j5SkQonHvOsz+kfK16e4tCQAAAAAAAAAiaRjATFRYYod0Vqh1oJTqEOtAYod0VoxUWFuigwAAAAAAADwHpXcHYCniYkKU8/IUG1POq60U5kKDjSnVFPhCAAAAAAAANiHpGMRfH0sim5Sx91hAAAAAAAAAF6J6dUAAAAAAAAAnIqkIwAAAAAAAACnIukIAAAAAAAAwKlIOgIAAAAAAABwKpKOAAAAKFeeeuopdezYUVWrVlXNmjXt2scwDM2cOVP16tVTlSpV1K1bN/34448FtsnKytLf/vY3BQUFqVq1arrtttv0+++/u+AMAAAAvB9JRwAAAJQr2dnZGjRokCZOnGj3Ps8995xeeuklvfbaa/ruu+8UGhqqnj176tSpU7Ztpk6dqpUrV+r999/Xpk2bdPr0afXr1085OTmuOA0AAACvZjEMw3B3EGUlIyNDVqtV6enpqlGjhrvDAQAAcAifZRyzaNEiTZ06VSdPnixxO8MwVK9ePU2dOlV///vfJZlVjSEhIXr22Wc1fvx4paenq27dunr33Xc1ZMgQSdIff/yh8PBwrVmzRr1797YrJp5DAADg7ez9PFOpDGNyu7z8akZGhpsjAQAAcFzeZ5gK9DfjMpGUlKTU1FT16tXLNubv76+uXbtq8+bNGj9+vHbu3Knz588X2KZevXqKiorS5s2bi006ZmVlKSsry3Y9PT1dEp9HAQCA97L3M2mFSjrmTY8JDw93cyQAAACld+rUKVmtVneHUW6kpqZKkkJCQgqMh4SE6LfffrNt4+fnp1q1ahXaJm//osyePVuzZs0qNM7nUQAA4O0u95m0QiUd69Wrp0OHDikwMFAWi8Xd4ThdRkaGwsPDdejQIabrXAaPlf14rBzD42U/Hiv78VjZr7w/VoZh6NSpU6pXr567QylzM2fOLDJ5d7HvvvtObdu2LfV9XPr50DCMy35mvNw206dP17Rp02zXc3Nzdfz4cdWpU8eln0fL+8+Ct+H58Dw8J56F58Pz8Jx4Fk97Puz9TFqhko4+Pj6qX7++u8NwuRo1anjEi9Ab8FjZj8fKMTxe9uOxsh+Plf3K82NVUSscJ0+erKFDh5a4TaNGjUp17NDQUElmNWNYWJhtPC0tzVb9GBoaquzsbJ04caJAtWNaWpo6duxY7LH9/f3l7+9fYMzejtrOUJ5/FrwRz4fn4TnxLDwfnofnxLN40vNhz2fSCpV0BAAAgHcKCgpSUFCQS44dERGh0NBQrV27Vq1atZJkdsDesGGDnn32WUlSmzZtVLlyZa1du1aDBw+WJKWkpGjPnj167rnnXBIXAACANyPpCAAAgHIlOTlZx48fV3JysnJycpSQkCBJuvrqq1W9enVJUvPmzTV79mwNHDhQFotFU6dO1dNPP61rrrlG11xzjZ5++mlVrVpVd999tyTzr/ljx47Vww8/rDp16qh27dp65JFH1LJlS/Xo0cNdpwoAAOCxSDqWI/7+/poxY0ahKTwojMfKfjxWjuHxsh+Plf14rOzHYwVJ+te//qV33nnHdj2venHdunXq1q2bJGnfvn22TtKS9Oijj+rcuXOaNGmSTpw4ofbt2+vLL79UYGCgbZuXX35ZlSpV0uDBg3Xu3DndcsstWrRokXx9fcvmxBzAz4Jn4fnwPDwnnoXnw/PwnHgWb30+LMbl+lsDAAAAAAAAgAN83B0AAAAAAAAAgPKFpCMAAAAAAAAApyLpCAAAAAAAAMCpSDoCAAAAAAAAcCqSjl7uqaeeUseOHVW1alXVrFnTrn1Gjx4ti8VS4NKhQwfXBuoBSvNYGYahmTNnql69eqpSpYq6deumH3/80bWBeoATJ05o5MiRslqtslqtGjlypE6ePFniPhXldTV37lxFREQoICBAbdq00TfffFPi9hs2bFCbNm0UEBCgxo0ba968eWUUqWdw5PFav359odeQxWLRTz/9VIYRl72NGzeqf//+qlevniwWiz7++OPL7lORX1eOPl4V9XWFis3R31VwnZkzZxZ6/wkNDXV3WBXG5X5nVNTP+u50ueekonyn8BSzZ8/WjTfeqMDAQAUHB+v222/Xvn37CmzDz0nZsef58LafEZKOXi47O1uDBg3SxIkTHdovJiZGKSkptsuaNWtcFKHnKM1j9dxzz+mll17Sa6+9pu+++06hoaHq2bOnTp065cJI3e/uu+9WQkKC4uLiFBcXp4SEBI0cOfKy+5X319Xy5cs1depUPf7449q1a5c6d+6sPn36KDk5ucjtk5KS1LdvX3Xu3Fm7du3S//3f/2nKlClasWJFGUfuHo4+Xnn27dtX4HV0zTXXlFHE7nHmzBldf/31eu211+zavqK/rhx9vPJUtNcVKq7SvvfCdVq0aFHg/eeHH35wd0gVxuV+Z1TUz/ruZM/v8fL+ncKTbNiwQQ888IC2bt2qtWvX6sKFC+rVq5fOnDlj24afk7Jjz/MhednPiIFy4e233zasVqtd244aNcoYMGCAS+PxZPY+Vrm5uUZoaKjxzDPP2MYyMzMNq9VqzJs3z4URuldiYqIhydi6dattbMuWLYYk46effip2v4rwumrXrp0xYcKEAmPNmzc3HnvssSK3f/TRR43mzZsXGBs/frzRoUMHl8XoSRx9vNatW2dIMk6cOFEG0XkmScbKlStL3Kaiv64uZs/jxesKFY2j771wrRkzZhjXX3+9u8OAUfh3RkX9rO9Jivo9XhG+U3iytLQ0Q5KxYcMGwzD4OXG3S58Pw/C+nxEqHSuo9evXKzg4WE2bNtW4ceOUlpbm7pA8TlJSklJTU9WrVy/bmL+/v7p27arNmze7MTLX2rJli6xWq9q3b28b69Chg6xW62XPuzy/rrKzs7Vz584CrwdJ6tWrV7GPy5YtWwpt37t3b+3YsUPnz593WayeoDSPV55WrVopLCxMt9xyi9atW+fKML1SRX5dXQleV6gIruS9F66zf/9+1atXTxERERo6dKgOHjzo7pCgivtZ3xuU5+8Uni49PV2SVLt2bUn8nLjbpc9HHm/6GSHpWAH16dNHS5cu1f/+9z+9+OKL+u6773TzzTcrKyvL3aF5lNTUVElSSEhIgfGQkBDbbeVRamqqgoODC40HBweXeN7l/XV19OhR5eTkOPR6SE1NLXL7Cxcu6OjRoy6L1ROU5vEKCwvTggULtGLFCn300Udq1qyZbrnlFm3cuLEsQvYaFfl1VRq8rlCRlOa9F67Vvn17LV68WF988YXeeOMNpaamqmPHjjp27Ji7Q6vwKupnfU9X3r9TeDLDMDRt2jTddNNNioqKksTPiTsV9XxI3vczUsndAaCwmTNnatasWSVu891336lt27alOv6QIUNs/4+KilLbtm3VsGFDffbZZ7rjjjtKdUx3cfVjJUkWi6XAdcMwCo15A3sfK6nwOUuXP+/y9LoqiaOvh6K2L2q8vHLk8WrWrJmaNWtmux4dHa1Dhw7phRdeUJcuXVwap7ep6K8rR/C6QkVUXj67lAd9+vSx/b9ly5aKjo5WkyZN9M4772jatGlujAx5+HnxLBXlO4Unmjx5snbv3q1NmzYVuo2fk7JX3PPhbT8jJB090OTJkzV06NASt2nUqJHT7i8sLEwNGzbU/v37nXbMsuLKxyqvs2BqaqrCwsJs42lpaYX+0uMN7H2sdu/erT///LPQbUeOHHHovL35dVWUoKAg+fr6FvqLXkmvh9DQ0CK3r1SpkurUqeOyWD1BaR6vonTo0EFLlixxdnherSK/rpyF1xXKK2e998J1qlWrppYtW5abz0ferLx91i+vytt3Ck/1t7/9TZ988ok2btyo+vXr28b5OXGP4p6Ponj6zwhJRw8UFBSkoKCgMru/Y8eO6dChQwXeRLyFKx+riIgIhYaGau3atWrVqpUkc62kDRs26Nlnn3XJfbqSvY9VdHS00tPTtX37drVr106StG3bNqWnp6tjx4523583v66K4ufnpzZt2mjt2rUaOHCgbXzt2rUaMGBAkftER0dr9erVBca+/PJLtW3bVpUrV3ZpvO5WmserKLt27So3ryFnqcivK2fhdYXyylnvvXCdrKws7d27V507d3Z3KBVeefusX16Vt+8UnsYwDP3tb3/TypUrtX79ekVERBS4nZ+TsnW556MoHv8z4pb2NXCa3377zdi1a5cxa9Yso3r16sauXbuMXbt2GadOnbJt06xZM+Ojjz4yDMMwTp06ZTz88MPG5s2bjaSkJGPdunVGdHS0cdVVVxkZGRnuOo0y4ehjZRiG8cwzzxhWq9X46KOPjB9++MEYNmyYERYWVu4fq5iYGOO6664ztmzZYmzZssVo2bKl0a9fvwLbVMTX1fvvv29UrlzZWLhwoZGYmGhMnTrVqFatmvHrr78ahmEYjz32mDFy5Ejb9gcPHjSqVq1qPPTQQ0ZiYqKxcOFCo3LlysaHH37orlMoU44+Xi+//LKxcuVK4+effzb27NljPPbYY4YkY8WKFe46hTJx6tQp2/uRJOOll14ydu3aZfz222+GYfC6upSjj1dFfV2h4rrcey/K1sMPP2ysX7/eOHjwoLF161ajX79+RmBgIM9HGbnc74yK+lnfnUp6TirKdwpPMnHiRMNqtRrr1683UlJSbJezZ8/atuHnpOxc7vnwxp8Rko5ebtSoUYakQpd169bZtpFkvP3224ZhGMbZs2eNXr16GXXr1jUqV65sNGjQwBg1apSRnJzsnhMoQ44+VoZhGLm5ucaMGTOM0NBQw9/f3+jSpYvxww8/lH3wZezYsWPG8OHDjcDAQCMwMNAYPny4ceLEiQLbVNTX1euvv240bNjQ8PPzM1q3bm1s2LDBdtuoUaOMrl27Fth+/fr1RqtWrQw/Pz+jUaNGRmxsbBlH7F6OPF7PPvus0aRJEyMgIMCoVauWcdNNNxmfffaZG6IuW+vWrSvyvWnUqFGGYfC6upSjj1dFfV2hYivpvRdla8iQIUZYWJhRuXJlo169esYdd9xh/Pjjj+4Oq8K43O+MivpZ351Kek4q0ncKT1HUc8F3Yve53PPhjT8jFsP4a/V5AAAAAAAAAHACH3cHAAAAAAAAAKB8IekIAAAAAAAAwKlIOgIAAAAAAABwKpKOAAAAAAAAAJyKpCMAAAAAAAAApyLpCAAAAAAAAMCpSDoCAAAAAAAAcCqSjgAAAAAAAACciqQjAKf69ddfZbFYlJCQ4O5QHNKoUSPNmTPHacfr1q2bpk6d6rTjuZPFYtHHH38syXufXwAAAABA2SLpCMBuFoulxMvo0aPdHeJlLVq0SDVr1iw0/t133+n+++8v01jOnTunGTNmqFmzZvL391dQUJDuuusu/fjjj2UaR56ZM2fqhhtuKDSekpKiPn36lH1AAAAAAACvVcndAQDwHikpKbb/L1++XP/617+0b98+21iVKlV04sQJd4SmnJwcWSwW+fiU7m8pdevWdXJEJcvKylKPHj2UnJysF198Ue3bt9eff/6p2bNnq3379vrqq6/UoUOHMo2pOKGhoe4OAQAAAADgZah0BGC30NBQ28VqtcpisRQay3Pw4EF1795dVatW1fXXX68tW7YUONbmzZvVpUsXValSReHh4ZoyZYrOnDlju/3EiRO65557VKtWLVWtWlV9+vTR/v37bbfnVSx++umnioyMlL+/v3777TdlZ2fr0Ucf1VVXXaVq1aqpffv2Wr9+vSRp/fr1uvfee5Wenm6rzpw5c6akwtOrT548qfvvv18hISEKCAhQVFSUPv30U0nSsWPHNGzYMNWvX19Vq1ZVy5YttWzZMoceyzlz5mjLli369NNPNXjwYDVs2FDt2rXTihUrdO2112rs2LEyDENS0VO1b7/99gKVpUuWLFHbtm0VGBio0NBQ3X333UpLS7Pdvn79elksFn399ddq27atqlatqo4dO9qSxosWLdKsWbP0/fff2x6bRYsWSSo4vbooiYmJ6tu3r6pXr66QkBCNHDlSR48etd3+4YcfqmXLlqpSpYrq1KmjHj16FHiuAQAAAADlD0lHAC7x+OOP65FHHlFCQoKaNm2qYcOG6cKFC5KkH374Qb1799Ydd9yh3bt3a/ny5dq0aZMmT55s23/06NHasWOHPvnkE23ZskWGYahv3746f/68bZuzZ89q9uzZevPNN/Xjjz8qODhY9957r7799lu9//772r17twYNGqSYmBjt379fHTt21Jw5c1SjRg2lpKQoJSVFjzzySKHYc3Nz1adPH23evFlLlixRYmKinnnmGfn6+kqSMjMz1aZNG3366afas2eP7r//fo0cOVLbtm2z+/F577331LNnT11//fUFxn18fPTQQw8pMTFR33//vd3Hy87O1pNPPqnvv/9eH3/8sZKSkoqc7v7444/rxRdf1I4dO1SpUiWNGTNGkjRkyBA9/PDDatGihe2xGTJkyGXvNyUlRV27dtUNN9ygHTt2KC4uTn/++acGDx5su33YsGEaM2aM9u7dq/Xr1+uOO+6wJVQBAAAAAOUT06sBuMQjjzyiW2+9VZI0a9YstWjRQr/88ouaN2+u559/Xnfffbeteu+aa67RK6+8oq5duyo2NlaHDh3SJ598om+//VYdO3aUJC1dulTh4eH6+OOPNWjQIEnS+fPnNXfuXFvi7sCBA1q2bJl+//131atXzxZHXFyc3n77bT399NMFKjSL89VXX2n79u3au3evmjZtKklq3Lix7farrrqqQLLyb3/7m+Li4vTBBx+offv2dj0+P//8s7p3717kbddee61tm6LWWCxKXvIwL9ZXXnlF7dq10+nTp1W9enXbbU899ZS6du0qSXrsscd06623KjMzU1WqVFH16tVVqVIlh6ZTx8bGqnXr1nr66adtY2+99ZbCw8P1888/6/Tp07pw4YLuuOMONWzYUJLUsmVLu48PAAAAAPBOJB0BuMR1111n+39YWJgkKS0tTc2bN9fOnTv1yy+/aOnSpbZtDMNQbm6ukpKStH//flWqVKlAAq9OnTpq1qyZ9u7daxvz8/MrcD/x8fEyDMOWKMyTlZWlOnXq2B17QkKC6tevX+g4eXJycvTMM89o+fLlOnz4sLKyspSVlaVq1arZfR8lyasC9PPzs3ufXbt2aebMmUpISNDx48eVm5srSUpOTlZkZKRtu+KelwYNGpQq1p07d2rdunUFEpt5Dhw4oF69eumWW25Ry5Yt1bt3b/Xq1Ut33XWXatWqVar7AwAAAAB4B5KOAFyicuXKtv9bLBZJsiXCcnNzNX78eE2ZMqXQfg0aNNDPP/9c5DENw7AdSzIb11x8PTc3V76+vtq5c6dtKnSeopJixalSpUqJt7/44ot6+eWXNWfOHLVs2VLVqlXT1KlTlZ2dbfd9XHPNNUpMTCzytp9++kmSbElPHx+fQtORL55mfubMGfXq1Uu9evXSkiVLVLduXSUnJ6t3796FYirpeSmN3Nxc9e/fX88++2yh28LCwuTr66u1a9dq8+bN+vLLL/Xqq6/q8ccf17Zt2xQREVHq+wUAAAAAeDaSjgDKXOvWrfXjjz/q6quvLvL2yMhIXbhwQdu2bbNNrz527Jh+/vln29TjorRq1Uo5OTlKS0tT586di9zGz89POTk5JcZ33XXX6ffff9fPP/9cZLXjN998owEDBmjEiBGSzMTb/v37S4ztUsOGDdPjjz+u77//vsC6jrm5uXr55ZfVtm1bW4Vi3bp1C3QOz8nJ0Z49e2zTs3/66ScdPXpUzzzzjMLDwyVJO3bssDuWPPY8Npdq3bq1VqxYoUaNGqlSpaJ/pVgsFnXq1EmdOnXSv/71LzVs2FArV67UtGnTHI4RAAAAAOAdaCQDoMz9/e9/15YtW/TAAw8oISFB+/fv1yeffKK//e1vkswqwAEDBmjcuHHatGmTvv/+e40YMUJXXXWVBgwYUOxxmzZtquHDh+uee+7RRx99pKSkJH333Xd69tlntWbNGklml+rTp0/r66+/1tGjR3X27NlCx+natau6dOmiO++8U2vXrlVSUpI+//xzxcXFSZKuvvpqW/Xe3r17NX78eKWmpjr0GDz00ENq166d+vfvrw8++EDJycn67rvvdOedd2r//v22ztGSdPPNN+uzzz7TZ599pp9++kmTJk3SyZMnbbc3aNBAfn5+evXVV3Xw4EF98sknevLJJx2KJ++xSUpKUkJCgo4ePaqsrKzL7vPAAw/o+PHjGjZsmLZv366DBw/qyy+/1JgxY5STk6Nt27bp6aef1o4dO5ScnKyPPvpIR44ccShBCwAAAADwPiQdAZS56667Ths2bND+/fvVuXNntWrVSv/85z9tawxK0ttvv602bdqoX79+io6OlmEYWrNmTYHpwUV5++23dc899+jhhx9Ws2bNdNttt2nbtm22CsCOHTtqwoQJGjJkiOrWravnnnuuyOOsWLFCN954o4YNG6bIyEg9+uijtirAf/7zn2rdurV69+6tbt26KTQ0VLfffrtDj0FAQIC+/vpr3XPPPZo+fbqaNGmidu3aac+ePdqzZ49atGhh23bMmDEaNWqU7rnnHnXt2lUREREFmtDUrVtXixYt0gcffKDIyEg988wzeuGFFxyKR5LuvPNOxcTEqHv37qpbt66WLVt22X3q1aunb7/9Vjk5Oerdu7eioqL04IMPymq1ysfHRzVq1NDGjRvVt29fNW3aVP/4xz/04osvqk+fPg7HBwAAAADwHhbj0oXCAABu8fnnn2vgwIF64YUXNHnyZHeHAwAAAABAqVHpCAAeok+fPvr88891/PhxHT161N3hAAAAAABQalQ6AgAAAAAAAHAqKh0BAAAAAAAAOBVJRwAAAAAAAABORdIRAAAAAAAAgFORdAQAAAAAAADgVCQdAQAAAAAAADgVSUcAAAAAAAAATkXSEQAAAAAAAIBTkXQEAAAAAAAA4FQkHQEAAAAAAAA41f8HtVCp8S5oPNQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(16, 9))\n", + "fig = best_model.plot_diagnostics(lags=25, fig=fig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Backtest forecast" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We saved the last 10 observations as test data above. Now we can use our model to predict NDVI for those time-steps and compare those predictions with actual values. We can do this visually in the graph below and also quantify the error with the root-mean-square error (RMSE)." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAHQCAYAAADj8kR9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxjklEQVR4nOzdd3zV5fn/8dc5J3tCQjZZhBnC3kGGioCoqK3VatVaR91WqQO/2laxP8FWLWqrrVWLq04caBEEFUHZGwybkAQ4WQSy5znn98edEwgZZJzkPuN69pHH5+RzPuecdyiRc517XAabzWZDCCGEEEIIIYTHM+oOIIQQQgghhBDCOUiBKIQQQgghhBACkAJRCCGEEEIIIUQ9KRCFEEIIIYQQQgBSIAohhBBCCCGEqCcFohBCCCGEEEIIQApEIYQQQgghhBD1pEAUQgghhBBCCAGAl+4AbWG1Wjl+/DjBwcEYDAbdcYQQQgghhBDCZdhsNkpLS4mNjcVobH2M0CUKxOPHjxMfH687hhBCCCGEEEK4rJycHHr37t3qNS5RIAYHBwPqBwoJCdGcRgghhBBCCCFcR0lJCfHx8Q11VWtcokC0TysNCQmRAlEIIYQQQgghOqAty/VkkxohhBBCCCGEEIAUiEIIIYQQQggh6rnEFNO2slgs1NbW6o4hnJS3tzcmk0l3DCGEEEIIIZyWWxSINpuN3NxcTp06pTuKcHI9evQgOjpa2qUIIYQQQgjRDLcoEO3FYWRkJAEBAfLmXzRhs9moqKggPz8fgJiYGM2JhBBCCCGEcD4uXyBaLJaG4jA8PFx3HOHE/P39AcjPzycyMlKmmwohhBBCCHGWDm1S8/LLL5OcnIyfnx+jRo1izZo1LV570003YTAYmnwNHjy4w6HPZF9zGBAQ4JDnE+7N/vdE1qoKIYQQQgjRVLsLxA8++ID777+fxx57jG3btjFp0iQuvvhisrOzm73+hRdewGw2N3zl5OQQFhbGL37xi06HP5NMKxVtIX9PhBBCCCGEaFm7C8Tnn3+eW265hVtvvZVBgwaxcOFC4uPjeeWVV5q9PjQ0lOjo6IavzZs3c/LkSX7zm990OrwQQgghhBBCCMdp1xrEmpoatmzZwty5cxudnz59OmvXrm3Tc7z++utMmzaNxMTEFq+prq6murq64fuSkpL2xBSi86wWyFoLZXkQFAWJ6WCUNYtCCCGEEMK9tWsEsbCwEIvFQlRUVKPzUVFR5ObmnvPxZrOZr776iltvvbXV6+bPn09oaGjDV3x8fHtidojFamPdoRN8vv0Y6w6dwGK1dflr2mw2fvvb3xIWFobBYGD79u1d/pqiDTKWwMI0ePNSWHyLOi5MU+eFEEIIIYRwYx3apObsdVw2m61Na7sWLVpEjx49uOKKK1q97tFHH6W4uLjhKycnpyMx22zZbjPnPfMt1/57Pb97fzvX/ns95z3zLct2m7v2dZctY9GiRXz55ZeYzWbS0tK69PW6SlJSEgsXLtQdwzEylsCHN0LJ8cbnS8zqvBSJQgghhBDCjbWrQOzVqxcmk6nJaGF+fn6TUcWz2Ww23njjDW644QZ8fHxavdbX15eQkJBGX11l2W4zd76zFXNxVaPzucVV3PnO1i4tEg8dOkRMTAzp6elER0fj5dW+riM2m426urouSueBrBZY9gjQ3Ohx/bllc9V1QgghhBBCuKF2FYg+Pj6MGjWKFStWNDq/YsUK0tPTW33s999/z8GDB7nlllvan7IDKmrqWvyqqlVv8C1WG09+kdFaOcATX2Q0mm7a0nO210033cS9995LdnY2BoOBpKQkqqurue+++4iMjMTPz4/zzjuPTZs2NTxm1apVGAwGli9fzujRo/H19WXNmjXYbDb+8pe/0KdPH/z9/Rk2bBgff/xxo9f76aefuOSSSwgJCSE4OJhJkyZx6NAhADZt2sRFF11Er169CA0NZcqUKWzdurXR45944gkSEhLw9fUlNjaW++67D4CpU6eSlZXFAw880NDCxGVlrW06ctiIDUqOqeuEEEIIIYRwQ+0bsgLmzJnDDTfcwOjRo5kwYQKvvvoq2dnZ3HHHHYCaHnrs2DHeeuutRo97/fXXGTduXLdNo0z94/IW7zt/QAT/+c1YNmYWNRk5PJMNNZK4MbOICSnhAJz3zHcUldc0ufbIgkvale+FF14gJSWFV199lU2bNmEymXj44YdZvHgxb775JomJifzlL39hxowZHDx4kLCwsIbHPvzwwzz77LP06dOHHj168Pjjj/PJJ5/wyiuv0K9fP1avXs31119PREQEU6ZM4dixY0yePJmpU6fy7bffEhISwo8//tgw+lhaWsqvf/1rXnzxRQCee+45Zs2axYEDBwgODubjjz/mb3/7G++//z6DBw8mNzeXHTt2APDJJ58wbNgwfvvb33Lbbbe168/A6ZTlOfY6IYQQQgghXEy7C8RrrrmGEydOMG/evIZ1c0uXLm3YldRsNjfpiVhcXMzixYt54YUXHJPaQfJLWy4OO3Jde4SGhhIcHIzJZCI6Opry8nJeeeUVFi1axMUXXwzAv//9b1asWMHrr7/OQw891PDYefPmcdFFFwFQXl7O888/z7fffsuECRMA6NOnDz/88AP/+te/mDJlCv/4xz8IDQ3l/fffx9vbG4D+/fs3PN8FF1zQKNu//vUvevbsyffff8+ll15KdnY20dHRTJs2DW9vbxISEhg7diwAYWFhmEwmgoODiY6OdvifU7cKan2adLuvE0IIIYQQwsW0u0AEuOuuu7jrrruavW/RokVNzoWGhlJRUdGRl+qwjHkzWrzPWD8NMjLYr03PdeZ1PzxyfueCteDQoUPU1tYyceLEhnPe3t6MHTuWPXv2NLp29OjRDbczMjKoqqpqKBjtampqGDFiBADbt29n0qRJDcXh2fLz8/njH//It99+S15eHhaLhYqKioZC/xe/+AULFy6kT58+zJw5k1mzZnHZZZe1e82k00tMh5BYtSFNsxOPDer+xNanUwshhBBCCOGq3Owd/mkBPuf+0cYmhxET6kducVVL5QDRoX6MTT49vbMtz9sRNptK0JYdYgMDAxtuW61WAP73v/8RFxfX6DpfX18A/P39W33tm266iYKCAhYuXEhiYiK+vr5MmDCBmho1lTY+Pp59+/axYsUKVq5cyV133cVf//pXvv/++xaLTpdkNMHMZ9RupS2ZuUD6IQohhBBCCLfVoTYX7sJkNPCny1IBVQyeyf79ny5LxWTs+o1X+vbti4+PDz/88EPDudraWjZv3sygQYNafFxqaiq+vr5kZ2fTt2/fRl/2/pFDhw5lzZo11NbWNvsca9as4b777mPWrFkMHjwYX19fCgsLG13j7+/P7NmzefHFF1m1ahXr1q1j165dgNq8yGJxk509U2fDpQubnvcPg6vfUvcLIYQQQgjhpjy6QASYmRbDK9ePJDq08XTT6FA/Xrl+JDPTYrolR2BgIHfeeScPPfQQy5YtIyMjg9tuu42KiopWd34NDg7mwQcf5IEHHuDNN9/k0KFDbNu2jX/84x+8+eabANxzzz2UlJTwy1/+ks2bN3PgwAHefvtt9u3bB6ji9O2332bPnj1s2LCBX/3qV41GHRctWsTrr7/O7t27OXz4MG+//Tb+/v4N606TkpJYvXo1x44da1JYuiRLtTpGDILkKer2yBukOBRCCCGEEG7PbaeYtsfMtBguSo1mY2YR+aVVRAaraaXdMXJ4pgULFmC1WrnhhhsoLS1l9OjRLF++nJ49e7b6uKeeeorIyEjmz5/P4cOH6dGjByNHjuT//u//AAgPD+fbb7/loYceYsqUKZhMJoYPH96w3vGNN97gt7/9LSNGjCAhIYGnn36aBx98sOH5e/TowYIFC5gzZw4Wi4UhQ4bwxRdfEB6udnadN28et99+OykpKVRXVzdMl3VZGUvUccT14O0Pmd9D3k96MwkhhBBCCNENDDYXeDdfUlJCaGgoxcXFhISENLqvqqqKzMxMkpOT8fNr26YzwnOd8+9LWQE81x9sVvjdTqg6Bd//BZLOg/F3dnteIYQQQgghOsNitfHdziwuGpHcbD11NhlBFOJMe79UxWHMcOiZCCTCL9/VnUoIIYQQQoh2W7bbzJNfZHAsv6jNj5ECUYgz7amfXirrDYUQQgghhAtbttvMne9sbbZbQ2ukQBTiTKNvBr8ekHrF6XM2GxQfBWsthPXRlUwIIYQQQog2sVhtPPlFRn1xaMXkn9nmx0qBKMSZBl2mvs609kVY8UcY8gv4+Wt6cgkhhBDuyGqBrLVQlgdBUZCYLv2GhXCAjZlFmIur8ArejW/UF9jqZIqpEI4TUd+HMne33hxCCCGEO8lYAssegZLjp8+FxMLMZ2SphxCdlF+qikO/uHcAsNW1/bEe3wdRCACqStRupfl7m94XnaaOhfuhtqp7cwkhhBDOxGqBzDWw62N1tFo69jwZS+DDGxsXhwAlZnXe3nJKCNEhvYK88Y36AgBDOzv3yQiiEAAHvobv/h/s/ADu2dz4Nyk4BgLCoeIEFOyB2BH6cgohhBC6OGrEz2qBrx6GZrfOsAEGWDYXBl4i002F6CBTwBGM3sUdeqyMIAoBkPG5Og6a3fRjFoMBoupHEXN3dW8uIYQQwhl0ZMSvukzdb1dXA4suhWf7Q6m56fUNbFByTK1NFEJ0SFFVYYcfKwWim0hKSmLhwoVtvn7VqlUYDAZOnTrVZZlasmjRInr06NHtr9uimgo4uFLdbukT0Ogh6ijrEIUQQngaq0WNHLY44meDL34Hq56BT++E12fAX/vB/Dj4/O7Tl3r5QH4GVLTxjWtZngPCC+GZIgIiOvxYmWJq1827aE2dOpXhw4e3q6hrzaZNmwgMDGzz9enp6ZjNZkJDQx3y+l0tKSmJ+++/n/vvv9/xT35wJdRWQI8EiBne/DUNBaKMIAohhPAwWWubjhyerbIIVj3d/PkzXfkvOHkElj547tcNimpzRCFEYyMjRxIVEEVeRfs/aJECEZx2Fy2bzYbFYsHL69z/N0VEtO9TAh8fH6Kjozsazb3sqZ8W09z0Urv4sZB+L/Qe0325hBBCCGfQ1pG8xImQcoHqGRyWDD2Twb9H42v6XaQ+lP/h+frpp82NShrU+7DE9E4GF8JzmYwm5o6dywOrHsDW3K9ZK2SKqYZdtG666Sa+//57XnjhBQwGAwaDgSNHjjRM+1y+fDmjR4/G19eXNWvWcOjQIS6//HKioqIICgpizJgxrFy5stFznj3F1GAw8Nprr3HllVcSEBBAv379WLLk9M9y9hRT+7TP5cuXM2jQIIKCgpg5cyZm8+k1AnV1ddx333306NGD8PBwHnnkEX79619zxRVXtPrzLlq0iISEBAICArjyyis5ceJEo/vP9fNNnTqVrKwsHnjggYY/L4ATJ05w7bXX0rt3bwICAhgyZAjvvfdee/6vgLpq2L9c3U69vOXrwvrA9D+3fo0QQgjhjto6kjf1UZj8IKT9TG3odnZxaGc0qQ/hATj7g9n672cukA1qhOikaYnTiK37Zbt3MXXfArGmvOUve6uCc86pR91/5hbOLT1nO7zwwgtMmDCB2267DbPZjNlsJj4+vuH+hx9+mPnz57Nnzx6GDh1KWVkZs2bNYuXKlWzbto0ZM2Zw2WWXkZ2d3errPPnkk1x99dXs3LmTWbNm8atf/YqiopabZFZUVPDss8/y9ttvs3r1arKzs3nwwdNTQJ555hneffdd/vOf//Djjz9SUlLCZ5991mqGDRs2cPPNN3PXXXexfft2zj//fP785z83uuZcP98nn3xC7969mTdvXsOfF0BVVRWjRo3iyy+/ZPfu3fz2t7/lhhtuYMOGDa1maqRgnzoGx0Dc6LY/TgghhPAUielqRK9JMWdngJC49o34pc6Gq9+CkJjG530C1XnpgyhEp1XWWMg+dRKAPsED2vw4951i+nRsy/f1mw6/+qgNc+pt6v6stZA8SZ1aOES1OzjbE23fRjY0NBQfHx8CAgKaneY5b948Lrrooobvw8PDGTZsWMP3f/7zn/n0009ZsmQJ99xzT4uvc9NNN3HttdcC8PTTT/PSSy+xceNGZs6c2ez1tbW1/POf/yQlJQWAe+65h3nz5jXc/9JLL/Hoo49y5ZVXAvD3v/+dpUuXtvqzvvDCC8yYMYO5c+cC0L9/f9auXcuyZcsarhk2bFirP19YWBgmk4ng4OBGf15xcXGNCth7772XZcuW8dFHHzFu3LhWczWIGQoPHYSiTDCe4/OSylNg3gHe/mrKqRBCCOEJ7CN+H97YzJ2dGPFLna1aWWSthd2LYct/IDJVikMhHGR95gkMQTsA+OWgn/M/PmvT49x3BLEt2jqnvpt30Ro9uvFIVnl5OQ8//DCpqan06NGDoKAg9u7de84RxKFDhzbcDgwMJDg4mPz8/BavDwgIaCgOAWJiYhquLy4uJi8vj7FjTxdGJpOJUaNGtZphz549TJgwodG5s7/v6M9nsVj4f//v/zF06FDCw8MJCgri66+/PufjmvDyhciB575ux3vw1mz4YWH7nl8IIYRwdfYRPy/fxudDYjs34mc0qQ/hJ96nvj++DWorO5dVCAHA//bswOSXiwETU+KntPlx7juC+H+tjAwa6j/hauuc+jOvu7/rd7E8ezfShx56iOXLl/Pss8/St29f/P39ueqqq6ipqWn1eby9vRt9bzAYsFqt7bredtaqVsNZk5jPvv9s57ofOv7zPffcc/ztb39j4cKFDBkyhMDAQO6///5zPq5BbSV4+bW8Mc3Z7L0Q82QnUyGEEB5owCww+gDVcMEfIH6c43Z975kMQdFQlgvHtkDSeZ1/TiE83K6Ta8AI/UNGEurb9s4F7lsg+rSh5YN9Tn17dtFqy/O2JZ6PDxaL5dwXAmvWrOGmm25qmNpZVlbGkSNHHJKjrUJDQ4mKimLjxo1MmqSm21osFrZt28bw4cNbfFxqairr169vdO7s79vy8zX357VmzRouv/xyrr/+egCsVisHDhxg0KBBbfuhlj0Kmd/DtCfb9slndH2BeCpbTTdtafG9EEII4Y5yd0BNKfiFwnkPOHYTGYMBEifAT59C1jopEIVwgM9v+D8+3zeB2JCe7XqcZ08x1biLVlJSEhs2bODIkSMUFha2OrLXt29fPvnkE7Zv386OHTu47rrrWr2+q9x7773Mnz+fzz//nH379vG73/2OkydPNhlVPNN9993HsmXL+Mtf/sL+/fv5+9//3mj9IbTt50tKSmL16tUcO3aMwsLChsetWLGCtWvXsmfPHm6//XZyc3Pb9sNYLbD3Syg6DD4BbXuMf08Ird9MKO+ntj1GCCGEcBeZa9QxcWLX7DCaUP+BfNaPjn9uITyQn5cf1wy+mEnx49v1OM8uEKHlXbQ6O6f+HB588EFMJhOpqalERES0um7ub3/7Gz179iQ9PZ3LLruMGTNmMHLkyC7J1ZpHHnmEa6+9lhtvvJEJEyYQFBTEjBkz8PPza/Ex48eP57XXXuOll15i+PDhfP311zz++OONrmnLzzdv3jyOHDlCSkpKQ8/HP/zhD4wcOZIZM2YwdepUoqOjz9lyo4F5B5QXqE9Bkya3/Q8heog65so0UyGEEB5m6DVwxT9hzK1d8/yJ9XsUHN0ElrqueQ0hPERblnm1xGDrzKO7SUlJCaGhoRQXFxMSEtLovqqqKjIzM0lOTm61UDknq0XtolWWp9YcOmpOvRuzWq0MGjSIq6++mqeeekp3nDZp+PuSsxi/tX+FYdfClf9s+xN8+/9g9V9g+PVwxT+6LqgQQgjhaawW+M8s9WHsBY/LUg4hOqjOYmXM678i0jeZf1zyO/r2imq1njqb+65BbC/7LlqiRVlZWXz99ddMmTKF6upq/v73v5OZmcl1112nO1r72Gxw6Dt1u72N7+0jiLJRjRBCCOFYRhPcslx3CiFc3rL926nz3c1x2x7CAh9p9+OlQBRtZjQaWbRoEQ8++CA2m420tDRWrlzZ9k1hnIWlBsrzwCcI+pzfvsfGj4NL/wYxw859rRBCCOEuMj5Xm7QNmAXhKee+XgihzUd7vwSgp2EIYf5t373UTgpE0Wbx8fH8+KMbLBy391fqPwO82zktOTgKRt/s+ExCCCGEM9uyCA59C0bvri8Qa6tUP8SE8W1vRSWEANTaw92nVoMRJsZc2KHnkAJReB5vf0i9Avq2Y3MaIYQQwlNZaiG7vkVVVy/HsVrguQFQdQru3ggRA7r29YRwMzvy91BjzMNm9eLXQ2d16DlkF1Phebx81eL3/tM79viTR9QnqXu+cGQqIYQQwjkd2wq1FeAfBhFdvKzEaDq93j9rbde+lhBu6M0dnwPgU5vKwOjIDj2HFIhCtNfh7+GL38Gm13QnEUIIIbrekfr+h0nngbEb3jom1Le7yF7X9a8lhBux2Wysy/sWgGE9Oj5TTgpE4VnKC6CuGqzWjj9HdJo65u5SO6IKIYQQ7qyhQOym3d7t/RCzpEAUoj2qLFWkBA/ByxbKVakdnCmHrEEUnqS2UhWIZYVQGwcEdOx5IlPBYISKE1CaCyExDo0phBBCOI26GsjeoG53Vzuw3mPBYILibDiVAz3iu+d1hXBx/l7+vHvF81htVoyGjo8Dygii8BxVxero7Qe+wR1/Hm9/6NVf3c6VfohCCCHc2IkDYLNCQC+IGNg9r+kbBDFD1W2ZZipEu3WmOAQpEEW9qVOncv/99+uO0bUqT6mjt3/nnyuqfpppnhSIQggh3FjUYJibDTd92b0tJxInqqNsVCNEmxwvO86Hu9ZSVFbd6eeSArGexWphU+4mlh5eyqbcTVisli59va4oyG666SauuOIKhz5nS1atWoXBYODUqVPd8nqdVlcNdfX9D706OLX0TPYd1mQEUQghhLvz9oPILt699GypV8D0P8OYW7v3dYVwUe/teY+ntt5O+mt3sy+3tFPPJWsQgZVZK1mwcQF5FXkN56ICopg7di7TEqdpTCYcpmH0MACMDthYRgpEIYQQouvEj1FfQohzstlsfHl4GQC+dQPoGxnUqefz+BHElVkrmbNqTqPiECC/Ip85q+awMmulw1/zpptu4vvvv+eFF17AYDBgMBg4cuQIABkZGcyaNYugoCCioqK44YYbKCwsbHjsxx9/zJAhQ/D39yc8PJxp06ZRXl7OE088wZtvvsnnn3/e8JyrVq1q9vXLy8u58cYbCQoKIiYmhueee67JNe+88w6jR48mODiY6OhorrvuOvLz8wE4cuQI559/PgA9e/bEYDBw0003AbBs2TLOO+88evToQXh4OJdeeimHDh1y3B9eR1WdUkffEMc8X+8xcOMSuGWFY55PCCGEcDZZa+HldFj1jO4kQohW/HTiJwqrcrFZvZkQcx4mY+emg7ttgVhRW9HiV7VFzc21WC0s2LgAG01HlGz1/1uwcUGj6aYtPWd7vPDCC0yYMIHbbrsNs9mM2WwmPj4es9nMlClTGD58OJs3b2bZsmXk5eVx9dVXA2A2m7n22mu5+eab2bNnD6tWreJnP/sZNpuNBx98kKuvvpqZM2c2PGd6enqzr//QQw/x3Xff8emnn/L111+zatUqtmzZ0uiampoannrqKXbs2MFnn31GZmZmQxEYHx/P4sWLAdi3bx9ms5kXXngBUMXnnDlz2LRpE9988w1Go5Err7wSa2faSnSW1QKWGnW7M5vTnMkvBPpMgYAwxzyfEEII4WwyV0P+T1CwV8/rl+XDjvfhp8/0vL4QLmL5keUA1JUO4vz+cZ1+PredYjruv+NavG9S3CRenvYyW/O3Nhk5PFteRR5b87cyJlpNc5i5eCYnq082uW7Xr9s+1TA0NBQfHx8CAgKIjo5uOP/KK68wcuRInn766YZzb7zxBvHx8ezfv5+ysjLq6ur42c9+RmJiIgBDhgxpuNbf35/q6upGz3m2srIyXn/9dd566y0uuugiAN5880169+7d6Lqbb7654XafPn148cUXGTt2LGVlZQQFBREWpgqjyMhIevTo0XDtz3/+80bP8/rrrxMZGUlGRgZpaWlt/SNyLKNJbSpTWwlWt/1MRAghhHCsIz+oY3e1tzjb4VXw6e0QOxIGX6EngxBOzmaz8VWmml5aVzqUSf0iOv2cHv1uuaCiwKHXddaWLVv47rvvCAoKavgaOFBtKX3o0CGGDRvGhRdeyJAhQ/jFL37Bv//9b06ebFqstubQoUPU1NQwYcKEhnNhYWEMGDCg0XXbtm3j8ssvJzExkeDgYKZOnQpAdnb2OZ//uuuuo0+fPoSEhJCcnNymx3U5gwF8HLA5zZnMO+DrP8CGVx37vEIIIYRutVWQs1HdTtJUICbUv1cx74DqMj0ZhHByuwp3kVeRi83qQ6L/SGJ7dH63frcdQdxw3YYW7zMZTQBEBLStwj7zumU/X9a5YK2wWq1cdtllPPNM07n+MTExmEwmVqxYwdq1a/n666956aWXeOyxx9iwYUNDIXYuNtu5N2gpLy9n+vTpTJ8+nXfeeYeIiAiys7OZMWMGNTU1rT72sssuIz4+nn//+9/ExsZitVpJS0s75+O6jM0KGLpma+7CA7D2RdXQd9xvHf/8QgghhC5HN4GlGoKiIbyvngw94iE0HopzVJ6U8/XkEMKJrcpZBajppZP7xTrkOd22QAzwPvdo0cjIkUQFRJFfkd/sOkQDBqICohgZObJdz9sWPj4+WCyNW2mMHDmSxYsXk5SUhJdX8//XGAwGJk6cyMSJE/njH/9IYmIin376KXPmzGn2Oc/Wt29fvL29Wb9+PQkJCQCcPHmS/fv3M2XKFAD27t1LYWEhCxYsID4+HoDNmzc3yQ80er0TJ06wZ88e/vWvfzFpkvq08YcffmjrH0nXqDgBpbkQFAVBkY597oZeiD+B1QpGjx6QF0II4U6OrFHHpPO6t//h2RImwK4cyF4nBaIQzbh7+N30DxnJvuN1XJjS+9wPaAOPfkdrMpqYO3YuoIrBM9m/f2TsIw0jjo6UlJTEhg0bOHLkCIWFhVitVu6++26Kioq49tpr2bhxI4cPH+brr7/m5ptvxmKxsGHDBp5++mk2b95MdnY2n3zyCQUFBQwaNKjhOXfu3Mm+ffsoLCyktra2yesGBQVxyy238NBDD/HNN9+we/dubrrpJoxnFDcJCQn4+Pjw0ksvcfjwYZYsWcJTTz3V6HkSExMxGAx8+eWXFBQUUFZWRs+ePQkPD+fVV1/l4MGDfPvtt8yZM8fhf3btUnkKrHXQhpHTdgvvC15+UFsOJzMd//xCCCGELrrXH9ol1k8zzVqrN4cQTspkNDGz73n8bvJU0uJCHfKcHl0gAkxLnMbzU58nMqDx6FJUQBTPT32+y/ogPvjgg5hMJlJTUxumcMbGxvLjjz9isViYMWMGaWlp/O53vyM0NBSj0UhISAirV69m1qxZ9O/fn8cff5znnnuOiy++GIDbbruNAQMGMHr0aCIiIvjxxx+bfe2//vWvTJ48mdmzZzNt2jTOO+88Ro0a1XB/REQEixYt4qOPPiI1NZUFCxbw7LPPNnqOuLg4nnzySebOnUtUVBT33HMPRqOR999/ny1btpCWlsYDDzzAX//61y7582sTSx3U1K9Z8O/h+Oc3eUFkqrqdu9Pxzy+EEELoYLOpD0FDeutbf2iXUL8j+9FNUKdpuYoQHsZga8uiNM1KSkoIDQ2luLiYkJDGfeyqqqrIzMwkOTkZPz+/Dr+GxWpha/5WCioKiAiIYGTkyC4ZORTdqPwEFGeDlz9Eqs1+HPX3pcGSe2HrWzDpQbjwD51/PiGEEMJZ2N8i6pxiarPBX1PUkpHfroLYEfqyCOFErDYr1y+9HmtlApMiruPqkQOICPZt8frW6qmzue0axPYyGU0NrSyEm6g6pY5dMXpoFz1UHXPb3uZECCGEcAk6C8MzM1z7PvRMcvxeAkK4sB0FO9hVuAub5QDrt0xgar/EVgvE9vD4KabCTVnroLpU3fbr0XWvE13fh7I4p+teQwghhOhOJw6pzdecRfxYKQ6FOMvyI8sBqCtNpVdgIIOiWx8VbA8ZQRTuqaoEsKlNZLwdMJW0JbEj4P7dEOqYXaOEEEIIrWrK4R/jwDcI7t4EQZ1vui2EcCyrzcrXR74GoLZ0KJP69cJodNyIv4wgCvfk7Q+BkRDQq2tfx8tX9Wlyhmk4QgghRGflbABrLXgHQmAX/xvaHmtfgrcuh7wM3UmE0G5b/jYKKgsw2PyxlPVlUj/H/q5KgSjck7c/hMbJJ59CCCFEe5zZ3sKZPvw8+A0cXgVZze/QLoQnsU8vrSlOBbw4zxkKxJdffrlhF8hRo0axZs2aVq+vrq7mscceIzExEV9fX1JSUnjjjTc6FLglVmeaKy+cVpf8PTnyI7z/K1jxR8c/txBCCNGdMuvf0yWdpzfH2RLr211IgSg8nMVqYUXWCgBqS4YyKCaEyGDHLqdq9xrEDz74gPvvv5+XX36ZiRMn8q9//YuLL76YjIwMEhISmn3M1VdfTV5eHq+//jp9+/YlPz+furq6TocH8PHxwWg0cvz4cSIiIvDx8cHgTJ94ie5XcRJM3uATAAb1GYjNZqOmpoaCggKMRiM+Pj6Oe72qYtj7JUSlwUXzHPe8QgghRHeqLoPjW9Vt3f0Pz9ZQIK5TrS/kvZ7wUFWWKmYmzeSrg2uorurH5FGOnwre7j6I48aNY+TIkbzyyisN5wYNGsQVV1zB/Pnzm1y/bNkyfvnLX3L48GHCwsI6FPJcfTtqamowm81UVFR06PmFm7DZoK4aygsAGwRFqTWCZwgICCAmJsaxBeKpHFiYBkYv+L/jTV5TCCGEcAkHV8I7P4fQBHjAydo31VbC/Hi1PvK+bRDWR3ciIbSrrLFQVWuhZ+C539d2WR/EmpoatmzZwty5cxudnz59OmvXrm32MUuWLGH06NH85S9/4e233yYwMJDZs2fz1FNP4e/v3+xjqqurqa6ubvQDtcbHx4eEhATq6uqwWCzt+ZGEuzj4Lax5FsrzT58LjFQN7PteAIDJZMLLy8vxI8yhvcEvVI0kFuyDmKGOfX4hhBCiO9inlyY72eghqL0F4kaqTXSy1kmBKATg72PC38fk8OdtV4FYWFiIxWIhKiqq0fmoqChyc3Obfczhw4f54Ycf8PPz49NPP6WwsJC77rqLoqKiFtchzp8/nyeffLI90TAYDHh7e+Pt7d2uxwk3kLEEPr4ROGswvOwofHwdXP0WpM7uutc3GCB6KBxZA7m7pEAUQgjhmlJnqyUa8eN1J2lewgRVIGavhRG/0p1GiG536NQhCioLGNZrJP7eDpwNd5YObVJz9giMzWZrcVTGarViMBh49913GTt2LLNmzeL5559n0aJFVFZWNvuYRx99lOLi4oavnBxpQi5aYLXAskdoUhzC6XPL5qrrulJUmjrmOtmUHCGEEKKt4kbBBY9Dv2m6kzQvMR18ghr2FxDC07y7511u+/o2LnnnYS5+YQ0bM4u65HXaNYLYq1cvTCZTk9HC/Pz8JqOKdjExMcTFxREaGtpwbtCgQdhsNo4ePUq/fv2aPMbX1xdfX1nHJdogay2UHG/lAhuUHFPXdeWUmegh6pi3u+teQwghhPBkKRfAI1lgavcei0K4vDprHSuzVgJw3JxMVUkJPQO6ZuZkuz6C8fHxYdSoUaxYsaLR+RUrVpCent7sYyZOnMjx48cpKytrOLd//36MRiO9e/fuQGQhzlCW59jrOio6Dbz81EY1QgghhKvZ9xXsXarW0zsrk7cUh8JjbcrdxMnqkwR5hVJVkkx0iB99I4O65LXaPUY/Z84cXnvtNd544w327NnDAw88QHZ2NnfccQegpofeeOONDddfd911hIeH85vf/IaMjAxWr17NQw89xM0339ziJjVCtFlQ8yPXHb6uo6KGwKPH4MbPuvZ1hBBCiK7w/V/g/Wth3zLdSdqmRnauF55l+ZHlAER5jQFMTO7fq8ta+7X7Y5hrrrmGEydOMG/ePMxmM2lpaSxdupTExEQAzGYz2dnZDdcHBQWxYsUK7r33XkaPHk14eDhXX301f/7znx33UwjPlZgOIbFQYqb5dYgGdX9i8yPcDmM00sElvUIIIYReVcVg3q5uJ52nNco5HdsCi28Fn0C44wfdaYToFrXWWr7J/gaA4oJUACb1i+iy1+vQOP1dd93FXXfd1ex9ixYtanJu4MCBTaalCuEQRhPMfAY+vBEw0LhIrP9UZeYCdV13kQa+QgghXEnWOrBZVeuI0DjdaVoXEgdFhwEDVJ4C/x6aAwnR9TaZN3Gq+hQ9fMPI3BOFwQDn9e3VZa8nQx7C9aXOVq0sQmIanw+J7foWF2c6sAJeTofFt3TP6wkhhBCOcKS+/2GSE/Y/PFtwNPRMBmyQs1F3GiG6xTrzOgD6Bk4ATAyNC6VnYNe1uZCVvsI9HPga4kbDlAvVFthBUWpaaXeOHJq8If8nqJV1EUIIIVyIKxWIAIkT4WSm6ofYf7ruNEJ0uTmj5jAzaSaH8+voUWEjNSakS19PCkTh+qxW2PslVJ6E8+5XfZx0iKpvdXEyE6pKwK9rf3mFEEKITqs8Bead6razrz+0S5wA299RU2OF8AAGg4HBvQYzuBdcltr1rydTTIXrK9yvikPvAIgeqi9HYLhaGwGQn6EvhxBCCNFWORsBG4T3bbpUw1klTFDH41uhtlJvFiG6mM3W3CaMXUsKROH6ctarY9woNc1Tp6g0dczdpTeHEEII0Rb9LoJ7t8Lsl3QnabuwPmopiaVG7WoqhBuyWC2sO7aOKR9M4Y4Vd7D6YCYZx0u6pWCUKabC9WXXF4gJ4/XmAIgeAgeWS4EohBDCNRgMEJ6ivlyFwQBDr4bqUvDvqTuNEA63MmslCzYuIK8iD4Afj//IhmM3UnrsUuZNu5brxiV06etLgShcX3b9GoR4JykQQQpEIYQQoitNl37awj2tzFrJnFVzsJ3V37uWU/jFvQMBg4GuLRBliqlwbaW5cPIIYID4MbrTqAKx1wCI7IYVxEKIxqwWyFwDuz5WR6tFdyIhnNvBb+CDG9TvjBBCO4vVwoKNC5oUh6AGzg3Af/a+gKWL/32TEUTh2soLVXsLmwX8QnWnUVN07pG+TEJ0u4wlsOwRKDl++lxILMx8pvt6oQrhag6sgD1LIDAChlylO037WWrh+HYI7e06G+wI0Yqt+VsbppU2ywC5Fblszd/KmOiuGxiREUTh2qLT4LZv4NZvdScRQuiSsQQ+vLFxcQhQYlbnM5boySWEs2vof+gi7S3O9uGv4fVp8NOnupMI4RAFFQUOva6jpEAU7sHoZH+VrVbVekMI0bWsFjVy2Mx0nIZzy+bKdFMhzlZRBHm71e2kSXqzdFTv0eqYvVZvDiEcJCIgwqHXdZSTvasWoh0stVBdpjtFUxlLYH5v+PgW3UmEcH9Za5uOHDZig5Jj6johxGlHflDHiEEQ1LVvNrtMYro6Zq0DDb3ihHC0kZEjiQqIwoCh2fsNGIgOiGZk5MguzSEFonBd2ethQQL895e6kzQWHAO15bKTqRDdoayVtRoduU4IT+Hq00sBYkeAyRcqCqHwgO40QnSayWhi7ti5AC0WiY+MfQST0dSlOaRAFK4re73anMbbX3eSxqJSAQOU50OpvCkVoksFRTn2OiE8hX0EMdlFp5cCePlC7/qNOmSaqXAT0xKn8fzU54kMiGx0PjogmuenPs+0xGldnkF2MRWuK2e9OiZM0JvjbD6BEN4XThyAvF0QLG9MhegyiekQEA4VJ1q4wKB2M7VPRRNCQF01+AaD0RsSXXgEESBxAmT9oKaZjrpJdxohOs1qs+Ln5cfHl37CZxkbyS7JJSEkmuuGTcXHq3tKNykQhWuyWiCnvp1Ewji9WZoTnaYKxNzd0LfrP+kRwmMZTXDJ3+CjG5u5s356zswF6johhOLlC7d8DTUV4BOgO03n2D8klnXGwk0cOHmAO1feCdYASvc9DvQEqvnX19/zp8tSmZnW9S1dZIqpcE35e6C6BHyCIHKw7jRNRQ9RR1mHKETXG3w5XP2WGik8U0isOi99EIVonqsXhwDxY+HCP8LPXpWNaoRbWLTtawDqKuI5s1TLLa7izne2smy3ucszyAiicE3Z69Sx9xgwOeFf4+ih6mjfQlwI4ViZa2Db2zD7JTUakno5DLxUjSKU5ak1h3GjwVqrO6kQzqe6DHyDdKdwDN9gmPR73SmEcAiL1cZXB9eAH9SV9210nw01L+bJLzK4KDUak7H5TWwcQUYQhWvK2aCOCeP15mhJ9FDofzEMvlI+0RTC0Y5vg/euhZ0fwI8vnD5vNKkNN4ZcpUbvn+sPa1/Ul1MIZ1SWr3YA//cFUFejO40Q4gxrD+VR53MIAEt5SpP7bYC5uIqNmUVdmsMJh16EaIO+F4HNCn2m6k7SvOAouO593SmEcD+FB+Cdn0NNqdpcI/2+5q8LCFfT0Pd8CRc83r0ZhXBmR9aoHcDrasDLR3cax6gph31fwYlDMPUR3WmE6LCteTswGGuw1gVirY5u8br80qouzSEFonBNw65RX0IIz1F8FN66Qu1YGjMMrn0PvP2av7b/dDB6QcEe9aYxvOknsUJ4JHt7C1fuf3i22kpYfIu6PfY2CAjTm0eIDsqtUXtXqNHDlid6Rga38G+fg8gUUyG6is0GJWbI36s7iRCur7wQ3r4SSo5CeD+4/hPwC2n5ev+ep98A7/2yezIK4Qoy16ijK/c/PFtgL+jVX93OXq83ixCdcLRqJwCWir7N3m8AYkL9GJvctR+CSIEoXE/2BijY5/xr+3YvhucHwpf3604ihGuz2eCDG6BwP4TEwQ2fqjeE5zLwUnXc+7+uzSeEqyjNVS2YMLhfb9CGdhc/6s0hRCc8OfEJroi/m7qyAU3us29J86fLUrt0gxqQAlG4oqW/h3+MhYzPdSdpXWSqOubuBqtVbxYhXJnBABf+AcL6wA2fQY/4tj1uwCx1zNkIpXldFk8Il2GfXho9RI2yuxN7wWvf5VwIF9QntA9PXXAHr/zyfKJDG08jjQ7145XrR3ZLH0RZgyhcS1UJ5P2kbseP1ZvlXHr1A5OP2kzjVBaEJetOJITrSkyHuze1r61NaBzEjoTjW2HfUhj9m67LJ4QrOGKfXjpZb46uYC8QzTvUpjU+gXrzCNEJM9NiuCg1mo2ZReSXVhEZrKaVdvXIoZ0UiMK1HN2kdi/tkdC0KbazMXlD5CD1j1XuLikQhWgPqxVW/AGGXQvRaepcR3qejv2t2tzGHd8QC9FeyVOgqhj6TtOdxPF6JEBIb7VO+egm593lXIgWPLvpWRJDE7koYQYhPsGYjAYmpIRrySIFonAt9v6H8U7a//Bs0UNOF4ips3WnEcI12GyqOFz3d9jxHty3vfUNaVoz/FqHRhPCpaX9TH25q8QJsOsjMO+UAlG4lBOVJ3gz400AfGuG8cSnG5g9LJYnZg/WkkcKROFa7LuTJbhIgRg1RB3zduvNIYQrWfOcKg4Bpv+548WhEEKxWiBrLZTlQVCUmo5pNOlO5Xjn/x9cNM/5ZxgJcZaNuRsBGNBzAHuOWikqr6G8uk5bHikQheuw1MHRzeq2qxSI0fUFYu4uvTmEcFZnv3Et2APfPqXumzEfhl/X+deoLoMDX0N5AYy7vfPPJ4QryVgCyx6BkuOnz4XEwsxn3G9mS1gf9d+UzDXuXwwLt7LBrGbIjYsZx/rNRQBd3sqiNVIgCteRtwtqy8E3FCIG6U7TNtFpMP5uVSjabGo3RiGE0twbV7vJD8GEuxzzOgX74OPfgE8wjLoJvHwd87xCOLuMJfDhjcBZbaFKzOr81W+5V5HoScWwcCvrzWqG3IiIMbx69BQA4/voWX8I0uZCuJLwfnDdhzDzaTC6yF9dv1CVd/i1UhwKcSb7G9fmikM4PfruCLEjIDhG7Sh8+HvHPa8QzsxqUcXS2cUhnD63bK66zh209N8UezGcsURPLiHOIac0h2Nlx/AyeGGsTqHWYiMm1I/ePf21ZXKRd9lCAL5B0H8GjLhedxIhRGe0+sYVwADLHnXcG1ejEQZeom7v/dIxzymEs8ta2/IHMADYoOSYus7VeVoxLNyKfXrp0Iih7MiuBNT0UoPGgQUpEIXoatVlcORHOPSd7iRCOAcdb1ztBeK+pfImUXiGsjzHXufMPKkYFm7neNlxjAYj42PGsyHzBADjkvVNLwVZgyhcRfEx2Pw6JE6EvhfqTtM+h7+DD66H6KGQskZ3GiH00/HGNWmSWr9cXgA5G9V2+EK4s6Aox17nzDypGBZu576R93FT2k1YrVaqC/OptdgY10ffBjUgI4jCVRz5QW19/93TupO0n30tVcFesNTqzSKEM9DxxtXkraaog0wzFZ4hMb2+3UNL09QMEBKnrnN1nlQMC7cU4hNCD78e3D+tP4vvTCclIkhrHikQhWvIXqeOrtLe4kw9EsE3BCw1ULhfdxoh9NP1xnXQpep48ohjn1cIZ2Q0qd07m12XV/+7N3OBe7SA8KRiWLgVq82qO0KzpEAUriFHLeB1yQLRYICoNHVb+iEKoe+Na7/p8Lud8Mt3Hfu8Qjir1Nlw5asQcNZ6ppBY92px0fDfFGhaJLpZMSzcyu++/R03LL2B7fnb2Z5zipIq55hpJmsQhfOrPAn5e9TteBcsEAGiBkP2Wti9+PSnmPIPlfBkqbMhbjQc29z4fEiseiPXFW9cvf2hZ6Ljn1cIZzbsGhhyldqgxZ2bx6fOVkVvs30Qu+i/KUJ0Qq2llg25G6isq8TH6Mcv/r2eyloLK+ZM0T7FVApE4fxyNgE2CEuBoAjdadovYwns+kjdPvC1+pLGvcLTWergxAF1e9bz4B/avW9cayrAJ6DrX0cIZ2A0QfIk3Sm6XupstWOxuxfDwi3sLNxJZV0lYX5hVFdEUl5ziBA/L5LDA3VHkwJRuICc9eqY4IK7Dtob9549lc7euNedpvgI0R7Ht0FVMfj1gNE3dd8bOKtF7Sp88Bu4Z5OMKAr3VpQJW9+CpPNcbwfwjvKUYli4vPVm9f52bPRYNh85pW4nh2E06ut/aCdrEIXzs6/bSxinN0d7SeNeIVp2uL4vaJ8p3fvpvtGkClNLteqJKIQ7O7IGfngefvib7iRCiLNsMKv9NZyp/6GdFIjC+V37Ady1AQZeqjtJ+0jjXiFaFjsShvwCBmkYQbf/t2SPtLsQbs6+wVvvMXpzCCEaKa8tZ1eBGgAZEzWWjZlFgBpBdAYyxVQ4P6MRIgfqTtF+0rhXiJb1m6a+dBh4CSx/VG0cVX4CAp3jE1shHC5nkzrGj9WbQwjRyJa8LdTZ6ogLiqO8IpSSqjoCfUwMjg3RHQ2QEUQhuo407hXCOfVMhOghYLPC/q90pxGia1QUQeE+dbu3FIhCOJNgn2CmJUzjosSL2HBYTS8dlRSGl8k5SjMZQRTO7cs5ar1Q+r0QO1x3mvaxN+4tMdNiv7eQWGncKzzP4e8hMAIiB6k+oToMvFStb977PxhxvZ4MQnSlY1vUMSxFRsmFcDIjIkcwInIEAEdPVuDtZSQiyFdzqtOco0wVojk2G2R8Drs/hroq3WnaTxr3CtG8/82BVybAPo2jd/Z1iIe+hZpyfTmE6Cr29YfxLrbBmxAepnfPAH41LpHpg6N1R2kgBaJwXkWHoaIQTL4QO0J3mo6xN+4NiWl8PjhaWlwIz3QqB04cBINJ7+h51GBI+zlc+Cc11VQId5P3kzrGywY1QjiT7JJsskuysdmam13mHGSKqXBe2evUMXYEeDnPsHu7ndm494ProeoU/OJN12vbIYQj2NtbxI0C/x76chgMcNUb+l5fiK52zbvqw5gAmV4qhDN5Y/cbLD6wmDuH3cmwoKs5XFDGpH4RJPUK1B2tgYwgCueVrRqIkjBebw5HsDfujRmqvi86pDePELoc+lYdU87Xm0MId2c0QkR/WX8ohJNZb1bvb4f0GsKHm3P4w+c/8cm2Y5pTNSYFonBe9vUTCRP05nCk8H7qWHhAbw4hdLBa1QY1ACkX6M1iV1YAW9+C49t1JxFCCOHmckpzOFZ2DC+DFyMjR7LhsOp/OM5J+h/adahAfPnll0lOTsbPz49Ro0axZs2aFq9dtWoVBoOhydfevXs7HFp4gPITULhf3Xan/k297AXifr05hNAhdwdUFoFPsJpi6gy+nQdL7oVt7+hOIoTjrPgjfHzz6T6IQginYB89HBoxlKIyA7klVXgZDYxI6KE32FnaXSB+8MEH3H///Tz22GNs27aNSZMmcfHFF5Odnd3q4/bt24fZbG746tevX4dDCw9QlgcxwyByMAQ416cqnTLwErjxc7jkOd1JhOh+9umlyZPA5K03i519N9O9/1MjnEK4gz1fwO7FUF2sO4kQ4gwbzGp23PiY8ayv7384tHcoAT7OtS1Mu9M8//zz3HLLLdx6660ALFy4kOXLl/PKK68wf/78Fh8XGRlJjx49OhxUeJioVLh9NVjqdCdxrB4J6ksITzT+LogZDj7OsxCf5CngEwSlx8G8zXlGNoXoqLICtQs4QNxovVmEEA2sNmtDgTguZhzvrVbTS8cmO9864XaNINbU1LBlyxamT5/e6Pz06dNZu3Ztq48dMWIEMTExXHjhhXz33XetXltdXU1JSUmjL+GhTM71iYoQohO8/aHvhc618ZS3H/S7SN3e86XeLEI4wtH6aaURA/XuFCyEaGT/yf2cqj5FgFcAQyKGsPGIc64/hHYWiIWFhVgsFqKiohqdj4qKIjc3t9nHxMTE8Oqrr7J48WI++eQTBgwYwIUXXsjq1atbfJ358+cTGhra8BUfH9+emMLVWeqgtlJ3iq6zbxmsfBKObdWdRAgBZ0wzlQJRuAH7Bm/utH5fCDeQEJzAi+e/yO9H/56SCis5RRUYDTAqqafuaE10aHjGYDA0+t5mszU5ZzdgwAAGDBjQ8P2ECRPIycnh2WefZfLkyc0+5tFHH2XOnDkN35eUlEiR6EmOboI3L1Of6l/7nu40jrfzffjpU7W2Mm6k7jRCdI91/4CS4zD8V2oKuTPpdxEYvdXmUQX7VWsAIVyVfQSxtxSIQjiTAO8Azk843eJpx5+ms8dcSoifk6zJP0O7RhB79eqFyWRqMlqYn5/fZFSxNePHj+fAgZa3+ff19SUkJKTRl/AgOevBWgtGN51eKq0uhCfa+jas+zsU7tOdpCm/UOgzBQxGOC4j+8KFWWpPz06JH6c3ixCiVcF+3ox1wuml0M4C0cfHh1GjRrFixYpG51esWEF6enqbn2fbtm3ExMS056WFJ8lWWwA71TolR7K3ujhxUG8OIbpLiRkK9gAGtSmMM5q5AB48AMN+qTuJEB1Xlq9GwAMjILyv7jRCiHp7TuzhpW0vsT1/u+4obdLuIZo5c+Zwww03MHr0aCZMmMCrr75KdnY2d9xxB6Cmhx47doy33noLULucJiUlMXjwYGpqanjnnXdYvHgxixcvduxPItyD1Xp6/YS7F4jSC1F4isP1G5PFjnDetjW9pPWScAOhcWoH8LoaMHao1bUQogt8m/Mtr+58lZySHBICU7nlzU2MSw7n4RkDMBqbX6anU7sLxGuuuYYTJ04wb948zGYzaWlpLF26lMTERADMZnOjnog1NTU8+OCDHDt2DH9/fwYPHsz//vc/Zs2a5bifQriPwv1QeRK8AyB6qO40XcP+qW55gfpZ/Z1vcbIQDnWovkBMOb/165yF1QJGk+4UQnScl4/uBEKIM5zZ3mJjZhHbsk9RXl3H3IsHak7WvA4t8rrrrru46667mr1v0aJFjb5/+OGHefjhhzvyMsIT5dRPL40b5TyNtB3NNxiCY6DUDIUHIX6M7kRCdB2r9fQIYsoFerOcy7GtsPwx8AmA62WWi3BBtVWqdYsQwmmU15azq2AXAONjx/PadycAGOeE/Q/tZP6BcC7Zbj691K5hHaJsVCPcXP5ParTcO9D5d1X0C4XstXB4FVSe0p1GiPYpMcP83vDaNDUKLoRwClvytlBnq6N3UG/iguLYmKn6HzrrBjXQwRFEIbpM8mSoKYM+U3Un6VqzngUvPwiV9i3CzZWYISgaYoY6/7S38BSIGKQ21DnwNQy9WnciIdru6Ea1A3hdlUyRFsKJrDer2XHjY8dTUlVLhrkEgHFSIArRRsOvVV/uLmLAua8Rwh30nw6/3wvVJbqTtM3AS1SBuOcLKRCFa8nZqI7OPlIvhIexF4jjYsax+UgRNhsk9wokMsR5p4PLFFMhhBBdy2BQ0zddwaBL1fHgN1BbqTeLEO1hLxDjpUAUwllU1FZQUFEAwLjocWywTy9Nct7RQ5ACUTiTY1ug6DDYbLqTdL3aSvj2/8HHN4OlTncaIbpGTbnapMaVxAyHkN5QW67WIgrhCuqqwbxd3ZYCUQinEeAdwPfXfM+nsz+lp19PvI1GwgN9GNdHCkQh2uZ/D8KLI+CnT3Un6XomX1j7EuxeDKeydKcRomusWgDP9oNNr+tO0nYGg5pmCrD3S71ZhGgr8w6w1EBAL+iZrDuNEOIMRoORvj1Vi7MHZwxg8+PTmD0sVnOq1kmBKJxDTTnk7lS3e4/Wm6U7GI1qQwyAEwf1ZhGiqxz+DioKwTdEd5L2Sb0c+s90/rYcQtg1TC8dpz7kEEJoZ7PZsDUzK85gMOBlcu4SzLnTCc9xbAtY6yAkznN29rS3uijcrzeHEF2hLB9yVd8nl9uVOGkiXPcBpP1cdxIh2ia8r/pgo99FupMIIeodLT3K9MXTeXLdk9hsNoora5stGJ2R7GIqnIO9/6EnffoZbi8QpReicEOHv1fH6CEQFKE3ixDubsBM9SWEcBrrzOvILc/l8KnDGAwGbntrM0cKy/nbNcOZ2LeX7nitkgJROIfsdeqYMF5vju7USwpE4cYOf6eOfc7Xm6MzThyGTa9B7AgIjobEdOkvJ4QQok02mNXgx/jY8VTVWtiec4qaOisxoc7b3sJOCkShn9UCRzep255YIJ6QAlG4GZsNDn2rbqe4aIG4azEsvgU4YzpQSCzMfAZSZ2uLJUQTJ7PUEo2wPp4zA0cIJ2e1WdmYq9YGj48Zz4764jAi2JfkXoGa052brEEU+uVnqCbaPkEQOVh3mu4Trna0ovIUVJdqjSKEQxXsg1IzePlBwgTdadovY0nT4hCgxAwf3qjuF8JZrPsHvDQSVvxRdxIhRL19Rfs4VX2KAK8A0nqlsdHe/zA5DIMLfJAjI4hCv55JcM27UJ4PJg/6K+kbDPdtg9AEz/q5hfvzCYTzHoCaCvD2152mfawWWPYITYpDqD9ngGVzVSsMmW4qnMHR+h1MY4bpzSGEaGCfXjo6ejTeRm821BeI45Kdu/+hnbwrFfr5BsOgS3Wn0COsj+4EQjhej3iY9oTuFB2TtRZKjrdygQ1Kjqnrkid1WywhmlVTcXq34PixerMIIRqsz10PwLjocdRarGzJOqm+Tw7XGavNpEAUQggh7MryHHudEF3p+Da1/jA4xnNaRAnhAlLDUskrz2NczDh2HyumstZCjwBv+kUG6Y7WJlIgCr1K82DzG2p3wD5TdKfpfse2wPp/qh0Spz+lO40QnVd4EIoOQeJE8HWNfwgbCYpy7HVCdKUce4uosbJBjRBO5L6R93HfyPsAyLSWc9ukZIwGA0aja/yeyiY1Qh+rRW0h//0C+PIB9b2nqTwJuz6E/ct1JxHCMXb8F/57Nfxvju4kHZOYrnYrpaV/xA0QEqeuE0I3+w7gvWV6qRDOKrlXII9dksqjswbpjtJmUiAKPTKWwMI0WP0X9X3RIfW9p+0O2Ku/OhYdBkud3ixCOMIhF+9/aDSpVhZA0yKx/vuZC2SDGqGfzXbGCOI4vVmEEA1+KvyJaku17hidIgWi6H4ZS9RW8WdvBOGJW8iH9AYvf7DWwqks3WmE6JyKIrUmCqDPVK1ROiV1Nlz9FoTEND4fEqvOSx9E4QxsVpj9Ekz8HcQM1Z1GCAGU1ZTxq6W/YuJ7EzlReQJzcSVrDhRQUeNagwCyBlF0L9lCvjGjUfVDzNsFhQcgPEV3IiE6LvN7wAYRg5oWV64mdbb671DWWrUhTVCUmlbqCf9dEq7BaFJ/RwdeojuJEAKwWC28t/c9LDYLPb170sO3B29uyWbelxmcPyCC//zGdaaCywii6F7t2ULeU/Tqq44nDujNIURnHfpWHVMu0JvDUYwm1cqi/wz1s73zc7BadacSQgjhZFZmrWTG4hm8uO1FAAqrCpmxeAZfHf4agDEu0v/QTgpE0b1kC/mmwvupY6EUiMKF2WxwaJW6neKi6w9b4uUPG/8Nh79To/1COION/4aD30Btle4kQni0lVkrmbNqDnkVjd+75lfks9f6d7yCd7tM/0M7KRBF95It5Jvq1R8MJqgp151EiI4rOgzF2WDycb8dPk1ep3+mzDV6swgBUF0KXz0M7/xM7YYthNDCYrWwYOMCbM0snbLVn/WL+oLUGNdq+yQFouhesoV8U6mz4bFcuOp13UmE6LiwPnDPZvj5a+ATqDuN4yVPUsfM1XpzCAGqh67NCqHxrr/eVwgXtjV/a5ORwzMZDGDwLmZ30fbuC+UAUiCK7iVbyDfl5QtePrpTCNE5BgP06gepl+tO0jWSJ6tj1lppSSP0y9mojvGus+mFEO6ooKLAodc5CykQRfeTLeSFEK4magj49YCaUjBv151GeDp7gdhbCkQhdIoIiHDodc5C2lwIPSw1kDRZjTj0TJIt5H98EfYsgfF3QdrPdKcRon2ObYEfX4CBl8HQX+hO0zWMRkg6D/Z+qaaZ9h6tO5HwVFYrHJURRCGcwcjIkUQFRJFfkd/sOkSAqIAoRkaO7OZknSMjiEKPQ9/CzvdVoTjkKrW+x1OLQ4BTWXB0E+Tu1J1EiPbb/zVkfA77/qc7SddKngL+YaqfqxC6nDgAVcVqd93oIbrTCOHRTEYTc8fOBcBw1tIpQ/3/5o6di8nF3uNKgSj0MO9Qx5hhenM4C2l1IVyZvf9hHzdrb3G2Ub+Ghw7BlId0JxGezD69NG4kmLz1ZhFCMC1xGr8d+luCfYIbnY8KiOL5qc8zLXGapmQdJ1NMRferrYKCveq2FIhKLykQhYuqKlZTTMH9+h+ezctXdwIhYPh1EDsC6qT/oRDO4sDJA5TUlHB1/6sZFTWK/20vY2LcGCZEx+uO1iFSIIrul58B1jo1VSskTnca52AvEIsOqx0STfKrKVxE5hqwWSC8L/RI0J2me9hsUF0CfqG6kwhPZDRBdJruFEKIejabjR0FambcZSmXEeEzgLs2fssy4x5mD3fNAlGmmIrud+b0UkNL/RA9TEhvtZ7EWqvWIwrhKuzTS1Mu0Jujuxz+Hp5Phfeu051ECCGEEzhadpQTVSfwMnoxKHwQmzKLAEiLDSHI1zU/8JcCUXQ/+0YsMr30NKNRjcCATDMVruXwd+ro7usP7UJ7Q+lxtYtkbaXuNMLTZK2FT26H3Yt1JxFC1LOPHqaGpeJr8mVD5gkAxvUJ1xmrU6RAFN2v8hRgkALxbBH91RQ9WVciXEV1qZoqbvJVLSA8QVgfCI5VOzDnbNCdRniaQ9+pHcD3f607iRCi3o58VSAOjRgKwIb6EcSxSWHaMnWWa457Ctf2i//A7Jc8u61Fc372mhpJFMJV+AbDbd9AdRn4BulO0z0MBkierN6kZ66GPlN1JxKepKH/4Ri9OYQQDewjiMMih1FQWs3hgnIMBhjjwgWivBsVevgGgbe/7hTORYpD4ao8pTi0S56sjplr9OYQnsVqgaOb1e34cXqzCCEAqKqrYv/J/QAMDR/GO+vVPhLxPQMI8nPdcTh5RyqEEKL9rBbV4sITJU9Sx2Nb1DRbIbpD/h6oKQOfIIhM1Z1GCAH4efmx8hcrubnvU/z87xm88I3aRyK7qILznvmWZbvNmhN2jBSIont9Mw9enw4Zn+tO4nwsdfCfWfDXvlB5UncaIVp3fDs8kwzvXq07SffrkQA9k1R7j+z1utMIT2Ff8xo3SpZoCOFENh+q5cUvvDEXN95DIre4ijvf2eqSRaIUiKJ7Za1T/8jVVOhO4nxMXlCUCeUFUHhQdxohWnf4W1UgefnoTqLHiOth/N1qV1MhusPRTeoYP1ZvDiFEA4vVxpNfZGBr5j77uSe/yMBibe4K5+W6k2OF67FapcXFufTqp7bQL9wvmxAI53bIw9pbnG3yQ7oTCE9TVQwYZP2hEE7CZrNx89J7OeHtBcZJYPVreg1gLq5iY2YRE1Jcp+2FFIii+5zMVOsnvPygV3/daZxTr36Q+T2ckF6IwklZLXBw5emplclT9OYRwlNc+54qEr2avgkVQnS/nNIctp74Hp9wEzUnWv+wNL/UtVqYyRRT0X3M29UxarCaTimaCu+njoVSIAonlLEEFqbBf69W00sB3rpMnfdEtZVweJXaPESI7uAXCl6+ulMIITjd3sJaFQe21t/XRga71gc7UiCK7mNWv0gyvbQVvaRAFE4qYwl8eCOUHG98vsSszntikfj14/DW5bBlke4kwt3ZXGv9khCewF4g+llTWrzGAMSE+jE22bV6IkqBKLqPuX79YfRQvTmcmb1ALDqsdjUVwhlYLbDsEWhtGf6yueo6T5JU3+4ic7XeHML9vXsVvD4Djm7RnUQIUW97/nYAfjn0vGbvN9Qf/3RZKiajodlrnJUUiKL7BEdDcKyMILYmpDeEpUBiuuf2mBPOJ2tt05HDRmxQckxd50nsBWJ+BpQV6M0i3JelFo78CDnrwSdQdxohBFBeW86BU2q2102jpjKxmQ1ookP9eOX6kcxMi+nueJ0mC8FE97nyn+ooU2VaZjTCfVt1pxCisbI8x17nLgLDISoN8nbDkTWQ9jPdiYQ7ytsNdZVq/aFs8CaEU9hduBurzUpMYAyRAZFkn9wNwCMzBhDb05/IYDWt1NVGDu2kQBTdz+CavyxCeKygKMde506SJqk38JmrpUAUXSNnozr2HqM+RBRCaJdfkU+AVwDDIoaRU1RBTlElXkYDN6YnEejr+uWV6/8EwjXUVIC3vxSH7WGpBZO37hRCqCnPIbFqQ5pm1yEa1P2J6d2dTL/kybDhFTWCKERXaCgQx+rNIYRocFnKZcxKnkVZbRl5pyxMGxSFxWp1i+IQZA2i6C4f/wae7Qd7/6c7ifM79B08OwDenK07iRCK0QQzn2nhzvoPfWYuUNd5msR0MBjhxEEoPqY7jXBH9gIxXgpEIZyJyWgi1DeU/lHBvPbr0fznN+7zOyoFouge5h1QXgABTRfxirP494SyXCjcrzuJEKelzoZRNzU9HxILV7+l7vdE/j3gin/CHT9AsOttRCCcXIkZirMBA8SN0p1GCAHYPGAvDfcYBxXOrSwfSs2AQW3oIFoX3lcdKwqhoggCXKt3jnBjVafUcfj1kHK+WnOYmO6ZI4dnGnaN7gTCXdWUw4BLoKYM/EJ0pxFCAEsOLeHVna9yZb8r+VmfGymvriM+LEB3LIfq0Ajiyy+/THJyMn5+fowaNYo1a9q29uLHH3/Ey8uL4cOHd+Rlhauy9z8M7wu+QXqzuALfINUOBNS0NSGcgdUKmfX/rR95Awy5CpInSXEoRFfq1Reu/S/8eonuJEKIetsLtpNdmk1JdQmfbTvGpL98x5wPtuuO5VDtLhA/+OAD7r//fh577DG2bdvGpEmTuPjii8nOzm71ccXFxdx4441ceOGFHQ4rXJR5uzpK/8O269VPHQsP6M0hhF3BHjWq7R0IsSN1p3E+Oz6AT26HU63/WyiEEMK17SjYAcCwiGGsPVQIQP/oYJ2RHK7dBeLzzz/PLbfcwq233sqgQYNYuHAh8fHxvPLKK60+7vbbb+e6665jwoQJHQ4rXJRZ/SJJgdgO9gLxhBSIwklkrlbHxAng5aM3izPa/AbsfB8Of687iXAXllr1gYMHrHcSwlWU1ZRx8KSa3TU4fAgbDhcBMDGll85YDteuArGmpoYtW7Ywffr0RuenT5/O2rVrW3zcf/7zHw4dOsSf/vSnNr1OdXU1JSUljb6EC8utn2IaM1RvDldib4YsI4jCWdgLxOTJenM4q+RJ6mj/cxKiM6wW2LIIFg6BF0eo74UQ2u0q3IUNG3FBcZiLvCmtriPEz4vUWPdaI9yuArGwsBCLxUJUVONmyFFRUeTm5jb7mAMHDjB37lzeffddvLzatifO/PnzCQ0NbfiKj49vT0zhTKxWtcA+8TyIlgKxzaLSIHEiRA/RnUQI5cp/wrXvQ+oVupM4J3vhfGSNjPiIzslYAgvTYOmD6vuTmer7DFmHqIPFamFT7iaWHl7KptxNWKRY92jbC7YD9umlJwCYkBKOyehefb47tIup4axm5zabrck5AIvFwnXXXceTTz5J//792/z8jz76KHPmzGn4vqSkRIpEV2U0wsyndadwPUkT4TdLdacQ4jS/UBhwse4Uzqv3WDD5qh2bTxw8PU1ciPbIWAIf3gic9SFDiVmd9+SWMhqszFrJgo0LyKvIazgXFRDF3LFzmZY4TWMyocuZ6w//96Nafzixr3tNL4V2jiD26tULk8nUZLQwPz+/yagiQGlpKZs3b+aee+7By8sLLy8v5s2bx44dO/Dy8uLbb79t9nV8fX0JCQlp9CWEEEI4LW+/043MM2UdougAqwWWPUKT4hBOn1s2V6abdpOVWSuZs2pOo+IQIL8inzmr5rAya6WmZEKn/j36069nP1LDhrL5yEkA0lPcr8d3uwpEHx8fRo0axYoVKxqdX7FiBenp6U2uDwkJYdeuXWzfvr3h64477mDAgAFs376dcePGdS69cH6FB6CqWHcK11VTAdWlulMIT7f8MfjmKTiVozuJc7NPM81sW+snIRrJWgslx1u5wAYlx9R1oktZrBYWbFyArZli3X7umY3PyHRTDzRn9Bw+mf0Jg8IH8cIvR3D7lD6kRLhfC7d2TzGdM2cON9xwA6NHj2bChAm8+uqrZGdnc8cddwBqeuixY8d46623MBqNpKU1boweGRmJn59fk/PCTX1wPRTshRuXQJ8putO4lv/9Hja9Bhc9BRPv051GeKq6Gtj0OtRVQtrPdKdxbsmT4bv/B5UndScRrqgs79zXtOc60WFb87c2GTk8kw0buRW5bM3fypjoMd2YTDgLXy8TM9OimZkWrTtKl2h3gXjNNddw4sQJ5s2bh9lsJi0tjaVLl5KYmAiA2Ww+Z09E4SFqyqFwv7odMVBvFlcUUD9lQVpdCJ2ObVbFYUAviBikO41zixsNDx2GQPebbiS6QVDTpTqduk50WEFFgUOvE+7hWNkxIv0j8TZ5647S5Tq0Sc1dd93FXXfd1ex9ixYtavWxTzzxBE888URHXla4mryfwGaFoGgIln/Q2i28fpMLaXUhdGpobzFJbTolWmbykuJQdFxiOoTEqg1pml2HaFD3JzZd0iMcKyIgwqHXCfdw98q7ySnN4W9T/sGWfWFM7NuLMUk9m92o09XJv/ai65jVTk/S/7CDekmBKJyA9D/sGEud7gTC1RhNMPOZ+m/OfsNZ//3MBeo60aVGRo4kKiAKQ5P/HxQDBqIDohkZObKbkwldSmpKOFR8iBprDSdO9uCFbw7w8Mc73LI4BCkQRVcyb1fHmGFaY7is8L7qWFEIFUV6swjPVFMBRzep28myhrhNyvJh0aXw/CDZbVK0X+ps1coiJKbx+ZBYaXHRjUxGE3PHzgVoUiTav39k7COYpFj3GLsKdgEQHxzPzmz13/Z0N2xvYdehKaZCtIl5pzpKgdgxvkEQEqd2rTtxEALG6k4kPE3OBrDUqL+HYX10p3EN/mHqv33VxWoWRZyMMIh28g6Ay18GmwUqT6k1h4npMnLYzaYlTuP5qc836YMYGRApfRA90Jn9D9dtOQHAxBT3LRBlBFF0jbpqyN+jbkfLFNMOs48iyjRToUN5Afj3VNNL3XQajcOZvE6vEbNPzxWiPb55Et6+QrWIGnJV/fpfKQ51mJY4jeU/X86/L/o33ka1McnL016W4tAD2QvElJDB7M1V7cfG9wnTGalLSYEouobVAjPnw5hboUeC7jSuq/8MGHE99EzUnUR4oqFXq105L37m3NeK0+zrNY9IP0TRTpWnIFdNZSNxotYoQjEZTYyPHc/QCPVh90+FP2lOJLqb1WZtmGJqqVDvxwbFhBAe5KszVpeSKaaia/gEwNjbdKdwfRPu1p1AeDqjEfxCdadwLfYCMWsdWGrBA7ZEFw6SswGwQVgKBLtnfzVXY7Ha2JhZRILPFOIShpEaNlh3JNHNDp86TGltKf5e/hw+HgSUMDHFvXeslgJRCCFEU3XVYPKRqaUdEZmq1iJWFsGxrZAwTnci4SqyflRHaWXhFJbtNvPkFxmYi6uASCCSb9fn8KfLgpmZFnOuhws3EeIbwv0j76eiroJla8oASO/r3gWiTDEVXWPvUrVRg6VWdxLXZ1/PKdvmi+70zTz422DY9o7uJK7HaFTrxgCOyDpE0Q5Za9VRppdqt2y3mTvf2VpfHJ6WW1zFne9sZdlus6ZkortFBkRyy5BbuHfEvSy55zw+v3si4/tIgShE+1gt8PHN8K9JcPKI7jSuzWaDv6TAy+PhVJbuNMKTZH6vdtD18tOdxDX1n6m+evXXnUS4ippyOL5N3U6SAlEni9XGk19kYDvrvMGrBFPwbgzeJ3jyiwws1rOvEO7OZDQwLL4HAT7uPQlTCkTheIUHoK4SfILUOgrRcQYDhCWp24X7tUYRHqSi6PRGGfb1dKJ9hl8H130AqZfrTiJcxdFNYK2D0HjZ3E2zjZlFTUYOAXyjP8W/9zuYgtW0042Z0qPY3ZXWlLL08FKOlx3XHaVbuXf5K/Qwq62AiR6iplqJzgnvp96sFx6AARfrTiM8gX33zYhBEBSpN4sQniJpEty+GsoKdCfxePmlTYtDAGtlAgTvweSXQ20r1wn3sT1/O4+seYTEkES8jj9K/6ggHpk50K13MAUZQRRdIXenOkr/Q8fo1U8dT0gvRNFN7P37ZPSw807lqPXYQpyL0QQxw6Cf9NjTLTK4+an1lsreAJj8c1q9TrgPe//D5KDBbM85xZIdxwnyc//xNSkQhePZRxBjhunN4S7sa5gKpUAU3aShQJykN4er2/kRLEyDrx7WnUQI0Q5jk8OICfXj7D2cLVXxABh9ThLVs5axye7bKF0o2wu2A+BVmwTAmKQwfL1M+gJ1EykQhWPZbKc/LZcC0THC+6qjFIiiO5Tm1q93NchOip3Ve7Q6Ht2sNiARoiXHtsJnd8FPn+lOIlAbkfzpslSAxkWi1Q9rdQQA10y0YTJKGyB3ZrFa2FWg1uPnFai+pOkpvXRG6jZSIArHOnkEqovB5AsRA3SncQ/2ArGiUG0eIkRXslpg/F2Q9nMIkE/HO6VnktpwxFoL2et1pxHO7NA3sP1d+OlT3UlEvZlpMbxy/UiiQxtPI/WxJKlj4DENqUR3OnjqIBV1FQR6B7LrsPp7kJ7i3u0t7Nx/Eq3oXkFRcP0nUHIcTN6607gH3yAYe7tsFiK6R2gczJyvO4V7MBjUOs7t76ppu30v1J1IOCt7/8Ok8/TmEI3MTIvhotRoNhw+wS1vbqay1sJ1wybx1oFN7CrcpTue6GL29YdJQQNZX20lxM+LtLhQzam6hxSIwrF8AuRNUFeY9RfdCYQQHWEvEO07wwpxNkstZG9QtxPT9WYRTZiMBtL79iI9JZxv9uZjqhrI/EnzGdZLltG4O3uB6GvpA8D4PuEeM61YCkQhhBBKeSHk/QTxY8HbX3ca95BUv9HP8W1QVQx+nvHps2gH806oLQe/Hqq1jHBKY5LD+Ol4CSHeUVzaZ4LuOKIb3DfiPib3nkzGET+ORcLEvp6x/hCkQBSOZLPB939Raw/7zwRv2f7ZYSx1p9d3xo3SnUa4q31fwZJ71OY0v1mqO417CI2DsBQoOgRZ62DATN2JhLPJ+lEdE9Old7ATu+W8ZG6f3AeDwTNGkAREBUYxI3AGM5Lggalgs9k0J+o+UiAKxyk1w6qnwWCC/5PF2w6V+T288zPV8uKeTbrTCHdlb28h09wc6/z/A6MXJIzTnUQ4I/v6Q/m9c2reptPFe1ZJFt9lf0eobyhX9rtSYyrRnTzpwwEpEIXj2PsfRgyQ6WmO1qufOhZlqtFEk/zqCgez2c7ofzhZbxZ3M+Qq3QmEM6s6pY7SVsYl2Gw2tuTu5Lktz5EWniYFopv64tAX5JbnMrhHOqNjB+Hj5Vmj+/IuUziOvUCU/oeOF9IbvPyhrhJOZUF4iu5Ewt0UHoCyXNWipvdY3WmE8Bw3L4PyE+DfQ3cScQ6fbjvKvC8yGN9fLaHZe3IvNZYafEw+mpMJR/vs4GdszN1IZPUJjufk8Mr1I5k6wHN2k/esclh0LfNOdZQC0fGMxtP9EAv3680i3NOR+tHDhHGyfrgrmHeoNdpHftSdRDijwHAwmnSnEOfQM8CHkxW17M420dO3J3XWOvYW7dUdSzhYnbWuoY1J1vFIKmst9I0M0pyqe0mBKBxHRhC7ln2aaeEBvTmEe5LppV1r27vw3f+TRuiiMatVdwLRDqMSe2I0QE5RJf16pAJIP0Q3dODkASrrKvEzBVBXFUFieAC9ewbojtWtpEAUjlF+AkqOqttRaXqzuKuGAlFGEIWDWa2QWd+nL0kKxC6RXN/uYt8y2PWx+vO2WvRmEnrZbPDiMFh0KRTLxm6uINjPm0ExIQCEGFRvPCkQ3Y+9/2GooS9gJD3Fc9pb2MkaROEYufWjh2Ep4BeiN4u76tVfHU8c1JtDuB+DAW78XDVzjxupO417qi5Vx5IcWHyLuh0SCzOfgdTZ+nIJfU4chFPZUJoHgZ73BtRVjUlS/RArSmMB2F24W3Mi4Wj2ArGitDcA6SnhOuNoISOIwjH6nA/3bYcr/6U7ifuKGwVTH4X0+3QnEe7GYICYoTDhbjB5607jfjKWwGd3NT1fYoYPb1T3C89z5Ad17D0GvHz1ZhFtNiYpDIAjx1VRf7zsOOW15TojCQfbnr8dgLyCaAAmeGCBKCOIwjEMBghLVl+ia4Qlw9S5ulMIIdrDaoFljwDNNVi2AQZYNhcGXiKblHgae//DJGlv4UrGJPUEYL/ZwodXvcvQqAH4mqTAdxelNaUUVhYCYKmMZ2B0ML2CPO//XykQhRDCk1nq4H8PQMIESLsKvGS7dofKWgslx1u5wAYlx9R19nWKwv3ZbJBVv6NtYrreLKJdIkP8uHRoDPFhAfQJSZbi0M0E+wSz9rq1rM3KICMxiFB/z5xVIwWi6LyqElhyr9q9dOL9qiWD6BolxyHvJwjtDZGDdKcR7sC8A7a+paY5Dr1Gdxr3U5bn2OuEeziVpT4YMHqpKabCpfz9Olmr7c68jd5MSR7GFA+eFCfv5EXn5e6CjM9g0+tSHHa1Nc/Bu1fBjvd1JxHuIvN7dUw6T6Y4doWgKMdeJ9yDfXpp7AjwCdSbRXTYqapTPLXuKW5dfis2W3PTyIVwTTKCKDpP+h92H9nJVDhaQ//DKXpzuKvEdLVbaYmZ5tchGtT9Ms3QswRGQL/p0Hus7iSig4ora9mYWcYnBz+hzlrH0bKjxAfH644lOqHWWsuv/vcrevn0YUr4LVwwIIGIYM+cQizDPaLzGgrEoXpzeILwvuoovRCFI9RVQ/Z6dVvWv3UNo0m1sgDAcNad9d/PXCCjt56m30Xwq49gykO6k4gOsNlsTHv+e3771g7iA9W/y9LuwvXtL9rPnqI9rMv9jkc+3stb647ojqSNFIii83J3qqOMIHY9+whiUSZYavVmEa7v6Gaoq1SjGREDdadxX6mz4eq3ICSm8fmAcHVe+iAK4VIMBgOjEtRupoH0AWBnwU6dkYQDbC/YDoC1KgEwkp7iuf1JpUAUnVNTAQV71W0pELteSBx4+YO1Fk5m6U4jXF3D9NLJqlWN6Dqps+H+3fDrLyF+vDo34ldSHHqiU9lQfEx3CtFJo+vbXZSXxAIygugOdhSoGXGVpb3x9TIyIqGH3kAaSYEoOic/A2xWNQIRHHPu60XnGI3Qq36a6YkDerMI11eco47Jk/Xm8BRGk5rKO+YW9f2hb/XmEXr8sBD+lgrfzdedRHTC2OQwADKPqeOeoj3UWmVmjyuzjwJbKhMZkxSGn7fnTv2XAlF0zqlsMHpD9FAZgegu4f3UsVAKRNFJV7wMDx2CwVfqTuJZUi4ADGoH6FJpb+Fx7DuYRqfpzSE6JTUmhAAfE6WlPQj0CqbaUs2Bk/LvsqsqqCjgWNkxwIClMp70vuG6I2klu5iKzkn7GQy8FCpP6k7iOUbdBP1nQLzsficcINBz11hoE9gLYofD8W1qFHH4tboTie5SfgIK9qjbCRP0ZhGd4mUyMjKhJz8cLCTCJ4UefgWcqjqlO5boIPv0UmqiwerHRA9efwgygigcwcsHgqWHV7fpMwWG/RLC+uhOIlyZ9OzSq+80dTy4Um8O0b2y16ljxED5cMYNjElS00sTau9l2c+XkR4n7WpcVZ2tjtiABGrKEwj28yItLlR3JK1kBFEIITzRf2apNXEXPwNRg3Wn8TwpF8Lqv6oRRKtF2lx4iqwf1TFxot4cwiEuHhJNRLAv4/uE6Y4iOmlm0kxmJs3EXFzOkcIqTEbPXjYlBaLouLyf4NM7IGkSzHxadxrPcug71Qtx2LXgF6I7jXA1VcWQs15tMOXn2Z+SatN7jNr5OX4c1JTL77GnaCgQZaTJHfSPCqZ/VHDD91abFZvNhkk+8HFZMaGBxIQG6o6hnRSIouOOb1M9EOUNZvf7/G4oOQaxI2Qtomi/rLWqOAxLgdDeutN4JpMX3L5adwrRnaqK1cZEIAWiG3r8h8f5Nudbnp/6PONjxuuOI9qhqq4KL6MXXkYpi+xkDaLoOHP9gl7pf9j9wutbXchOpqIjzux/KIToHkZv+PnrMPkhCInVnUY4iLm4krfXHeFAQRGlNaXsKtilO5Jop4/2f8T4d9O58D+P8O4G6TENUiCKzrAXiNFD9ebwRPYCce8XkLlGrWESoq2kQHQello48iNUlehOIrqaT4Da+fuCx3UnEQ6082gxf/j8J3LMatOhXYVSILqaHQU7qLZWklNYx8bMIt1xnIIUiKJjrBbI3a1uywhi98pYArs/Vrf3fQVvXgoL09R5Ic6lvBDy6n93kybpzSLgjRmwaJbarEYI4XLsO5nmFajd3HcV7sImu0S7FHuLC0tlgse3t7CTAlF0zIlDUFsOXv7Qq5/uNJ4jYwl8eKNay3KmErM6L0WiOJcjP6hj5GAIitCbRZzuhSftLtxbTQWseQ6y1kmLGTcTFuhD38ggLFWxGDFSWFlIXkWe7liiDSxWC8szl5NbnovNBpbKOCakhOuO5RSkQBQd0zC9NE22Z+8uVgssewRo7s1F/bllc2W6qWidfw/oNwMGXKw7iQBIuUAdD34jhYM7O7oJvpkHi2/RnUR0gTFJPcHmQ6hXIgA7C3ZqTiTOZWXWSmYsnsGDqx8EwGCAkH4vsK90reZkzkEKRNExNotq1B4zXHcSz5G1FkqOt3KBTe1smiX/cROt6DMVfvUhXPgH3UkEqH54Xv5Qehzy9+hOI7rKme0tDJ7dX80d2aeZWirjAdhduFtnHHEOK7NWMmfVnCYjvTbTKeasmsPKLJnRIQWi6Jhhv4T7tsHFf9GdxHOUtXHKSluvE0Lo5+0HSeep2zLN1H3ZP7iT9hZuyV4gFhbEMSZqLEmhSXoDiRZZrBYWbFyArdnZWMozG5/B4uGzsaRAFJ1jlL9C3SYoyrHXCc9TlAnFR3WnEGfrO00dD32jN4foGnXVaoopqBFj4XZ69/QnOsSP2pJh3Jv6LD/r9zPdkUQLtuZvbXWNqA0buRW5bM3f2o2pnE+H3t2//PLLJCcn4+fnx6hRo1izZk2L1/7www9MnDiR8PBw/P39GThwIH/72986HFg4AUudrJXRITG9vndWS9OTDBASJ59Qi5atfhb+NlgdhfOwF4hZa6GmXG8W4XjHt0FdFQT0gl79dacRXcBgMPCf34xhx5+mMyKhp+44ohUFFQUOvc5dtbtA/OCDD7j//vt57LHH2LZtG5MmTeLiiy8mOzu72esDAwO55557WL16NXv27OHxxx/n8ccf59VXX+10eKHJ/q9gQQJ88TvdSTyL0QQzn6n/5uwisf77mQtk0yDRPJsNMr9Xt2OHa40izhKeAjOehpuXq/WIwr3Ydw6W9YdubVBMCMF+3gCcrDpJbnmu5kSiOREBbdu9u63Xuat2F4jPP/88t9xyC7feeiuDBg1i4cKFxMfH88orrzR7/YgRI7j22msZPHgwSUlJXH/99cyYMaPVUUfh5Mw7oLpEdsvUIXU2XP0WhMQ0Ph8Upc6nztaTSzi/k0egOAeMXqdbKwjnYDDAhLshbqRM23dHRzero0wv9Qiv7XqNyR9M5p87/qk7imjGsF4jMFh6tDgRzmYDQ10PhvUa0b3BnEy7/iWqqalhy5YtTJ8+vdH56dOns3Zt23ZO3LZtG2vXrmXKlCnteWnhTOwtLmKG6c3hqVJnw/274ddfQojaMY2L/yrFoWhd5mp1jBsNPoF6swjhSa55G279BgZfoTuJ6GIvfnOAD9ZWAbCrcJfmNKI5W7KKqTBfCjRdLWX/viL3UrZkndVv2sO0q0AsLCzEYrEQFdV4E4yoqChyc1sfSu/duze+vr6MHj2au+++m1tvvbXFa6urqykpKWn0JZxIQ4E4XGsMj2Y0QfIk6FP/QUu+bKktzsFeICZP1ptDtGzPF/D53WozIeE+TN7QezQER+tOIrrYtuyTHMxRjdYPnjpIRW2F5kTibPmlVdSVplFz4rwmM75tdaFUHbueutI08kur9AR0Eh2ay2I460/UZrM1OXe2NWvWsHnzZv75z3+ycOFC3nvvvRavnT9/PqGhoQ1f8fHxHYkpukJprmqjYDBC1GDdaUTMUHW0F+1CNMdmgyP10/qlQHRe6/8J296RdhdCuKgxyWHY6kLwIQyrzUrGiQzdkcRZIoP9ADB6VQJQWzyEymO/pCLrNsoPPkJdaVqj6zxVuwrEXr16YTKZmowW5ufnNxlVPFtycjJDhgzhtttu44EHHuCJJ55o8dpHH32U4uLihq+cnJz2xBRdxWqB7f9Vt0PiwMtXbx5xepqveafeHMJ5WS2w4z31wY7RG2JH6k4kWtL3QnU8KO0u3MZXj6gN3fL36k4iuoG9H2JdRRwg00yd0djkMKJDfTEFHgCgtngMdSXDsVSkAEYMQEyoH2OTw7Tm1K1dBaKPjw+jRo1ixYoVjc6vWLGC9PS2b61vs9morq5u8X5fX19CQkIafQnNMpbAwjT45kn1fXGO+j5jid5cni4qDTBA6XEoy9edRjgb++/tZ3eq76218I/R8nvrrOztLjJXq955wrVZrbDzA9iySNqXeIihvUPx8TJSWdobkALRGZmMBu6YFojRuwSb1QtLRXLDffa5kH+6LBWT0bN3HG73FNM5c+bw2muv8cYbb7Bnzx4eeOABsrOzueOOOwA1+nfjjTc2XP+Pf/yDL774ggMHDnDgwAH+85//8Oyzz3L99dc77qcQXStjCXx4I5Qcb3y+xKzOy5tNfXyDILyvup0vU1nEGeT31vVED1E7EteWQ/Z63WlEZxXsgcqT4B14ejmAcGu+XiaG9+6BpUotjZIC0Tnl1apZV5aKZLB5N5yPDvXjletHMjMtpqWHegyv9j7gmmuu4cSJE8ybNw+z2UxaWhpLly4lMTERALPZ3KgnotVq5dFHHyUzMxMvLy9SUlJYsGABt99+u+N+CtF1rBZY9gjQ3H7ANsAAy+bCwEuk/54uV7+lNj8I8OzpEOIM8nvrmgwGSLlATQk+9M3pTaiEa8qq3909fqzaqEZ4hNFJPdmYFUdvr/P57bDzsdqsGA3SvsaZrKxfk98/ZDRzbxtPfmkVkcFqWqmnjxzaGWy2ljqBOI+SkhJCQ0MpLi6W6abdLXMNvHnpua/79ZdqV00hhH7ye+u6dn0Mi29R08fv/FF3GtEZH90EP30K5z8OUx7SnUZ0k+/25fPQRzu4dGgsT8yWzfyckbksnzc2Lyc9fgznpwzUHafbtKeeavcIovAwZXmOvU4I0fXk99Z19TkfMKhR4JoK8AnQnUh0hM12egQxse17NAjXN6VfBJsem3bO3f2FPjFBkTw29QbdMZyaFIiidUGt707b7uuE41mtavMg8w74xSLw76E7kdBNfm9dV2A4PLgfgiJ1JxGdUXRYfQBj8oW4UbrTiG5krJ+iWGupZW/RXvIr8rkw8ULNqQSoTTItVhteJpnyey7yJyRal5gOIbGc3tvpbAbV8kI+IdXHaITdn8Dh7yBXFsQL5PfW1Ulx6PrK8iAsBXqPBm/P7qfmqQ6dOsR1S6/j8R8fx2qz6o4jgB8PnmDMv27nji+epbi6WHccpyYFomid0QQzn2nhzvo3nzMXyEYXutl3yDPv0JtDOIeG39vmlpjL763LqK1SU02F60lMh/u2wvWLdScRGmw+UsT1/8zCYPOhrLaMI8VHdEcSwGtrt1EXuJ4fi96Sov0cpEAU55Y6Gybc3fR8SKzaQTN1dvdnEo3FDFfH3J1aYwgnkjobBsxqel5+b13D4lvhmSQ4tkV3EtEZ3v66EwgNevcMoLC0jrrKWAB2Fsq/zbodP1XJ2uPrAEgJGUBPv56aEzk3WYMo2qauSh0HXQapV6i1S4npMgLhLGQEUTSnOEcdJz0IkYPk99aVWGqhrhIOfqPaJAjXUVcNBhOY5C2Wp4oO9SM+zJ/8ygRMAUfYXbibK/peoTuWR/vvhmyMgfsBuCBRdu8+FxlBFG2TqXrGMPQaGHKV2hpf3mQ6j5hh6li4X+18KER1GZys70k77nb5vXU1faep48GVenOI9vvpU3gmEZY9qjuJ0GhMUhiWyt4A7CyQEUSdauqsvLfpCKbAgwCkx8r6+3ORAlGcW1k+FO4DDJA4UXca0ZzgaDU6ZLNC3k+60whn4BsEDx+G334vm564opQL1PHYFqgo0ptFtE/Wj1BTJh/GeDhVICYAcODkAarsM7FEt1v2Uy4n645g9ConwCuAYZHDdEdyelIginPzDoCfvQZTHoGAMN1pREuih4JfD+ltJ04zeUHscN0pREeExkFkKmBTOxQL19HQ//A8vTmEVmOSwrDVhWKrC6bOVsfeor26I3mst9cdwSvwAABjY8bibfTWnMj5yQR5cW6+QTD0F7pTiHO56g3wDQZpziuEe+h7IeRnqHWIaT/XnUa0RWkunDgIGCBhnO40QqOUiEDCAn0pyb2cJy8dw8Cwgbojeaw/XJrK499/yXGbLxNjZSZcW0iBKIS78AvRnUA4i8KD8O7Pof/FcPEC3WlER/WdBmtfUgWizSYf/rgC++hhVBr4yy6JnsxgMHDNmHjqLHFMiE3Az0v6YeoytHcPlvzqaaotf8IirYPaRApE0bqyAtj+rtrcIm6U7jRCiLY4/B2cPAJ5u3UnEZ2RMAH6XgTJk8FSA16+uhOJc2mYXiqbYAh4ZKaMGjoTX5MvyNLgNpE1iKJ1md/Dyj/BF/frTiLa4vO7YeFQyN2lO4nQ6fAqdewzVWcK0VlevnD9xzDxPikOXYW9QEySaWzitK8yv+KZjc9wsuqk7ige5f2N2cxdvJPtR2VvhvaSEUTRuiM/qGOS9IxxCSez4FSW6ocYPUR3GqGDpQ4yV6vbKefrzSKEp7Ba1O6lvfqDyRt6S+9KoZRX1/H8pn+QW5nFhNgJTO49WXckj2Cz2Xjth0wO5pextvohegb48eyUZ+nXs5/uaC5BRhBF6xoKRNmNzSXY+yGad+jNIfQ5vg2qS9SOtjHDdacRjlCWDzveh+pS3UlEczKWwMI0ePMyyPgUzNvhtQvUeeHx7nhnCznmcAB2Fcrsnu6y/nARB/PLCAgo5mTtcbJKsogJjNEdy2VIgShaVmKGEwdQ/Q9lPYVLkAJR2FsiJE+WPmzu4o0Z8OntkLlGdxJxtowl8OGNUHK88fkSszovRaLHG5XYs6Ef4q4CKRC7y9vrjwAwYkA+AMMihhHkE6QxkWuRAlG0LOtHdYwZCv49tEYRbWQvEHN3qylPwvMcqi8QZXqp+0i5QB0PrtSbQzRmtcCyRwBbM3fWn1s2V/5b7OHGJIVhqeoNqBFEm625vy/CkfJKqlj+k1p36Bei+h+mx8pAR3tIgShadqT+02pZf+g6wvuCdwDUlsOJQ7rTiO5ms6kPCcJSZIMad9J3mjoeXKn+PxbOIWtt05HDRmxQcuz0xjXCI41I6IGhJhab1YuSmhKyS7N1R3J7723MxmK1MSYphIyTWwEpENtLCkTRsqOb1VEKRNdhNKn+WyDTTD2RwaD6Ht63FcL66E4jHCVpEhi91QZURYd1pxF2ZW3cGbGt1wm3FODjRVpsT6xVsYCsQ+xqtRYr721URfjkIVWU1ZYR6htKaniq5mSuRQpE0bLbvoObl8sGNa4mfizEjlA76QkhXJ9vECROULdlmqnzCIpy7HXCbY1JCsNSGQ/AwZMHNadxb7UWK9eOTSAtLgSr314AxseMxyRr8ttF2lyIlnn5QMJ43SlEe834f7oTCF2ObVXtTeTDAfeTcqFqX3JwJYy7XXcaAWrztpDYVqaZGtT9ssmbxxudFMbr6yfT23gx94+6XHcctxbg48X90/rzuwv7sSHXmxNVBZwXJwMd7WWwucBq2ZKSEkJDQykuLiYkJER3HCGEcD4lx+H5QeAXCnP2gk+A7kTCkXJ3wz8ngncgPHJEfYAn9MtYAh/e0MwdBnW4+i1Ind2tkYTzOVlew5IdxxmTFEZqrLyPFXq0p56SEUTRvHd/AT0SYPLDECzTY1xSbZVak+blqzuJ6A6HV6ljWIoUh+4oajD8/HXVvkSKQ+fRZyqYfMBS0/h8SCzMXCDFoQCgZ6APv05P0h3D7b2zPovIYF8uGBiJl0lW0XWGFIiiqeJjcOBrMBjhwj/qTiM64uNbIOMz+MUiGHSZ7jSiO9gLRNm91D0ZDDDkKt0pxNmOblI7y4b3g0ufh7J8teYwMV36kIomlh1ZxpeHvuSixIu4vK9MNXWksuo6Fny1l7LqOv576zjq/DII8wtjUNggWX/YAVIgiqaO/KCOMcPVdDXherz9wVqndjKVAtH92WynC0TpfyhE9+l7Ifx+L5zKhriRutMIJ1ZcUcuSn7azpvB7gn2CpUB0sM+2HaOsuo4+vQIZlxzGzE+fIrc8l39O+ycT4ybqjudyZPxVNNXQ/1AW9bqsmGHqKK0uPEP+HrWVvpc/xI/TnUZ0FZsN1v4d3pytZnoI5xDYS4pDcU4lVbUs36qmh280b2Lp4aVsyt2ExWrRnMz12Ww23l6XBcCvxieSVXqE3PJcfIw+jIyS382OkAJRNGUfQZT+h65LCkTPcvg7dUxMlzWn7sxgUFPHM7+HQ9/oTiPKT+hOIFxI757+9AiuAiC/Mo9H1jzCzctvZsbiGazMkvY1nbHpyEn25ZXi523kqlG9WXt8LQAjo0bi7+WvOZ1rkgJRNFZ8FE5mgsEkLS5cWdRgtYa0LA9Kc3WnEV3tUH2BKNNL3V/faeoo/RD1qqmAF0fAGzOhrEB3GuECvsn+hpqe73F274D8inzmrJojRWInvL1ejR5eMTyOUH9vfjz+IwATY2VqaUdJgSgas48exg4HP9mK2WX5BKpNEwDMO/VmEV3vgsfggseh/8W6k4iulnKhOh5aBZY6rVE8WsZnUF2s2ssEhOtOI5ycxWphwcYFgJoIcCYbqmJ8ZuMzMt20A/JLq1i22wzA9eMTqbZUszl3MwATYifojObSpEAUjVnroEeirD90BzLN1HPEjoDJD0GvvrqTiK4WNxL8eqji5Nhm3Wk815Y31XHkjWCUt1KidVvzt5JXkdfi/TZs5FbksjV/azemcg8FpdUMjA5hZEIP0uJC2Za/jSpLFb38e9G/Z3/d8VyW7GIqGhtxvfqy1OpOIjor5QKwWSAqVXcSIYSjGE3qd/unT9Q0U1kK0P3y90LOerUUY8T1utMIF1BQ0bZpyG29Tpw2ODaUL+49j5Iq9b51/fH1AKTHpmM4e7hWtJkUiKJ5Jm/dCURnDb9WfQn39v1fIbwP9JsBvkG604ju0HdafYH4jZpaLLrX1rfUsf9MCI7Wm0W4hDC/Xg69TjQV4qfet9494m4m9Z5EoHeg5kSuTeZFiNMqT4LMfxfCdVSehFVPw8c3Q1Wx7jSiu/S9ELwDIDBC1iF2t7pq2PGeuj3q13qzCJdhqUjCWhvaZIMaO5sNrLWhWCqSujWXq/tql5niysYz3ryN3oyKGsXAsIGaUrkHKRDFacsfg2eSYNu7upMIR7FaofAglOXrTiK6QuZqsFmhV38IjdOdRnSX4Gh4JAt+9SGYZCJQt9r7JVQWQUjc6R1lhTiHwrJaqvMuA2hSJNq/r867jMIyWd7TVocKyrjz3a1MXPBtw/RS4TjyL4s47cgaqC6B4CjdSYSjfHIb7P4Ypv8Z0u/VnUY42uFV6thH2lt4HC8fNeMja61qZxMUpfpgGk26k7m3AZfAz19XG7rJn7Voo8hgP+pK06g6dj2+UV9g8D5jxofVjyrzVdSVphEZ7KcvpIt5d302AOP7hDVML/3blr9RXlvOLwf8kr49ZdO2zpACUSgns+BUNhi9IF42PXAbkfVTLGQnU/ck/Q89V8YSWPaIarNgFxILM5+B1Nn6crk7bz8YcpXuFMLFjE0OIybUj9ziNMpLUzEFZOIVsg2fnpvV1NLSNGJC/RibHKY7qkuoqKnjoy05gGptAWC1Wfns4GcUVRUxI2mGznhuQaaYCqWh/+FI2ejCncQMV0cpEN3PySNwMlPtpJgozYA9SsYS+PDGxsUhQIlZnc9YoieXEKJZJqOBP12mdhQ3YMRSkUJ1/ixsNhMmvzyMvrn86bJUTEbZdbM1FquNdYdOMO+LDEqr6kgI82dyvwgA9hXto6iqiACvAIZHDNcb1A1IgSgUe4Eo/Q/dS/RQdSw8ADXlerMIx7JPL+09BvxCtEYR3chqUSOHNLfbRf25ZXNlwzFHs9TCGzNhzfNQU6E7jXBBM9NieOX6kUSH1k8jtQZQVzYAgEsmmJmZFqMxnfNbttvMec98y7X/Xs/7m9To4cmKWr7OyAVg7fG1AIyNHou37MTfaVIgCrVC+sgadTt5kt4swrGCoyAoGrBB7m7daYQj5e9VR5le6lmy1jYdOWzEBiXH1HXCcfYvh+x1sP5ltRRDiA6YmRbDD49cwHu3jeePl6ZSVzwCgF3Fq7DarJrTOa9lu83c+c5WzMVVjc6XVdVx5ztbWbbb3FAgToidoCOi25ECUcCpLCjOqV9/OE53GuFoMcPUMXen3hzCsS5eAA/8BKN+ozuJ6E5leY69TrTN1jfVcfh1aoMgITrIZDQwISWcm89LZlLcZGwWXwqr8tiat1V3NKdksdp48ouM1uZM8MSX29iar/78JsbJkgtHkAJRgJcfTH0URt8MPtJY1O3YC0Tzdq0xRBcI7S27DnuaoDb+/93W68S5FR+FgyvV7ZHS+1A4zk3p/agtHQLAF4eWak7jnDZmFjUZOTyTDSio20OdtY64oDgSghO6L5wbk3kSQvXUmjpXdwrRVfpdBNggebLuJMJRbDYwyGYGHikxXe1WWmKm+XWIBnV/Ynp3J3Nf295R/UaTJkF4iu40wo1M6tuLSOuFmI/2p+8A2R23OUdPnnvNr8FQQ0+faNJj0zHIv40OIQWiEO4ufqz6Eu7j/evUphkX/hFihupOI7qT0aRaWXx4I2Cg2SJx5gLp0ecoVgtsfVvdltFD4WBGo4HHLrqQOquNGYOjdcdxKjabja9257Lgqz3nvLaudCgLxtzGqOTgbkjmGWSKqacrzYM9X0BFke4kQoi2qKlQ090OrlDTw4XnSZ0NV78FIWftehgSp85LH0THOfQdlBwF/54w6DLdaYQbmpkWw6VDY/E2yVtyu4P5Zdzw+kbuencrJ8prMbUyKGgAYkL9GNcnHF+Tb7dldHcygujp9i+DL+6DhAlw8zLdaURXKS+EY1vVejX7mkThmrLXgaVGFQO9+ulOI3RJnQ0DL1G7lZblqTWHiekycuhoITEw9BoIjgFv+UBGdI06ax1v7H6DFUdW8PrM1wnx8czWReXVdbz47QHe+CGTWosNHy8jd0xJoW9EIL97fzvQeM6EAcBUxuOXDpMekg4mBaKnk/6HnuHHhbD2JRhzK1zynO40ojMOf6eOfc6XdYiezmhq2pqoukx98DdE1jM5RNRg+NmrulMIN2ewGXln92ecrM3h4z1LuXnYL3VH0uLYqUpeW5OJxWrjgoGR/OmyVBLD1eaJPl5Gnvwio9GGNdGhfiSnfsmfdy3EFPQnZibP1BXd7UiB6MlsNikQPUXMcHU079AaQzjAoVXqKP0PxdlqyuEfY1UfRNmoRgiXYTIZ8a4cDV45vJfxuUcViEXlNYQFqtYx/aOCeXjGAFIigpiW2ngn5plpMVyUGs3GzCLyS6uIDPZjZGII53/0B8pqy4gNitUR323JhGdPVnQYSo+DyQd6yyYmbi26fiOT3N1q0wXhmsoKIG+Xup08RW8W4Xx8Aut3LQaWPQpWabzdYTYbfPc05P2kO4nwEDcP+xkAudU/kV1yXHMax7BYbaw7dILPtx9j3aETWKynJ4iWVdfx9NI9TJj/DXvMJQ3nb5+S0qQ4tLP3kLx8eBwTUsLZU/QTpTWlhPiEMDh8cJf/PJ5ERhA92ZE16hg3GnwC9GYRXSs8BbwDobYcCg9A5EDdiURHZH6vjlFDIChCbxbhnM5/HHYtVn1Pd76vGruL9juyBr5/Bta9DA8dAG9/3YmEm7t6xFD+sjUFq+8hXlz3Ic/OuF93pE5ZttvcZEpoTKgff7w0lRqLlaeX7iGvpBqAr3aZGRTT/nWXa4+vBWB8zHhMsv7aoWQE0ZPJ9FLPYTRBdJq6nbtTbxbRcX6hauRwgKyzEC0IioDJD6rb38xT005F+215Ux2HXCXFoegW3iYjE6PUDIDvjrn2poHLdpu5852tTRrcm4uruPPdrfzu/e3klVSTGB7Af24aw5zpAzr0OvYCcWLcxE5nFo1Jgeipzlx/ePYmB8I92XcvlXWIrqvfRfDrJXDB47qTCGc2/k7okQilZvjxBd1pXE9FEexZom6Pkt6Hovv8/rxfYLOZqDEd4397t+qO0yEWq40nv8horkNrIw9M68fy+ydz/sDIDr1OcXUxuwrVkov0WFlv7WgdKhBffvllkpOT8fPzY9SoUaxZs6bFaz/55BMuuugiIiIiCAkJYcKECSxfvrzDgYWDGAxw83K4/GXoPUZ3GtEdpEAUwjN4+cJF89TtH1+E4mN687iaHe+rVjLRQyF2hO40woOkhEcSYxpH7akRfLkjT3ecDtmYWdRk5LA5Y5PD8fPu+LTQDeYNWG1W+oT2ITowusPPI5rX7gLxgw8+4P777+exxx5j27ZtTJo0iYsvvpjs7Oxmr1+9ejUXXXQRS5cuZcuWLZx//vlcdtllbNu2rdPhRSf1TIQRv5LpM54ieQpc8QrMelZ3EtERhQehLF93CuEqUi+HhHQYOAsMMlmozWw22Fo/vVRGD4UGf5mygFnRc7gjfYLuKB2SX3ru4rA917VkYNhA7hp+F9cMuKZTzyOaZ7DZbOcaBW5k3LhxjBw5kldeeaXh3KBBg7jiiiuYP39+m55j8ODBXHPNNfzxj39s0/UlJSWEhoZSXFxMSIhnNg8VQni4966FfUvhshdg1E260whXUFslzd3bK3sDvDEdvAPg93vVul8hRJutO3SCa/+9/pzXvXfbeCakhHdDImHXnnqqXR8r1tTUsGXLFqZPn97o/PTp01m7dm2bnsNqtVJaWkpYWFiL11RXV1NSUtLoSziQzQaf3qF2Z6su051GCHEuljrIrJ/Kb29ZIsS5SHHYfqVmCIyAwVdKcSi0sdls7C3ay9dHvtYdpd1GJ/YkwKflqaMG1G6mY5NbrgOEfu1qc1FYWIjFYiEqqnF/kqioKHJzc9v0HM899xzl5eVcffXVLV4zf/58nnzyyfZEE+1x4iDseA92fwKjb9adRnSnwoNwcCWExKgpaMI1HNsCNaXg3/P0WlIh2upUNqx8AgZeCmk/053GuQ2+AgbMghr58FTos6NgBzd8dQPeBEBlKtMH9dYdqU1q6qz8/qMdVNQ032/ZUH/802WpmIyGZq9piw3mDRRXFzMuZhyhvvJBTlfo0MIEg6Hx/6k2m63Juea89957PPHEE3zwwQdERra8a9Gjjz5KcXFxw1dOTk5HYoqWZK5Wx/ix8gmzp8lcBcsega1v604i2uPwd+qYPEW1LBGiPXa8D7sXw4o/qWmnonVePhAgoxtCn6ERQ/E3hlFLBS+t+0J3nDYpr67jljc38cWO43ibDNxyXjIxoY3fY0aH+vHK9SOZmRbTodewWC1syt3Es5uf5fff/56P9n/kiOiiGe0aQezVqxcmk6nJaGF+fn6TUcWzffDBB9xyyy189NFHTJs2rdVrfX198fX1bU800R7S/9BzxQxXR/N2NdW4DR/sCCdwqL5ATDlfbw7hmibcA1sWQXE2rP8HTPq97kTOKWstxI8Ho2zqI/QyGozMSr6YxYfe5UD5ag4V3EBKRJDuWC06WV7DbxZtYnvOKfy9TfzrhlFM7h/B/80axMbMIvJLq4gMVtNKOzpyuDJrJQs2LiCv4vTuru9kvENSSBLTEluvK0T7teu/gj4+PowaNYoVK1Y0Or9ixQrS01vuQfLee+9x00038d///pdLLrmkY0mFY5zZ/zBJ+h96nMhUtaNheQGUtm1auNCsqgSOblK3+0iBKDrAJwAu/JO6veZ5KHXN7fO71PHt8J+L4R9j1JpfITS7NvVKALyC9vD6jxma07SuxmKloLSaHgHe/Pe2cUzuHwGAyWhgQko4lw+PY0JKeKeKwzmr5jQqDgGKqoqYs2oOK7NWdvpnEI21+2OyOXPm8Nprr/HGG2+wZ88eHnjgAbKzs7njjjsANT30xhtvbLj+vffe48Ybb+S5555j/Pjx5ObmkpubS3FxseN+CtF2hfuhPB+8/KD3aN1pRHfzCYBeA9Tt3J16s4i2yfoRbBbomaxa0wjREUN+AbEj1dq67/6sO43zsbe2iBkGpnZNrhKiS/Tv2Z8Y/yQMRgtfHFxGebXzfnARFeLHO7eO4+M7JjAioadDn9titbBg4wJsNG26YD/3zMZnsFibX/coOqbdBeI111zDwoULmTdvHsOHD2f16tUsXbqUxET1xsVsNjfqifivf/2Luro67r77bmJiYhq+/n97dx4dVX33cfw9mewkGTBkIcgStihEWVQQhBoUEEURd8UC1q0oLjwU69Y+KFZcahWVUwWrIHgUbAuPSG0UFSgIAiWiCLiwGSQJCVtCiBAyc58/bhIICWSGzMyd5fM6Z05mbn753d8FvuR+72978MEHvXcV4r4d1SshtultbqYs4adV9SqYhV9b2w5xz5m94ZrpcPHvrW6JBLOICBhavRVV3hwo2mBtewJJ5SH4pnouUy/tfSiBwWazcUPWcACq4tex4KtdFreorvU7D7Dom4Laz5ktm9EpNdHr58krzqvXc3g8A4OiiiLyivO8fu5wdlqPye69917uvffeBr83a9asOp+XLl16OqcQXykvhogoDS8NZ626wzfzlCAGi2bJ0P1mq1shoaDtheb2DRsXmENNb5hpdYsCw8YF5irBLTL1u1ECyrCOw3hl/StExBQza9X33NqnrVuLQvra8h9L+O2cdVRWuUhJiKFPB9/tZ1hSUeLVcuIejaMINwMfg4vGg7PS6paIVWr20dMQU5HwM+hJSO4MF2kUT6111cNLe43WAjUSUDISMnjtkrd4bG4pV3RvQ6XTRUyktStZL/qmgP+Zt56jToMBnVuS3dq320ykxKd4tZy4x2YYRv1BvQGmrKwMh8NBaWkpSUlJVjdHJLhVHjKHl6VlQ0zgroomwNbPzb+rLpdDSherWyMSOlxOc9XSgjxY/L9gs8OEzZB46hXZRazg7nZyvjZn1Q7+d+FGDAOGnduKF2/s7vOE1elyctk/L6O4orjBeYg2bKTFp5F7XS52bQN1Sp7kU3pUFk40gVcAopuZQ82UHAa+9e+aN6/fzLO6JRKKXC7Y86PVrfC/TQthaja8faUZXwD2KNi52tp2iZyEzWbDZbioOFphyfkNw2Dqpz/wxw/M5PDXF7bllZt7+qU3c+nOpTzQ6wHATAaPV/P54d4PKzn0MiWI4eSfd8Dr/c1eCREJbC4XbFtqvu+QY2VLJBQd3A1/u9R8VeyzujX+s2khvD8aygrqHq86bB7ftNCadomcwodbP+Syf1zGo5+/yPy8n/1+/sWbdjP1U/Nh0oOXduapq7NPe8sKTyzatoj/Wfo/vLPpHaYMmEJqfGqd76fFp/FizovaB9EHNAcxXBgGbP8PVOyFqHirWyNWK/oW8mZDfDLkPGx1a6QhxZvM/Sqj4s1Vh0W8qVlLcy764VJY+ixc8bzVLfI9lxNyH4YGhqnVyn0EzhoG6o2QABJjj6GoooiC0lxWrL2AYee28knvndNlNLix/eCuadx0fhu6tU5idN/2Xj9vQz7L/4w/rPgDBgbnppzLsMxhXN7+cvKK8yipKCElPoVeqb3Uc+gjShDDRfHmY8lhRi+rWyNWO1gEa6abi1UoQQxM25aYX9tdpC1pxPsi7HDZFJg9HNb+DS64A1KyrG6Vb/20sn7PYR0GlO0yy2VqNVMJHBe3uZiEqATKKeWA6wf+vSGbET1be/Ucud8W8uSHmygsPVx7LD0phieGd2Nodiueve4cv82DXLlrJQ8tewin4WR4x+E81ucxbDYbdpudC9Iv8Esbwp2GmIaLHSvMr236QGS0tW0R69Xshbh3Cxwpt7YtUpfLCduXw/r3zM8dLra2PRK6OlwMWVeA4YRP/mB1a3yv/OR7qZ1WORE/ibHHMLjdYAAik9bz9qodXq0/99tC7nknr05yCFBUdoR73skj99tCvyWH63av48ElD3LUdZTB7QbzZL8nibApXfE3/YmHix3Lza/t+1vbDgkMCamQmAEYsPtbq1sjNY5fPKN4o3nsi1c0L0p8Z/BTEBEJP34CP3xiPpzY8A/za6gtbFZ1xL1yCVrJVALPsA7DAIhK2sBXO/ew4edSr9TrdBk8+eGmkw68NoAnP9yE0+X7TQ827tnIuM/Gcdh5mP6t+/PcgOeIjNBgRysoQQwHLtexHsTMX1nbFgkcNb2IhV9b2w4xnWzxjEMlWjxDfKdlJ+h9t/l+7i3mw4l/3mF+nZodGv/uqiph6XPwYWN7P9ogqTW06+eXZol44vy080mNT8Vm/4XIhO+Y7aVexDXb99XrOTxRYelh1mz3/WJWcVFxNItqxvlp5/NSzktE2aN8fk5pmBLEcFCyGX7ZVz3/sKfVrZFA0aq7+bXwG2vbIY0snlF9LPeR0OvRkcCQXv2wyFVV93hZYfA/nDAMmDMClk4B11Fo1QOwVb+OV/156LNaoEYCkj3CzhWZVwDmMNMPvi5g/6HKJte7c797W2cUHzx1EukNHRwdmHP5HKZdOo3YyFifn09OTgliOLBFwDk3Qterzb2eROC4BFE9iJbzZPEMEW9yOeHzySf5ZhMeTtTMpbV6uKrNBj1GQnxLuO5NuHsp3DgbklrVLZeUYR7vOtySZoq446qOV3FjlxtpY7+czqkJFJU1PWlr0yLOrXKpib5J2ArLC1ldeGwP0oyEDJpFNfPJucR9GtgbylxO84ayfDf0Gq1hM1JXTa/B4VLz34qemltHi2eIVdx9OPHVO5B9LcQkNl7npoVmj/jx9SZlwNDn/JOAbV0CGNDxEvNzj1vNrSviWpifuw43P9f8fkxIM38/6v9ACXBdWnThj33/yIHulTjiojxeOMYwDFZu3ctbK7bz0s09SIqNondmMskJ0ewtb7g30gakO8wtL7xtzy97uGvxXRSUF/DqJa9yUeuLvH4OOT1KEEOV1b+gJfA5zoSJP5oL1oi13F0UQ4tniLe5+9DhwwfMV3xLuP1jc+4iQPF3cKQMWmSaeytu/tAclnricOma4aq+7KX7ZT98/AdY/465CNe4LyHWYfYi1iSHNSLs2spCglbzeM9WozcMg8+/K+bVz7ewfucBAOas+olxAzthj7Dx9Ihs7nknzyx73M/VpJ+TruqKPcK7q5iWHinl7sV381PZT2Q0y6Bj845erV+aRgliKKpZ7MKKX9ASPGw2JYeBIiYJbHZzu4EG2cwHPBoFIN7m7kOHmCQzEazYA4nH/cya6fDft8z3Uc3AWcnJ59LafLMRvWHApg/go4fgULF5nrOvNGNKJATl7c5j0bZF3Jp1O9//HEGLZjH1NrcHcLkMcjcW8ernW9hcWAZATGQEt/RuyzXH7aM4NLsVr/26V/19EB2xTLqqK0OzTxiS3UTlleWMXTyWH/f/SEpcCn8b8jfSm6V79RzSNEoQQ02ji1346Be0iJyeHz6Bf/zmuOTQRoPPcLV4hvhCu37mw4eyQhr+vVH9cGL8Bqg8BAd+qjvMNDoBHG2g9Gc4eqiRk1UPV13zBvQaBdEezDM6fsrE8UNCywrho4nw3SKzXMsuMHwatO3jft0iQeblvJfJK85j7spDVJTUXZ2+VXVSN/CsVIa/+gXf7z4IQLNoO7/u2447+3cgJTGmXp1Ds1sxuGs6a7bvazDZ9JZfqn7hvs/v49u939IipgVvDHmDNkltvHoOaTqbYRi+39ikicrKynA4HJSWlpKUlGR1cwLb9uXm8uSNGbNIw2sEdm+ExZPMG62R86xuTfhZPd18YGO4oP0Ac67U55NPGBre2kwO1esvvlI76gQafDjhzqiTqiOwegYs/oN757RFQMrZ0LontD4PMnqZC2c1NKfqZFMmLn4EPvkjHCk193LsPwF+NREi69/8ioSSv//wdyavmozzcCsqttfdvqUmgl77dS8+3ribzzbv5raLMvlNv/a0aObZ0NSmcrqc5BXnUVJRQkp8Cuckn8P4ZeP5YtcXJEQl8OZlb9I1uatf2xTOPMmn1IMYarTYhXjCHgNbFkNkLDirwK7/EvymsgLWzDCTw56jYNiLEBkN596oxTPEv7oON5PABuetu/lwIjIGMnq4d77YFnB4PxRvNF9fvQOxzeHhHcfK7PgCmqVA8Wb4+xganDLx4YPQ5kJwHoGrp0FaN/fOLxLkLm0zmMkrn8YeW0hETBGuI8eGZ1aPFePJDzcx/95+TL66G4mx7q1gf2JC1yu1F/bT/P3z6U+f8uyaZ9ldcex+My0+jdaJrYmLjOO1Qa8pOQxg4Xc3eLJhKqFCi12IJ87oYA4RqyyHPT9Amv6z9pvoeBj5PvzwMVx4z7GeEy2eIVbwxsqengxXLd8Nu/Jg1zooyDMTxON7DxeMhdJ86g+5rlF9G3zgJ3jwa/PhikiY+L7AydHyLKISNxGZtJ7KkqF1vm9gbm6/Y08FfTsmu1XnyRK6R3o/wqB2gzxq36c/fcqEpRMwTojd4opiiiuKeej8h+iR2sOjOsW/wmsfxE0LYWq2OQTzn3eYX6dmB/cmwCdq16+R5M9mDlnTYhcCEBEB6eeY74u+sbYt4eBAvrkvXI3kjtD33oaH1Yn4W83DiXOuN796+vA0wm6ulA00uhF9Uoa5kMygSTD6A7jx7WNFjx42vx8RTcPJYQ0DDhbAztWnKCMSeooPHqaqtCcAUY6vANdJy7mjJqE7PjkEM6GbsHQCn/70qdttc7qcPLvm2XrJIVB7bPam2Tit2htV3BI+PYjhsrJnhN0cltPgEFItdiENaNUd8ldB4dfQ/WarWxO6fv4vvHeLuQpkXAvodKnVLRLxPm8MV42KhTs+hq/nwYK7Gy+vKRMSZlITY6kqPwvDGUNEVClRLVZiOBMwqhJxVmRS0//jzub27iR0f/ryTyTHJXPEeYTDVYf5peoXfqn6hdT4VPq37m+WNQz+9OWf2HlwZ71E88Q6iyqKyCvO44L0C07j6sUfgitB3LESsgd7ntyE28qeI9+H926G8mIoLzp23JNf0BI+0s81vxaqB9FnNi4wh8xVHYa0bEjJsrpFIr7jrY3okzLcK6cpExJmemeeQaukRA4cPhN7/DZi0xfVfs911MGR3VeREnH+STe3P1x1mIJDBRSWF/LFri9OmdAB7D28l9H/Hl3veM6ZObUJos1mY8GWBRx1HXXrGkoqStwqJ9YIrgTxvRshpbV7m71X7IN922DvVti2pO6TzHqql97+aWVozP1xtIaxy0N/vqV4R6vu5teib8DlMoedincYBqx4ET6bbH7ufBlc/2bdbQJEQpE35tK6O6dRUyYkzNgjbFzbfx9vb91a73u2yFJiW7/DJW0SWVUYQ0F5AcmxyVzazhy1UnG0gj7ver4NTIuYFiTHJRMXGUdsZCxxkXF0a1l3Yah7e9xLQXkBf//h743WlxKf4nEbxH+CK0GE44aEvm0uC79vGySmg+NM8/vblsL7Y+DwAc/r3rYseJOoz56C9Gzods2xY1rsQtyRkgVxyWYc5c0258U1NQ70cAKqKs1VFr9+1/x84b0w5E/h9+cgcrpq5jS+PxrtDypyjNPl5OOi6Q1OX685tvDn11j4s/n+otYX1SaI8VHxOGIcHHUeJSMhg2aRzfh6z9eNnvMvOX9pdEjonefcidPl5D8//4fiiuIGh63asJEWn0av1F6NnlOsE3wJYs0/tvePW/Z6yJ+g3/3m+/jkY8lhYoZ5sxsVBz9+0njVy/8M62aaQ2O6DofMi8F+iqWBA+UmePUMWP6Cua9UajdI6eL/Nkjw+v7fEBVjLje/qHo/paQM93rqG3KyPctOt75Ad7L/BzZ9YCaHNjtc/hz0vsvqlooEH2/MaRQJMXnFeY0OCwU4M+FMOrXoRPeU7nWO516bS7OoZthsNpwuJ5f98zKvJXT2CDuP9H6ECUsnYMNWp05b9YOdh3s/fNrbZ4h/BGGCWKP6H1xiBnVWS2vZBe5ZCS0yzWXkwbyBm5p9imEqQFQ8RESZC0jkvW2+xm+A5m0bLh8oN8GbF8G/f2++H/i4kkPxjLcXbwqXxaBqnOr/gXOuh4KvoOMl0NmzJcJF5DjemtMoEiLcnb93f8/7uaLDFfWOJ0Qn1L73RUI3qN0gXsx5scFtMx7u/bDH22aI/9kMwzjVGtIBoaysDIfDQekjiSTFHJcMXv1X6Hmre5XU3rhCg8NUbpwNWZfDjuWw+UPzhm/kvGPF/v4b82vX4eA8CvPvpn6yeVxd/rgJ3rnW3Kqj6jCcdxtcOVXL5Yv7ah+cnGx+rs0cdnrPKrMXPqqR1dDcqa9mDzQrb+y81fN/smTY3/8PiIhIWFlbtJbbP7690XJvXfaW2yuFNrQPYnp8epMSOqfLSV5xHiUVJaTEp9ArtZd6Di1Um0+VlpKUlHTKssGdII5Z5Nkcuwaf9rdufJjK4VJ4viO4tTKTn26C926FNwdDxV5z4Yub3wV7EHcIi/9tX24+YHBHyyy4b82xz9Mvhr1bICLSfNmjwFUFh9x4qulp3HqTt3r+gyUZFhGRkOPusNDc63I9SsiU0IU2TxLEIM0oTnPlstMdphKTBLd/DJs/MPdlOn7riHr8sCLqL/vhnevM5LBVD7j+LSWH4jlP9g6LOOHfV2W5+fL1eb3pdIe/GoZ5rZFxx+Lsv2+F18rIIiISMHw1z88eYdfehAIEZYLYxJXLTmdlT5sNzjzPfKWdA/PvbPxnfHkTHOMwE93NC809D2MSGv8ZkRO5u3fYr+dD2751j4350Bza7Kwye9ZdVbDzv/DRhMbr+88LcOQgdBthbhjvD+7shfqvCVCQB4f2mD2hh0qgvPpr1S9w1xJoXT1JP3+1e+fVBt4iIuIDmucnvhR8CaLVK5clprtXznD5rg0REXDZ0/Crif67wZbQ4+4eYx1y6j+MaWgD67RsWPHCqReDAijZDIvGm4srXfq/x1YgPpWmzhvc/p/Ge/wOlcCKl05e5NCeY+9b94RvG9/nSRt4i4iIrwxqN4iBbQZqWKh4XXAliLe8D9mDrZ3T0+hNdbUFY2HnGrj495CQ2vTzGgZ8PReyr4XIGPOYkkNpCm/vMeZOfVe9bM7p/Xquua1Gi8xjRcoK4WAhZPSsu9hSU+YNbvnMTPp2utnj1/ESaNsPmrU047ZZivlKSIXoZsfK9RkLq6ZpA28REbGUhoWKLwTXIjVuTKr0i1OuiGpA+rlQ9I15KKoZ9B1n9pLENqHtX7wCi/8I7QfA6A+08IV4z+ku3tTU+gq/gZSzIDLa/LxkCix7ztyqpvvNcM6N5jYRja0UevZV5oI5O1ebr+63HEvMvs+F925yv+2eLKDjzsrIWsVUREREAkDormIaKAkiNH4TvP0/8OkTsGud+b34ZBj2ojnvylPf/hP+Ub2c8ZCnod99TW29SF3e2vqhKfV98kdY84Y536+GPRqclSf/mchYc/GYw/uPHfvVQ3DJH8z3v+w3Y7X1+fDu9Y33+Hm66qi3k2sRERERH1CC6C+N3QQbhrmQzGeTzR6O2/4F7ft7do4dX8CcEeZNcp+x5o2n9jqUUHW4zIyZr+eae5K6KzIWMnpBm96QdQW07VO/jK96/LydXIuIiIh4mRLEQOOsgi2fQtbQY8f+O9Psaeg8+FjCd+KNZtwZMOtyc87WWVeaN7C68ZRw8eXr1SuPNmLg43DR+GNDVU9FPX4iIiIShsJgH8QgY4+smxwe3A0fPwZHK6Bdfxj0hLk4x4k3rjY7GE44szdc9zclhxJe0rq5V65tX/eSQzj9vVBFREREwoQSRCtExsAFd8Lq6fDTCnjzJHvVGE7z63m3QVSc35onEhDc3YbD05VCT2cvVBEREZEwEWF1A8JSXHMY8hQ8kAc9RjZS2AZLnjaHn4qEk5ptM4DaeYK1TmMbDhERERFplBJEKznOhO6NJYgGlO0yh8SJhJuuw825t0mt6h5PytA2EiIiIiI+oCGmVivf7d1yIqFG8wZFRERE/EYJotUS0rxbTiQUad6giIiIiF9oiKnVahbiqDfHqobNXIbf04U4REREREREPKQE0WpaiENERERERAKEEsRAoIU4REREREQkAGgOYqDQQhwiIiIiImIxJYiBRAtxiIiIiIiIhTTEVERERERERAAliCIiIiIiIlJNCaKIiIiIiIgAShBFRERERESkmhJEERERERERAU4zQfzrX/9KZmYmsbGxnHfeeSxfvvykZQsLCxk5ciRZWVlEREQwfvz4022riIiIiIiI+JDHCeK8efMYP348jz/+OF999RUDBgzg8ssvJz8/v8HyR44cISUlhccff5zu3bs3ucEiIiIiIiLiGzbDMAxPfqBPnz706tWL1157rfbY2WefzYgRI3jmmWdO+bM5OTn06NGDqVOnetTIsrIyHA4HpaWlJCUlefSzIiIiIiIi4cyTfMqjHsTKykrWrVvHkCFD6hwfMmQIK1eu9LylJ3HkyBHKysrqvERERERERMS3PEoQ9+zZg9PpJC0trc7xtLQ0ioqKvNaoZ555BofDUftq06aN1+oWERERERGRhkWezg/ZbLY6nw3DqHesKR599FEmTJhQ+7m0tJS2bduqJ1FERERERMRDNXmUO7MLPUoQW7Zsid1ur9dbWFxcXK9XsSliYmKIiYmp/bxnzx4A9SSKiIiIiIicpoMHD+JwOE5ZxqMEMTo6mvPOO4/FixdzzTXX1B5fvHgxV1999em10g1nnHEGAPn5+Y1ekLsuuOAC1q5dG3B1qb7Aqi+Q2xbo9ZWVldGmTRt27tzptcWl9Her+vxdV7jV5+24DeRrVX2BU5fqaxrFrepzh2EYnHfeeWRkZDRa1uMhphMmTGDUqFGcf/759O3blxkzZpCfn8/YsWMBc3jorl27mD17du3PrF+/HoDy8nJKSkpYv3490dHRdO3a1a1zRkSYUyUdDofXbjTtdntA1qX6Aqu+QG5bMNQHkJSUFJB/H4H+Z6f6AqOucKwPvBe3gX6tqi8w6lJ93qG4VX2NiY6Ors2rTsXjBPGmm25i7969TJ48mcLCQrKzs/noo49o164dAIWFhfX2ROzZs2ft+3Xr1vHuu+/Srl07duzY4enpvWbcuHEBWZfqC6z6ArltwVCft+nvVvX5u65wrM+bAv1aVV9g1KX6AkugX6vq831dHu+DaAXtgygSfBS3IsFHcSsSfBS34m0ebXNhlZiYGCZNmlRn4RoRCWyKW5Hgo7gVCT6KW/G2oOhBFBEREREREd8Lih5ECT82m43/+7//s7oZIuIBxa1I8FHcigQfX8etEkTxi9tuu40RI0ZY3QwR8YDiViT4KG5Fgk+gxa0SRBEREREREQGUIIoF2rdvz9SpU+sc69GjB0888YQl7RGRxiluRYKP4lYk+ARC3FqeIAZal6qINE5xKxJ8FLciwUdxK1awPEEUERERERGRwBBQCWJubi79+/enefPmJCcnc+WVV7J169ba7+/YsQObzcb8+fMZOHAg8fHxdO/enVWrVlnYapHwprgVCT6KW5Hgo7gVfwmoBPHQoUNMmDCBtWvX8tlnnxEREcE111yDy+WqU+7xxx9n4sSJrF+/ni5dunDLLbdQVVVlUavFUxEREZy4/ebRo0ctao00leI2PChuQ4viNjwobkOL4jY8BELcRvr1bI247rrr6nx+8803SU1NZdOmTWRnZ9cenzhxIsOGDQPgySefpFu3bmzZsoWzzjrLr+2V05OSkkJhYWHt57KyMrZv325hi6QpFLfhQXEbWhS34UFxG1oUt+EhEOI2oHoQt27dysiRI+nQoQNJSUlkZmYCkJ+fX6fcueeeW/u+VatWABQXF/uvodIkl1xyCXPmzGH58uV8++23jBkzBrvdbnWz5DQpbsOD4ja0KG7Dg+I2tChuw0MgxG1A9SBeddVVtGnThjfeeIOMjAxcLhfZ2dlUVlbWKRcVFVX73mazAdTrXpfA4nK5iIw0/7k9+uijbNu2jSuvvBKHw8FTTz2lJ5pBTHEbuhS3oUtxG7oUt6FLcRu6Ai1uAyZB3Lt3L5s3b2b69OkMGDAAgBUrVljcKvGW4uJiOnXqBEBSUhLz5s2r8/0xY8bU+Xzi2GsJTIrb0Ka4DU2K29CmuA1NitvQFmhxGzAJYosWLUhOTmbGjBm0atWK/Px8HnnkEaubJU20f/9+Vq5cydKlSxk7dqzVzREvU9yGJsVtaFPchibFbWhT3IamQI1byxPEmi7ViIgI5s6dywMPPEB2djZZWVm88sor5OTkWN1EaYLbb7+dtWvX8rvf/Y6rr77a6uaIlyhuQ5viNjQpbkOb4jY0KW5DW6DGrc2weGzB0KFD6dSpE9OmTbOyGSLiAcWtSPBR3IoEH8WtWMGyVUz379/Pv/71L5YuXcqgQYOsaoaIeEBxKxJ8FLciwUdxK1aybIhpoHapisjJKW5Fgo/iViT4KG7FSpYPMRUREREREZHAYNkQUxEREREREQksShBFREREREQE8FOC+Mwzz3DBBReQmJhIamoqI0aM4Pvvv69TxjAMnnjiCTIyMoiLiyMnJ4eNGzfWKTNjxgxycnJISkrCZrNx4MCBeufKy8tj8ODBNG/enOTkZO6++27Ky8t9eXkiIckbcbtv3z7uv/9+srKyiI+Pp23btjzwwAOUlpbWqWf//v2MGjUKh8OBw+Fg1KhRDca3iJyaP+P26aefpl+/fsTHx9O8eXN/XJ5ISPJX3O7YsYM77riDzMxM4uLi6NixI5MmTaKystJv1yrBwS8J4rJlyxg3bhxffvklixcvpqqqiiFDhnDo0KHaMs8//zwvvvgi06ZNY+3ataSnpzN48GAOHjxYW6aiooKhQ4fy2GOPNXiegoICBg0aRKdOnVi9ejW5ubls3LiR2267zdeXKBJyvBG3BQUFFBQU8MILL7BhwwZmzZpFbm4ud9xxR51zjRw5kvXr15Obm0tubi7r169n1KhRfr1ekVDgz7itrKzkhhtu4J577vHrNYqEGn/F7XfffYfL5WL69Ols3LiRl156iddff/2k99USxgwLFBcXG4CxbNkywzAMw+VyGenp6cazzz5bW+bw4cOGw+EwXn/99Xo/v2TJEgMw9u/fX+f49OnTjdTUVMPpdNYe++qrrwzA+PHHH31zMSJhoqlxW+P99983oqOjjaNHjxqGYRibNm0yAOPLL7+sLbNq1SoDML777jsfXY1IePBV3B5v5syZhsPh8HrbRcKVP+K2xvPPP29kZmZ6r/ESEiyZg1jT3X3GGWcAsH37doqKihgyZEhtmZiYGC6++GJWrlzpdr1HjhwhOjqaiIhjlxUXFwfAihUrvNF0kbDlrbgtLS0lKSmJyEhzl51Vq1bhcDjo06dPbZkLL7wQh8PhUfyLSH2+ilsR8R1/xm1paWnteURq+D1BNAyDCRMm0L9/f7KzswEoKioCIC0trU7ZtLS02u+545JLLqGoqIg///nPVFZWsn///tpu88LCQi9dgUj48Vbc7t27l6eeeorf/va3tceKiopITU2tVzY1NdWj+BeRunwZtyLiG/6M261bt/Lqq68yduxYL7VeQoXfE8T77ruPb775hvfee6/e92w2W53PhmHUO3Yq3bp14+233+Yvf/kL8fHxpKen06FDB9LS0rDb7U1uu0i48kbclpWVMWzYMLp27cqkSZNOWcep6hER9/g6bkXE+/wVtwUFBQwdOpQbbriBO++80zuNl5Dh1wTx/vvvZ+HChSxZsoQzzzyz9nh6ejpAvacgxcXF9Z6WNGbkyJEUFRWxa9cu9u7dyxNPPEFJSQmZmZlNvwCRMOSNuD148CBDhw4lISGBBQsWEBUVVaee3bt31ztvSUmJx/EvIiZfx62IeJ+/4ragoICBAwfSt29fZsyY4YMrkWDnlwTRMAzuu+8+5s+fz+eff14vWcvMzCQ9PZ3FixfXHqusrGTZsmX069fvtM6ZlpZGQkIC8+bNIzY2lsGDBzfpGkTCjbfitqysjCFDhhAdHc3ChQuJjY2tU0/fvn0pLS1lzZo1tcdWr15NaWnpace/SLjyV9yKiPf4M2537dpFTk4OvXr1YubMmXXW7RCp4ZfZ5uPGjePdd9/lgw8+IDExsfYJiMPhIC4uDpvNxvjx45kyZQqdO3emc+fOTJkyhfj4eEaOHFlbT1FREUVFRWzZsgWADRs2kJiYSNu2bWsn2E6bNo1+/fqRkJDA4sWLeeihh3j22We1R5OIh7wRtwcPHmTIkCFUVFTwzjvvUFZWRllZGQApKSnY7XbOPvtshg4dyl133cX06dMBuPvuu7nyyivJysqy5uJFgpS/4hYgPz+fffv2kZ+fj9PpZP369QB06tSJhIQE/1+8SJDyV9wWFBSQk5ND27ZteeGFFygpKaltQ00vpQjgn20ugAZfM2fOrC3jcrmMSZMmGenp6UZMTIzxq1/9ytiwYUOdeiZNmtRoPaNGjTLOOOMMIzo62jj33HON2bNn++MSRUKON+K2Zkuahl7bt2+vLbd3717j1ltvNRITE43ExETj1ltvrbeNjYg0zp9xO2bMmAbLLFmyxH8XLBIC/BW3M2fOPGkZkePZDMMwvJVsioiIiIiISPDSwGMREREREREBlCCKiIiIiIhINSWIIiIiIiIiAihBFBERERERkWpKEEVERERERARQgigiIiIiIiLVlCCKiIiIiIgIoARRRETklJYuXYrNZuPAgQNWN0VERMTnbIZhGFY3QkREJFDk5OTQo0cPpk6dCkBlZSX79u0jLS0Nm81mbeNERER8LNLqBoiIiASy6Oho0tPTrW6GiIiIX2iIqYiISLXbbruNZcuW8fLLL2Oz2bDZbMyaNavOENNZs2bRvHlzFi1aRFZWFvHx8Vx//fUcOnSIt99+m/bt29OiRQvuv/9+nE5nbd2VlZX8/ve/p3Xr1jRr1ow+ffqwdOlSay5URETkJNSDKCIiUu3ll1/mhx9+IDs7m8mTJwOwcePGeuUqKip45ZVXmDt3LgcPHuTaa6/l2muvpXnz5nz00Uds27aN6667jv79+3PTTTcB8Jvf/IYdO3Ywd+5cMjIyWLBgAUOHDmXDhg107tzZr9cpIiJyMkoQRUREqjkcDqKjo4mPj68dVvrdd9/VK3f06FFee+01OnbsCMD111/PnDlz2L17NwkJCXTt2pWBAweyZMkSbrrpJrZu3cp7773Hzz//TEZGBgATJ04kNzeXmTNnMmXKFP9dpIiIyCkoQRQREfFQfHx8bXIIkJaWRvv27UlISKhzrLi4GIC8vDwMw6BLly516jly5AjJycn+abSIiIgblCCKiIh4KCoqqs5nm83W4DGXywWAy+XCbrezbt067HZ7nXLHJ5UiIiJWU4IoIiJynOjo6DqLy3hDz549cTqdFBcXM2DAAK/WLSIi4k1axVREROQ47du3Z/Xq1ezYsYM9e/bU9gI2RZcuXbj11lsZPXo08+fPZ/v27axdu5bnnnuOjz76yAutFhER8Q4liCIiIseZOHEidrudrl27kpKSQn5+vlfqnTlzJqNHj+Z3v/sdWVlZDB8+nNWrV9OmTRuv1C8iIuINNsMwDKsbISIiIiIiItZTD6KIiIiIiIgAShBFRERERESkmhJEERERERERAZQgioiIiIiISDUliCIiIiIiIgIoQRQREREREZFqShBFREREREQEUIIoIiIiIiIi1ZQgioiIiIiICKAEUURERERERKopQRQRERERERFACaKIiIiIiIhU+39Z34NqLWSLtwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pred = best_model.predict(start=len(train_data), end=(len(ndvi) - 1))\n", + "\n", + "plt.figure(figsize=(11, 5))\n", + "pred.plot(label=\"forecast\", linestyle=\"dashed\", marker=\"o\")\n", + "train_data.plot(label=\"training data\", linestyle=\"dashed\", marker=\"o\")\n", + "test_data.plot(label=\"test data\", linestyle=\"dashed\", marker=\"o\")\n", + "plt.legend(loc=\"upper left\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot the result of our forecast\n", + "\n", + "To forecast NDVI into the future, we'll run a model on the entire time series so we can include the latest observations. We can see that the forecast uncertainty, expressed as the 95% confidence interval, increases with time." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "final_model = SARIMAX(ndvi, order=(p, d, q), easonal_order=(P, D, Q, s)).fit(disp=-1)\n", + "\n", + "yhat = final_model.get_forecast(forecast_length);" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAHUCAYAAACnLXx0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJN0lEQVR4nO3dd3hUZdrH8e/MpHcIJBBq6IQqVVBYsSBYsK66uCCKuriuLra17a5tV9R312XXVdaKvWBHRRRFEQWkKxiK0gIkIdQU0jPz/vGQQEghZWbOlN/nunLN5OTMmXsgJzP3eZ7nvm0ul8uFiIiIiIiISCPYrQ5ARERERERE/I+SSREREREREWk0JZMiIiIiIiLSaEomRUREREREpNGUTIqIiIiIiEijKZkUERERERGRRlMyKSIiIiIiIo2mZFJEREREREQaTcmkiIiIiIiINJqSSREREREREWk0jyeTTz31FKmpqURERDB48GAWL15c7/6vvfYaAwYMICoqirZt23L11Vezf/9+T4cpIiIiIiIijeDRZPKtt95i+vTp3HvvvaxZs4ZRo0Yxfvx4MjIyat3/22+/ZfLkyUydOpWffvqJt99+mxUrVnDttdd6MkwRERERERFpJJvL5XJ56uDDhw9n0KBBzJo1q2pb7969ufDCC5kxY0aN/f/xj38wa9YstmzZUrXtiSee4LHHHmPnzp0Nek6n00lmZiaxsbHYbLbmvwgREREREZEg4nK5yM/PJyUlBbu97vHHEE8FUFpayqpVq7jrrruqbR87dixLliyp9TEjR47k3nvvZd68eYwfP56cnBzeeecdzj333Dqfp6SkhJKSkqrvd+/eTVpamntehIiIiIiISJDauXMn7du3r/PnHksm9+3bR0VFBcnJydW2Jycnk52dXetjRo4cyWuvvcbll19OcXEx5eXlTJgwgSeeeKLO55kxYwYPPPBAje07d+4kLi6ueS9CREREREQkyOTl5dGhQwdiY2Pr3c9jyWSl46eaulyuOqefpqenc/PNN/PXv/6Vs88+m6ysLO644w6mTZvG888/X+tj7r77bm699daq7ytfeFxcnJJJERERERGRJjrRskGPJZOtWrXC4XDUGIXMycmpMVpZacaMGZxyyinccccdAPTv35/o6GhGjRrF3/72N9q2bVvjMeHh4YSHh7v/BYiIiIiIiEidPFbNNSwsjMGDB7NgwYJq2xcsWMDIkSNrfUxhYWGNBZ4OhwMwI5oiIiIiIiLiGzw6zfXWW29l0qRJDBkyhBEjRvDMM8+QkZHBtGnTADNFdffu3bz88ssAnH/++Vx33XXMmjWraprr9OnTGTZsGCkpKW6NraKigrKyMrceUwJfaGho1QUOEREREZFg5tFk8vLLL2f//v08+OCDZGVl0bdvX+bNm0enTp0AyMrKqtZzcsqUKeTn5/Pf//6X2267jYSEBE4//XQeffRRt8XkcrnIzs7m0KFDbjumBJeEhATatGmj1jMiIiIiEtQ82mfSCnl5ecTHx5Obm1trAZ6srCwOHTpEUlISUVFRSgikwVwuF4WFheTk5JCQkFDrGl4REREREX93opyqkserufqSioqKqkQyMTHR6nDED0VGRgKmkFRSUpKmvIqIiIhI0PJYAR5fVLlGMioqyuJIxJ9V/v5oza2IiIiIBLOgSiYraWqrNId+f0REREREgjSZFBERERERkeZRMikiIiIiIiKNpmSyiSqcLpZu2c+Ha3ezdMt+KpwBVRS3UbKzsznrrLOIjo4mISHB6nBERERERMQLlEw2wfz1WZz66EJ+8+wy/vjmWn7z7DJOfXQh89dneew5p0yZgs1m45FHHqm2/YMPPqi2hu/rr7/GZrNhs9mw2+3Ex8dz0kkn8ac//YmsrKPx9evXj2uvvbbW53rjjTcIDQ1lz549Vcerry/nv/71L7Kysli7di2bN29u3gu10Pbt27HZbKxdu9bqUEREREREfJ6SyUaavz6LG15dTVZucbXt2bnF3PDqao8mlBERETz66KMcPHjwhPtu2rSJzMxMVqxYwZ133skXX3xB3759WbduHQBTp05lzpw5FBYW1njsCy+8wHnnnUdycnKD4tqyZQuDBw+me/fuJCUlNe5FHaHKqCIiIiIi/kXJ5BGFpeV1fhWXVQBmausDH6VT24TWym33f5RebcprXcdsijPPPJM2bdowY8aME+6blJREmzZt6NGjB1dccQXfffcdrVu35oYbbgBg0qRJlJSU8Pbbb1d7XEZGBgsXLmTq1KkNiqlz5868++67vPzyy9hsNqZMmVJ1nAsuuICYmBji4uK47LLL2LNnT9Xj7r//fgYOHMgLL7xAly5dCA8Px+VykZuby/XXX09SUhJxcXGcfvrp/PDDD9Wec+7cuQwZMoSIiAhatWrFxRdfXPWzV199lSFDhhAbG0ubNm2YOHEiOTk5VT8/ePAgV155Ja1btyYyMpLu3bsze/ZsAFJTUwE46aSTsNlsnHbaaQ36NxARERERCUYhVgfgK9L++lmdPxvTszWzrx7G8m0HaoxIHsuFGaFcvu0AI7omAnDqo19x4HBpjX23P3Juo2N0OBw8/PDDTJw4kZtvvpn27ds3+LGRkZFMmzaNW265hZycHJKSkrjggguYPXs2V111VdV+s2fPJjk5mfHjxzfouCtWrGDy5MnExcXx73//m8jISFwuFxdeeCHR0dEsWrSI8vJyfv/733P55Zfz9ddfVz32l19+Yc6cObz77rs4HA4Azj33XFq2bMm8efOIj4/n6aef5owzzmDz5s20bNmSTz75hIsvvph7772XV155hdLSUj755JOqY5aWlvLQQw/Rs2dPcnJyuOWWW5gyZQrz5s0D4C9/+Qvp6el8+umntGrVil9++YWioiIAli9fzrBhw/jiiy/o06cPYWFhDf73FREREZHGSc/MI8Rhw2G3EWK3EeKwm1u7jRC7vepnoQ47Drtas/kiJZONkJNfdyLZlP2a4qKLLmLgwIHcd999PP/88416bK9evQCzNjApKYlrrrmGc845h61bt9KlSxdcLhcvvvgiU6ZMqUruTqR169aEh4cTGRlJmzZtAFiwYAE//vgj27Zto0OHDgC88sor9OnThxUrVjB06FDAJH6vvPIKrVu3BmDhwoWsW7eOnJwcwsPDAfjHP/7BBx98wDvvvMP111/P3//+d6644goeeOCBqhgGDBhQdf+aa66put+lSxf+85//MGzYMAoKCoiJiSEjI4OTTjqJIUOGAGZk9djXApCYmFj1WkRERETEMyqcrgYXsbTZOJJY2nDYjySdlcmm3Y7DYSPMYScitGGfYcU9lEwekf7g2XX+zH6kwE1SbESDjnXsft/eOaZ5gdXi0Ucf5fTTT+e2225r1ONcLnOyVhbsGTt2LO3bt2f27Nk89NBDLFy4kO3bt3P11Vc3K74NGzbQoUOHqkQSIC0tjYSEBDZs2FCVTHbq1KkqgQNYtWoVBQUFJCYmVjteUVERW7ZsAWDt2rVcd911dT73mjVruP/++1m7di0HDhzA6XQCZtptWloaN9xwA5dccgmrV69m7NixXHjhhYwcObJZr1dEREREPMvlgvIKF+UVLsBZ536dW0URGxHqvcCCnNZMHhEVFlLnV+UVjmGpLWkbH0Fdg+w2oG18BMNSW57wuM0xevRozj77bO65555GPW7Dhg3A0dE4u93OlClTeOmll3A6ncyePZvRo0fTvXv3ZsXncrmqVZita3t0dHS1nzudTtq2bcvatWurfW3atIk77rgDMNN163L48GHGjh1LTEwMr776KitWrOD9998HzCgowPjx49mxYwfTp08nMzOTM844g9tvv71Zr1dEREREfMOug0WUV9SdbIp7KZlsBIfdxn3npwHUSCgrv7/v/DSvzOl+5JFH+Oijj1iyZEmD9i8qKuKZZ55h9OjR1UYDr776anbt2sV7773He++91+DCO/VJS0sjIyODnTt3Vm1LT08nNzeX3r171/m4QYMGkZ2dTUhICN26dav21apVKwD69+/Pl19+WevjN27cyL59+3jkkUcYNWoUvXr1qlZ8p1Lr1q2ZMmUKr776KjNnzuSZZ54BqFojWVFR0eTXLiIiIiLWKa9wsetgkdVhBA0lk400rm9bZv12EG3iq095bRMfwazfDmJc37ZeiaNfv35ceeWVPPHEE7X+PCcnh+zsbH7++WfefPNNTjnlFPbt28esWbOq7Zeamsrpp5/O9ddfT2hoKJdeemmzYzvzzDPp378/V155JatXr2b58uVMnjyZX/3qV1VrFet63IgRI7jwwgv57LPP2L59O0uWLOHPf/4zK1euBOC+++7jjTfe4L777mPDhg2sW7eOxx57DICOHTsSFhbGE088wdatW5k7dy4PPfRQtef461//yocffsgvv/zCTz/9xMcff1yV4CYlJREZGcn8+fPZs2cPubm5zf63EBERERHvyi8uZ39BidVhBAUlk00wrm9bvr3zdN647mT+fcVA3rjuZL6983SvJZKVHnrooap1kMfr2bMnKSkpDB48mEceeYQzzzyT9evXk5aWVmPfqVOncvDgQa644gqioqKaHZfNZuODDz6gRYsWjB49mjPPPJMuXbrw1ltvnfBx8+bNY/To0VxzzTVVbU22b99e1fPytNNO4+2332bu3LkMHDiQ008/ne+//x4wI44vvvgib7/9NmlpaTzyyCP84x//qPYcYWFh3H333fTv35/Ro0fjcDh48803AQgJCeE///kPTz/9NCkpKVxwwQXN/rcQEREREe/Lyi2uau8nnmNz1ZWN+Km8vDzi4+PJzc0lLi6u2s+Ki4vZtm0bqampREQ0rJiOyPH0eyQiIiLSfOt2eXYWWGSYna6tY2qt5SH1qy+nOpZGJkVEREREJOAUlTrJzvNcyz5RMikiIiIiIgFqX34pBSXlVocRsJRMioiIiIhIwNp5oFDtQjxEyaSIiIiIiASs8goXuw+pXYgnKJkUEREREZGAlldUzoHDpVaHEXCUTIqIiIiISMDLPFRESbnahbiTkkkREREREQl4LhfsPFBUZ592aTwlkyIiIiIiEhSKSivYk1didRgBQ8mkiIiIiIgEjb35JRxWuxC3UDLZVM4K2LYY1r1jbp2afy0iIiIi4g92Hiykwqnprs0VuMnk9iWeS/DS58LMvvDSefDuVHM7s6/Z7iFTpkzBZrPxyCOPVNv+wQcfYLPZAPj666+x2WzYbDbsdjvx8fGcdNJJ/OlPfyIrK6vqMf369ePaa6+t9XneeOMNQkND2bNnT9XxDh065LHXJSIiIiLibWXlLjLVLqTZAjeZfOMyzyR46XNhzmTIy6y+PS/LbPdgQhkREcGjjz7KwYMH691v06ZNZGZmsmLFCu68806++OIL+vbty7p16wCYOnUqc+bMobCwsMZjX3jhBc477zySk5M98hpERERERHzBocIyDqpdSLMEbjIJjUvwSg/X/VVWbPZxVsD8O4HahsSPbJt/Z/UR0bqO2QRnnnkmbdq0YcaMGfXul5SURJs2bejRowdXXHEF3333Ha1bt+aGG24AYNKkSZSUlPD2229Xe1xGRgYLFy5k6tSpTYpPRERERMSfZOaqXUhzhFgdgGe5ABvMvwt6nVv/rg+n1P2z7mPhyrdhx5KaI5LHP19eptkvdZTZNLMfFO6vuev9uScKvgaHw8HDDz/MxIkTufnmm2nfvn2DHhcZGcm0adO45ZZbyMnJISkpiQsuuIDZs2dz1VVXVe03e/ZskpOTGT9+fKNjExERERHxN04n7DpYRJdW0VVLx6ThAntkEjAJ3m6T4DVXwR737tcEF110EQMHDuS+++5r1ON69eoFwPbt2wG45ppr+Oabb9i6dSsALpeLF198kSlTpuBwONwas4iIiIiIryosqWBvvtqFNEWAj0we40QJ3j31jDjajiRXMQ1cR3jsftPXNewxjfDoo49y+umnc9tttzX4MZXNWSuvuIwdO5b27dsze/ZsHnroIRYuXMj27du5+uqr3R6viIiIiIgvy8kvISYihKiw4EmP3CEIRiaPOFEiGBZd91dohNmn00iISwHqGgK3QVw7s9+JjtsMo0eP5uyzz+aee+5p8GM2bNgAQOfOnQGw2+1MmTKFl156CafTyezZsxk9ejTdu3dvVmwiIiIiIv7G5YKdB4rULqSRgiCZrCXBayq7A8Y9evS4xz8PwLhHzH4e9sgjj/DRRx+xZMmJp+8WFRXxzDPPMHr0aFq3bl21/eqrr2bXrl289957vPfeeyq8IyIiIiJBq7TcqXYhjRQEySTuTfDSJsBlL0Nc2+rb41LM9rQJ7nmeE+jXrx9XXnklTzzxRI2f5eTkkJ2dzc8//8ybb77JKaecwr59+5g1a1a1/VJTUzn99NO5/vrrCQ0N5dJLL/VK7CIiIiIivuhQYRmHCtUupKECfFKwDS553v0JXtoEUx12xxKzFjMm2Yx8emFE8lgPPfQQc+bMqbG9Z8+e2Gw2YmJi6NKlC2PHjuXWW2+lTZs2NfadOnUqX375Jddffz1RUVHeCFtERKRuzgrL319F5BhBeE7uPlREVFgIYSHBMe7WHDZXZWWWAJGXl0d8fDy593ciznUQfvMm9DStLoqLi9m2bRupqalERERYHKn4K/0eiYh4SPpc06/52DZccSlmiYmXZv6IyDE8fE6u29X4VnneEhXuoGvrGKvDsExVTpWbS1xcXJ37BW663ecCc5s+19o4REREApmzArYthnXvmFtnE5t/p8+FOZNr9nPOyzLb9X4u4l0ePCcrnC6WbtnPos17WbfrkE8WvSksqSAnv9jqMHxe4E5zTbsQwm3QT+sARUREPMJdoxbOCnMcavtA6QJsMP8us8QkwKfXifgED56T89dn8cBH6WTlHk3UEmPCuH5UF0Z2bdWssN0tJ6+EmHC1C6lP4I5Mth8M58+EzqdaHYmIiEjgcceoRXkJ5O6GNa/WPE41LsjbbdZtiYjn7VjikXNy/vosbnh1dbVEEmB/QSkzPt3Iki37mhCs57hcqLrrCSjNFhERkcY54agF8PF0KDoARQehcD/0ngAdhpmfbfkK3votlBY07nkL9jQjaBFpsIaea404JyucLh74KL3WvxqVnl28leGpiTjsdfV0976iUid5xWXERYRaHYpPCuxk0umEXcth82dw+p+rNgdYzSHxMv3+iEjQO+GoBSaB/OiPR7+PTTmaTIZFH00kbQ4Ij4XiQyd+3pjkJoUrIo3U0HOtEefk8m0HaoxIHm9fQSnpmbn0a5/Q4ON6Q05eiZLJOgR2MumqgNcvN29Q3c4gtMMIAAoLC4mMjLQ2NvFbhYWFAISG6o+KiASpho5GtOkHyf0gqiW0HVB9+02rzfaIBHA5YWZfM0W21nELm1mL2WmkG4IXkRPqNNKcc3VeNGr8OdnQYjYHCssafExvKSqt0OhkHQI7mXSEQs9z4IfXIX0ujs6nkpCQQE5ODgBRUVHYbL4zjC6+zeVyUVhYSE5ODgkJCTgcKgIhIkGqoaMRZ8+A1FE1t4dGQmLXo9/bHKZoz5zJgI1aE8pxj6j4joi32B0w9mF4Z0otPzzy2bmR52RSbMPaqbWM8s2ETaOTtQvsZBJMNbkfXocNH8G4R2jTpg1AVUIp0lgJCQlVv0ciIkHJA6MWpE2Ay16uWR0W4JQ/qs+kiLcVHzxy57gLPHEpJpFs5Dk5LLUlbeMjyM4trnPdZKuYMNJS4psSrccVlVaQX1xGrBLKagI/mewyBsJiID8Tdq/C1mEobdu2JSkpibIy3xtGF98WGhqqEUkREbsDxv4d3rm6lh82bdQCMB9Oe51r1mQW7IFN82D9u5D9Y7NDFpFG6n0BZK+HpN7Qupc5J2OSzUWiJswScNht3Hd+Gje8urqu+QdcN6qLTxXfOV5OfomSyeMEfjIZGgHdx8JP78GGD6HDUAAcDoeSAhERkaaqKDW3NrtZ81ipiaMWVeyOo1Nj2w+B9e/BloWw7xdo1a15MYtIw0UnwnmPu/WQ4/q2ZdZvB9XoMwkwqlsrn+szebzCkgoKSsqJCQ/8FKqhguNfIm3CkWTyIzjrIdA6SRERkaZzuWDpk+b+aXdDxxHNHrWoVYvO0ONs2DwfVj4P42a457giUrfiPFNh2UOfl8f1bctZaW1Yvu0Aq3YcZNfBQt5csZPl2w+wv6CExJhwjzyvu+zJKyamdYzVYfgMu9UBeEW3syAkAsqK1aNKRESkuXYsMVNPQyJgyFQzktjvUnPr7iI5Q681t2teg9LD7j22iFTncsEbV8CrF8PB7R57GofdxoiuifyqR2smDutI77ZxlJQ7+eynbI89p7tUjk6KERwjk+ExMO1baNkV7MGRP4uIiHjMsqfM7YArzFQ4T+p6BiT3hXaDoLTQ9KgUEc/46T3Y8R2ERJoqy15gs9m4flQXdh0sZHSP1l55zubK0ehkleBIJgFadbc6AhEREf+Xl2kK4wAMv8Hzz2e3w+8W62KwiKeVHobP/2Luj7oVEjp47am7JcXQLcl/krPDJRUcLiknWmsng2Sa67GcFebKpoiIiDReXApctxDOehCSennnOZVIinje4schbzckdISRN1kWRlFpBdv2+f6U9pz8EqtD8AnB9dd5+bPwz55HiwaIiIhI46WcZHo/etvu1bBytvefVyTQHdgKS/5j7p/9MIRGWhLG1r0F/O7Vlfztk3RKy50nfoCFCorLKSzV2sngSiZDwuHwXtMiRERERBqnwsIPTjkb4Nkx8OmfoGCvdXGIBKLP/mza/XQ5DXqdZ1kYKQmROOw2cvJL+HDtbsviaKg9eRqdDK5ksue5ZjFx9jo4sM3qaERERPyHswL+dwrMvQkO7/P+8yf1hnaDzQfeNS97//lFAlXRQdi3CewhMP4xS1voRYQ6uGpEZwDeXrWLg4dLLYulITQ6GWzJZHQidD7F3N8w19pYRERE/MmmebB3o+nZHBplTQxDrzO3K2eb5FZEmi+yBdywFCa9D617Wh0No3u0pmdyLEVlFbzy/Q6rwzmhnCAfnQyuZBKg9wRzm65kUkREpMGWHmkHMuQaCLMomexzEUS2hNydsHm+NTGIBKKQMEgdbXUUANhtNq49NRWAL9L3sHVvgcUR1S+/uJyi0uC9uBWEyeT5gA12r4Rc35+LLSIiYrnMNZCxxEyDG3qtdXGERsCgSeb+iuesi0MkEOTvMReJKsqsjqSGXm3jGN29FS7guW+34XK5rA6pXnvyiq0OwTLBl0zGtoEOw839DR9ZG4uIiIg/WPY/c9vnYtMaxEpDrgFssGUh7PvF2lhE/NmXD8Bnd8MHXugX2wRXjehMWIidFlFhlPh4ZddgHp0Mzk6bQ66GjsN9ZjhfRETEZ+Vnw/p3zf2TfeBDZ4vO0H0s7FkPuRnQqpvVEYn4n10rYe1r5v6w31kbSx2S4iJ45reDSYwJtzqUBsnJL6ZTYrTVYXhdcCaTA66wOgIRERH/sOI5cJZBxxHQbpDV0RgXPGmKhjiC82OMSLM4nTDvDnN/wEToMNTaeOrhL4kkQF5ROcVlFUSEOqwOxav0V1hERETqNux6s1YyxUcSSYCY1lZHIOK/fngdMldDWCyceb/V0TRITl4xry/PYMrIziREhVkdTp1y8kromGhRgTKLeHzN5FNPPUVqaioREREMHjyYxYsX17t/SUkJ9957L506dSI8PJyuXbvywgsvuD+w8lL4eQEsfdL9xxYREQkUMUlw2l3QY6zVkdRUUWbey328OIeIzyjOhS/uN/dPuxNiky0Np6H+sWAzX27M4fXlGVaHUq/cojKKy4Jr7aRHk8m33nqL6dOnc++997JmzRpGjRrF+PHjycio+xfhsssu48svv+T5559n06ZNvPHGG/Tq1cv9wR3KgNcuhQV/Nc1aRURExH9UlMOTw8x7+c7lVkcj4h8WPQaH90Jid59dK1mbySd3AuCzn7LZvu+wxdHUL9j6Tno0mXz88ceZOnUq1157Lb1792bmzJl06NCBWbNm1br//PnzWbRoEfPmzePMM8+kc+fODBs2jJEjR7o/uFbdICkNnOWw6VP3H19ERMSf/fIlvHge/PyF1ZHUzhECHY98PljxrLWxiPiLgVdC51Ew7hHTW9JP9G0Xz8iuiThd8Px3vt0qJNhGJz2WTJaWlrJq1SrGjq0+LWbs2LEsWbKk1sfMnTuXIUOG8Nhjj9GuXTt69OjB7bffTlFRUZ3PU1JSQl5eXrWvBus9wdymz234Y0RERILBsqdg+2L4xUeTSYChU83tTx9AQY6loYj4heQ0uOoj6H6m1ZE02tUjUwmx21i78xArtvv2rMK9+cEzOumxZHLfvn1UVFSQnFx9LnZycjLZ2dm1Pmbr1q18++23rF+/nvfff5+ZM2fyzjvvcOONN9b5PDNmzCA+Pr7qq0OHDg0PMu1IMrllIZTkN/xxIiIigWzvpiNJpA2G+/BUuHaDoN1gU2129ctWRyPiu8qKj9632ayLoxnaxEdwwUDT5/aF77ZRVuG7vScPFQbP6KTHC/DYjvuFdblcNbZVcjqd2Gw2XnvtNYYNG8Y555zD448/zosvvljn6OTdd99Nbm5u1dfOnTsbHlxSGrTsChUlsPmzhj9OREQkkC07shyl17nQMtXaWE5k6HXmduVss45SRKorK4ZZI2Hen6C4ETP4fNBlQzqQEBnK7kNFfJ6+x+pw6hUso5MeSyZbtWqFw+GoMQqZk5NTY7SyUtu2bWnXrh3x8fFV23r37o3L5WLXrl21PiY8PJy4uLhqXw1msx0dndygqa4iIiIUHoAf3jT3T/69tbE0RJ+LICoR8nbB5vlWRyPie5Y+AQe2mM+6No+PI3lUVFgIU0Z25vKhHTi9Z5LV4dQrt6iMkvLAH5302G9UWFgYgwcPZsGCBdW2L1iwoM6COqeccgqZmZkUFBRUbdu8eTN2u5327dt7JtDKdZMHtqm0uIiIyKrZUF4EbfpDJw8UwHO30Ag4aZK5v/1ba2MR8TW5u2Dx4+b+WQ9BeIy18bjBGb2T+e3wTkSGOawOpV4uV3BUdvXo5Ylbb72V5557jhdeeIENGzZwyy23kJGRwbRp0wAzRXXy5MlV+0+cOJHExESuvvpq0tPT+eabb7jjjju45ppriIyM9EyQKSfB77+H333jt3PIRURE3KK8FJYfqYw64kb/eV8cPg2uXwTjH7E6EhHfsuCvUFYIHUdAv0utjsbtnC4XBcW+O709GEYnQzx58Msvv5z9+/fz4IMPkpWVRd++fZk3bx6dOpleMVlZWdV6TsbExLBgwQJuuukmhgwZQmJiIpdddhl/+9vfPBekzQZJHuhjKSIi4m9sNjjzAVg3x0wf9Rdxbc2XSLBzVsCOJVCwBwr2wvp3zdTW8Y/5z8WhBtq27zD/WfgzCZGh3Hd+H6vDqZXLZdZOtm8RZXUoHmNz+XKjlibIy8sjPj6e3Nzcxq2fBCgvAZvD9K4SEd907BtlTLKZhmf37akuIuJFhQcgNNJ8iQST9Lkw/07Iy6y+vevpMOl9a2I6gXW7cpv82MxDRdz4+mrKnS4eOL8Pgzq1cGNk7mOzQY/kWMJC/Gu9akNzKv96VZ706V3wWFfY+pXVkYhIXdLnwsy+8NJ58O5Uczuzr3rFiojx1cPweG/48S2rIxHxrvS5MGdyzUQSYMtXAfk+mZIQybn9zIyE577bRoXTN8fHXC7IyS8+8Y5+SslkpYpSKM2H9A+tjkREalPXG2VeltkegG+UIl41/25Y+qR/tw4Ij4XyYljxnIrqSfBwVpgRSer5nZ9/l9kvwFwxtCOxESHsPFDIvPVZrNt1iEWb97Ju1yGfSi4PFZZRWu67fTGbQ8lkpcoWIRs/UZ8qEV9T7xvlkW0B+kYp4hUHt8P3/4PP7jHVH/3VwCshJAKy18HO5VZHI+IdO5bUPiJZxQV5u81+ASYmIoQrh3UE4NlvtnLPB+v5x+ebuOeD9Ux9eQVLtuyzOELD5YK9BYFZ2VXJZKVOp0JkSyg6ADu+szoaETlWEL9RinjF8mfB5YQuYyA5zepomi6q5dGKlSuetTYWEW8p2OPe/fxMfGQYUPNy8/6CUmZ8utFnEsqDh0spqwi80Uklk5UcIdDrHHN/g6bLifiUIH+jFPGoknxY/bK5f/LvrY3FHYZea25/+sBUsxQJdDHJ7t3PiyJCm5eKVDhdPPfd1nr3eXbxVp+Y8lpZ2TXQKJk8Vu8LzO2Gj8EZeFcORPyWI7Rh+/ngG6WIz1vzGpTkQWJ36Ham1dE0X8pJ0G4IOMtg9UtWRyPieZ1GQlwKUFfrDxvEtTP7+ZjYiAa+v9chPTOX/QWl9e6zr6CU9MymV411pwMBODqpZPJYXX4F4XFQkA27tNZCxHLOCjP97oMbT7Cj775Rivg0ZwV8P8vcP3ka2APkY8Gw68ztmldViEcCn90B4x6l9roCRxLMcY/4ZButmIjmteM7UFjm1v08LRBHJ9VQ8Vgh4WaKjz0E4jtYHY2IFOyBBfdB2WFokQoHt2HeGI99w/TtN0oRn7Z5vim+E5EAA35jdTTuk3ahWWc98MqAa9QuUqte55rZOccv94hLMe+PlYUmfUx0mAO7vekTAltGNWxks6H7ecOBw6W0jg0n1BEYF++UTB5vzN1WRyAS3MpLzIUdMG+CYx80l/KGXGOqLddoyOyCQVf57BuliE9L6AhpF5gprmHRVkfjPqERMOpWq6MQ8Z6NH5tEMjweLnnOTF2PSTYzdnz4QqvNZiM2PJTcoqaNHKalxJMYE1bvVNdWMWGkpcQ3NUS3qxydTEmItDoUt7C5XIE1/yMvL4/4+Hhyc3OJi4uzOhwRaSiXCzZ8ZFp8XDjLTDuvjbPCVG0t2AO7Vph2BtGt4eY1pseciDSeyxXYI3hOZ+BM4RU5nssFz50Ju1fC6Dvg9D9bHVGjHDxcyq6DRU1+/JIt+5jx6cY6f373+F6M7Nqqycf3BJsNuiXFEBHqu4l+Q3Mq/WWtTUk+rH8X1r1jdSQiweHgDnjjCpgzybT4WPKfuve1OyB1lCn/P/Zv0LIrHN4L39XzGBGpX6Amkhnfw0sT4PN7rY5ExHMK90PRQXCEw7DrrY6m0WKbuW5yZNdW3D2+F4kxYdW2R4TafTKRBJP/Z+cWWx2GWyiZrM3mz+Cda+Crh7VwX8STKsrg23/Bk8PN2i17qLmqevmrDXu8IxTOvM/cX/pfyMvyXKwigcBZAdsWw/Ln4c0rYe9mqyPyrJJ82LbIVKwtPWx1NCKeEd0K/rACrl0AMUlWR9NoIQ47kWHNG6Eb2bUVz08eysMX9uXSQe0BcNhsDO3c0h0hekR+cTn5xb5RGKg5tGayNt3Hmqs7B7ZAzgb/buAsYqVjp6Qev3Zj53KYezPs3WC+73QqnPc4tO7ZuOfoPQHaDzMVmL9+GCY84d7XIBIo0ufWXHP88+dwyfOBu+a46+lHi3d99bBpG+IH68hEGs3ugLYDrI6iyeIiQigqrWjWMRx2G/3aJ5CWEs9Xm3LYf7iU5dsOcEo33xuZrJSVW0xMeAg2P54dopHJ2kTEmTcggA1zrY1FxF+lz4WZfeGl8+DdqeZ2Zl+zHSB3l0kkoxLNGskpHzc+kQQzPW/s38z9Na+aC0AiUl36XJgz+bjiVUBFqdmeHqDvdXY7dDzZ3F/639r/Fon4s+3fQpn/T5dsbr/JYznsNk7vZUZov9iw5wR7W6ukzMmBw/X3yfR1SibrUnmVVm82Io1X1wfXvKyjH1z7XARnz4A/rISBE5u3ZqvjcOh9vplRkL2uebGLBBpnhRmRrLUH3RHz7zL7BZr0ufDDmzW3H/u3SMRf5WXCyxfCzH5QkGN1NM0SGeYgxOG+0bnKZHLNzkPkNbFSrLfsySuhwum/y+qUTNal53jTbzLnJ9i/xepoRPxHvR9cj2ybfxe4nDDi9xDlpvUMZ8+Am1ZB/8vcczyRQLFjSc0LO9W4TOGrHUu8FpJXNPRvUSAm0RIcvv8fOMsgsatfrpU8Xky4+1bftW8Rxe9P68pTEwcRF+k7PSZrU+F0kZPvv6PLSibrEtkCUkeb++kfWhuLiD+x6oNrQgeIb+feY4oEguObmDd3P38RrEm0BIfiPFg529w/5Y/WxuImcW6c6gowvm9bv+nluL+glJJy/7ywpWSyPr2PTHXd/p1pE7Jtsa5gipyIL3xw3bEUtiz03PFF/ElMsnv38xe+8LdIxFNWvQgledCqB3Q/2+po3CImIsRjXYpcPt6dwZ9bhaiaa31CI82b65YvzBdAXAqMezRwK9+JNJfVH1zXvwfvXA0JHc16zJBwzzyPiL/oNNK8d+VlUfuUT5v5eaeR3o7Ms6z+WyTiKeWlsGyWuT/yZlNoKgA47DaiwhwcLnHfwM3mPfm8vWonybERXDuqi9uO6wl5ReUUlJS7dbqvNwTGb58npM+F96fVvGKpRfsi9av84EpdlxdtENfOcx9ce4yD2LZwKANWPOeZ5xDxJ3aHuQgK1Dwvj3w/7pHAa5Vh9d8iEU9Z/w7kZ0JMm4CrE+DOqq4ABSXlLNt6gIUbcyircLr12J6QdajI6hAaTclkbbRoX6Tpqj641jECAp794BoWBWPuNfcXPQZFBz3zPCL+JG0CXPYyxLWtvj0uxWwPxNk29SbRRwRiEi2BL3OtuT15WsDNvomNcO+o3ID2CSRGh5FfUs7ybQfcemxPKPbDViFKJmujRfsizZM2AS590RSyOpa3PrgOnAhJaVB8CBY/7tnnEvEH+36B8Fi4+Ue46mO45HlzO31dYCaSlepKogEueDKwX7sErnMegxuWwJBrrI7E7SJCHYSGuG/h5LE9J7/c6B/ro7Nzi/2qVYh/Tcr1Fi3aF2m+vheZD2o7lphzJSbZTCfzxiiA3QFnPQivXQrfPw3DrjNrKEWC1bInYeULMOx35oNoMEmbAL3OPfq36KuH4cAWzVoQ/5bcx+oIPCY2IpQDBe4bnTu9VxJvr9rFqh0HOXi4lBbRYW47tidUOF3szS+hTXyE1aE0iEYma6NF+yJNV1FuigOASepSR0G/S82tN6eTdTvTtPepKIGFf/Pe84r4mtLDpiI5QO/zrI3FKsf+LRpxo9m2+iVTQlHEXxzcfoKZc4HB3VNd27eIolebWJwu+HpzjluP7Sn7Ckr8plWIksnaaNG+SNOtmwP/HgCrX7E2DpsNznoI4jtA19OtjUXESukfmhYCLVKh06lWR2O9fr+G0CjYtxkyllkdjUjDLfgrzOwPq1+2OhKPiglzf4uQM3qZAaAvN+T4fJsQMNe59uSWWB1GgyiZrI0W7Ys0jdMJ3840VeYK91sdDaQMhJvXwoArrI5ExDqVHzwHTQqYFgLNEhEHfS8291e/ZG0sIg11YCts+AicZdBusNXReJTdbnN7e4xTu7eiV5tYzu7TBn9ZjphbVMbhknKrwzghvavUpa5F++FxgVv5TqS5Nn0C+zZBeLzvFAZwaGm4BLG9myFjKdgcMGCi1dH4jkFTzO1PH0DRIQsDEWmgpU+Cywndzgro9ZKV3D3VNSY8hP+7dADnD0jBYXfzsKcHZeX6fqsQJZP1SZsA09ebinf9j4xspAxSIilSG5fraOXUYdeaq/++wlkBa16FVy5WSx8JLpUjbz3Orr2iabBqPwTaDjT/LiV5VkcjUr/D+8x7GMApN1sbi5e4u9+kvyoqdXLQx1uF6JL9iVQu2o9JhsN7TUN0Ealp2yLIXA0hETD8Bqujqa4kDz6717QKWfu6me4nEgwy15jbQVdZG4evsdng2i81c0H8w/JnobwYUk6CzqOsjsYrwkLshIfaKSlzuvW4haXlLP55HynxEfRrn+DWY3tKdl4x8ZGh2H10RFUjkw3VugdMeg+GX291JCK+qXJUctBkiGltbSzHi2wBo28397/6O5QWWhuPiLdM+QSu+cxUN5bqlEiKPygthOXPmPsjb8btlWl8mLunugK8s2oX//3qF95fu9vtx/aU8goXewt8txiPkkkRab69m83IpD0ERt5kdTS1G3odxHeE/CzTc08kGNhs0PFkJU712fezWTsp4ouy1ppRyRadoXdwLbPyxFTXMb2SAKp6TvqLvfkllJa7d5TWXZRMNlZeFmz8xOooRHxL6x5w/demynFCR6ujqV1oBJzxV3P/239DwV5r4xHxpOJcjcA3RNYP8N8h8OGNUFJgdTQiNXUaCbf8BJfODrqLQtFhDrcXoO7QIoqeyf7VcxKOtArJK7Y6jFopmWyMw/vh8V7w5pXmvogclXISDLvO6ijq1/cSaDsASvNh0aMn3l/EXy19Cv7Zy6y1krq16Q+J3aC0ANa/a3U0IrWLagntBlkdhdfZbDZiw90/OnlGbzM66S89JysdKiyjsNT3WoUomWyM6ERI6gO4YNvXVkcj4hv86Wq+3Q5j/2bur5oN+dnWxiPiCZXVi0tyzXphqZvNZtZ5g3pOim9xuSBzrdVRWM4T6yZHdW9NqMPGjgOFbNl72O3H96TMQ743OqlksrG6jjG3W7+2NAwRn3BoJ/yzJ3x8C1SUWR1Nw6SOhlNvhas/hdg2Vkcj4n5bFkLeLpNI9j7f6mh834CJYA+F3asge53V0YgY2xfDM7+Cly80iWWQivFAMhkTHsKILokAfLlxj9uP70lFpRUcKvSttZ5KJhury2nmdsvXQX1yiwCw5AkzPWz/L+Dwo55QZ94HHYZZHYWIZ1SOsA34DYSEWxuLP4hpDb3OMfdXaXRSfMR3/za3iV2DqoLr8UIddiLD3J+unNErGRuQX+x700ZPJDuvGKfTd3IQJZON1WkkOMIgNwMObLU6GhHrHN4Hq18290+91dpYmiM/WxeGJHAU5MCmT839k9RPtcEGTzG3P85R4SKxXvZ6+OULsNlhxI1WR2M5T1R1HdAhgRemDOX2sT3dfmxPKyt3sc+HWoUomWyssGjoMNzc3/qVtbGIWGnZLCgvMoV3Kkfs/c3Xj8LM/vDTh7BtMax7x9w6K6yOTKRpfngDnOXQfigkp1kdjf9IPQ0SOpl11Xs3WB2NBLslT5jbtAugZRdrY/EBnlg36bDbaBXjvzM3cvJLKKvwjVYhwVVj2F26/MrMZd/yFQy91upoRLyvOO9olchTb/XfKTjOcqgogXevAdcxCWRcCox7FNKCq6eX+DmXC1a/Yu5XFpWRhrHbYeIc08svNMLqaCSY5e6C9e+Y+yNvtjYWHxEVFoLDbqPCQ1M79xWUEBHqICbcf9Iilwuyc4vp0DLK6lA0MtkkfS6GS56H82ZaHYmINVa+YCpFtuoBvc6zOpqma9XN3LqOG4nMy4I5kyF9rvdjEmkqmw0mvgWjbjPvU9I4Sb2USIr1ls0yFzo7jwrKdiB18cToJMDz327lmhdX8EW6fxXiAdMqpKjU+plUSiabIrEr9LvULNoXCTZOp0kmAU6Zjts7CnuLswK+uL+OHx65+jn/Lk15Ff+S2BXO+CuEx1gdif9yueDANqujkGDkdB7tFnDKdCsj8TlxHlg3CZCSEIkL+GLDHr/qOVkpM7fI6hCUTIpII9ntcO2XcPqfod+vrY6m6XYsgbzMenZwQd5us5+IBIeD2+GJwfDs6VDuOwUuJEjY7XD9IvjNm9DtDKuj8SkxESEeWVEzqpv/9pwEKCypILfQ2tZsSiabKn8PLP4nzL/H6khEvC+mNYy+A0LCrI6k6QoaOKWlofuJWGnlbHjzSl38aK74DlBeDEUHYMNHVkcjwcgRAj3H+28tAg9x2G1EhTncftyYiBBO9tOek5Wy8oosHVVVMtlUpQXw5YOw/BkoKbA6GhHvKM6zOgL3iUl2734iVlr5Amz8GLJ+tDoS/2Z3wEm/NfdXq+ekeIGzwlQRX/ok/PKVllbUI8ZD6ybP6GXe5xdt2uszFVIbo6zcxV4LW4UomWyqll0goSM4y3QlWIKDywUvjIOXzof9W6yOpvk6jTRVW6nr6q8N4tqZ/UR8WeZayP4RHOHQ/zKro/F/J/0WsMG2bwLjb534rvS5MLMvvHQefHYPvHoh/LOnir/VwVPrJgd2SKBldBj5JeWs2H7AI8/haXvzSygttyYRVjLZVDYbdBlj7lculhYJZJs/g5yfYPcaiEq0OprmsztM+w+gZkJ55Ptxj5j9RHxZ5Qha2gSIamltLIEgoePR9WqrX7Y2Fglc6XNN1fDj1+4f3qdq4nWICHUQGuL+6b8Ou40xPZMA+HrTXrcf3xucTvglp4C8Yu+vn1Qy2RyVjdq3fmVpGCIe53LBt4+b+0OvgcgES8Nxm7QJcNnLENe2+vaYJLjsJfWZFN9XehjWHelJp96S7jPoKnO79nWosLa4hQQgZwXMv5OqyuHVqJp4fWI9NDo5Ni2Zm07vxvQzu3vk+N5Q4XSxY18hWbneXUOpZLI5upwG2CAnHfKzrY5GxHN2LIGd35tpdCf/3upo3CttAkxfD1d9DBc/B+2GmKI7Wisp/iD9QyjJgxap0OlUq6MJHD3HQ3QSHM6BX760OhoJNKom3mSe6jeZkhDJ2LQ2RIV55vjetC+/lC17Cygp987FCCWTzRHVEtoOMPe3LrI2FhFPqhyVHDgRYttYG4sn2B2QOgr6/xqS08y2pf+1NiaRhqichjlokv/2fPVFjlAY/yhM+QR6nG11NBJoVE28yWLCPNMiJNAUlTr5JaeAQ4WlHn8uvfM0V5fTIDQaDvvnHGuRE8r6AX75Amx2OOVmq6PxvMqR1w0fw4Gt1sYiUh+XC/pcDG36w4CJVkcTePpeDJ1PVYsGcT9VE28yu91GTLjnRg8/XZ/FH99awy85/t+pwemEnQeK2HWwEKfTc9NelUw216hb4c7tMPIPVkci4hmrXjS3fS42VYwDXVJv6HYm4ILvn7Y6GpG62Www/HqYtrjmul9xLwt7uEkAqqomXhdVE6+Pp6a6Avy4K5etew+z0E97Ttbm4OEyftlbQHGZZ6a9Kplsroh4/27cLnIi4x+DC2fB6NutjsR7Rtxoble/AkWHLA1FRCxUdBA+vRP+d6qKoYj7VFUTr23UW9XET8RT/SYBzuh9pKrrZv/sOVmXkjIz7XW/B/pRKpl0p7JiqyMQcT9HqFkrmdTb6ki8p8sYSOoDZYePjsyK+JJt38Cql6Ak3+pIAltIJPw4B/asN9P9Rdylqpr4cSOUcSlmu6qJ1yk8xEF4qGdSmJM6tKBlVBj5xeWs9NOek3VxuSDzUDEZ+wupcOO0VyWT7rD1a3hisOkLJBIoSvKDtyS+zXZ0dDL9Q2tjEanNtzPho5vNrXhOaAQM+I25v+ola2ORwFJRXr2a+CXPm9vp65RINoCnpro67DbG9GoNwJcbczzyHFbLLSrj55x8CkvL3XI8JZPuENkS9v8C27+Fcs9XTRLxiq8fgf8Mgo2fWB2JNfpdChc/C9d8ZnUkItUdyoAtC839k660NpZgMPhIz8nN89UGTNyjrAhm9oP3p5kLt6mjzHtO6ihNbW0gT/WbBDi9lyl8tGL7AQ56oRqqFcrKXWzde5ic/ObPqlQy6Q7JfSGqlZkSt2uF1dGINF/hAVg5G3IzTG/JYBQSDv0v05po8T1rXgNckDo6OIpiWa11T+hwMrgqYM2rVkcjgWDDx5CfCdu/g/A4q6PxS9FhDo91Q+rYMooeyTE4XbBoc+B2a3C5YE9uCdv2Haa8GetDlUy6g91uWoSAmfIq4o+cFbBtMax7Bz6711wcadMfup1hdWTWc1bA4X1WRyFifhcrE5pBV1kbSzCpHJ1c/bKpty/SHKuPTJk+6Ur1h20im81GbLjnRifHprVhRJdEuraK9thz+IqC4nJ+zikgv7hpS5v0G+wuVcnkV5aGIdIk6XNhZl946Tx4dyr88LrZnjpKPda2LoL/nARzb7I6EhEzvTVvF0S2gF7nWR1N8Ei7EMLj4dAO2Pa11dGIP9u/BbYvBmwwUNPUm8OTLULO7tOGe87pTVpKPOt2HWLR5r2s23XIrYVrfEl5hYvt+wrJzi3G1chWSJ77Xwg2XceY292rTCuByAQroxFpuPS5R4pH1fLHY+lTZnpXMBcDiEsxHyAPZcC+X6BVN6sjkmBWOaLR/wpTHEa8IywKhv8OyoshUX8DpBkqZxZ0OwMSOlgbi5/zZIsQgCVb9vHM4q3sLzi6bjIxJozrR3VhZNdWHn1uq+zNL+FwaTkdWkQ1+DEamXSX+PaQ2B1cTlOIR8QfOCtg/p3UmkhWmn9XcPdXa9UdeowHXLDsKaujkWDmdJoKkNhg0CSrowk+p98LYx+ChI5WRyL+qqIc1h6Z+TNIHQCaK9RhJzLMM6nMki37mPHpxmqJJMD+glJmfLqRJVsCd+lLYUkFP+fkk1vUsGmvSibdqf/lZg1LfDurIxFpmB1LIC+znh1ckLfb7BfMKtuErH3dFCcSsYLdDhPfhNs2QnIfq6MRkcb6ZQEUZJuijT3GWx1NQPBEVdcKp4tnFm+td59nF28N2CmvYK5d7j5Y2KB9lUy606/ugAn/gZSTrI5EpGEK9rh3v0DV+VRTjKi8CFY+b3U0Euxi21gdQfByOuGXL2HeHaYUokhjpAyC0/8Cp/xRlcLdxBPrJtMzc2uMSB5vX0Ep6Zm5bn9uf6RkUiSYxSS7d79AZbPByCMFeJY/C+Ul1sYjwefgdsjdbXUUUnbYrDFf/gzs+M7qaMTfxCbD6NvhlJutjiRgRIWF4LC7t1DggcKGTe9s6H6BzuPJ5FNPPUVqaioREREMHjyYxYsXN+hx3333HSEhIQwcONCzAbpbRTnsXAFZP1gdiciJdRppCsxQ1x9iG8S1M/sFuz4XQWyKGaX9eYHV0Uiw+WqGqbi8bJbVkQS38Fjoe7G5v+ola2MREcD9o5Mtoxo2dbah+wU6jyaTb731FtOnT+fee+9lzZo1jBo1ivHjx5ORkVHv43Jzc5k8eTJnnOGH/e2+fRyePxO+nWl1JCInZnfAuEepvQDPkQRz3CNmv2DnCIVz/wHXfA691ZJBvKjoEKR/YAq8tR9qdTQyeIq5Tf9Qa6ilYVwu+OD3sP49KK9/+qQ0Xpyb102mpcSTGFP/NORWMWGkpcS79Xn9lUeTyccff5ypU6dy7bXX0rt3b2bOnEmHDh2YNav+K6u/+93vmDhxIiNGjPBkeJ7ReZS53bZIjY3FP6RNgI61jDzGpcBlLwd3W5Dj9ToXOg63OgoJFs4K2LYYPrvHtKRo3RvaDbY6KkkZBMn9oKLEjBive8f8PwVz1Wup3/ZvYe1rMPdmqFAy6W4xESFubYntsNu4flSXeve5blQXt0+v9Vcea9BSWlrKqlWruOuuu6ptHzt2LEuW1F0Zcvbs2WzZsoVXX32Vv/3tbyd8npKSEkpKjq5fysvLa3rQ7tB+CITFQOF+2LMO2g6wNh6RE8ndDbuWm/vn/gsi4swayU4jNSJZn9LDEBZtdRQSqNLnmrY9x1ZbzsuEDR/pAo/VbDZoN8i8x694xnyBuQA37lH9/0hNa14xt/0ugfAYa2MJQA67jcgwB4Ul7rugM7JrK+4e36tGn8nYiBD+MKZbwPaZbAqPJZP79u2joqKC5OTqhTuSk5PJzs6u9TE///wzd911F4sXLyYkpGGhzZgxgwceeKDZ8bqNI9RUftw8H7Z+rWRSfN/yp8FZDp1OgaHXWB2N73O5zEjR6pfh2i8gqbfVEUmgSZ9rirwcP/28JM9s14wBa6XPNef/8fKy9P8jNRUdNFOiAU5Sb0lPiY0IcWsyCSahHJ6aSHpmLhkHCmkTH8HADi00InkcjxfgsR037uxyuWpsA6ioqGDixIk88MAD9OjRo8HHv/vuu8nNza362rlzZ7NjbrYup5nbLV9ZGobICZXkw8oXzf0Rf7A0FL9hs0HuTigtgGVPWR2NBBpnhRmRrHUd85Ft8+/SlEqr6P9HGmvdO2aaelIfM6ItHuHudZOVHHYb/doncG7/FAZ3aqlEshYeSyZbtWqFw+GoMQqZk5NTY7QSID8/n5UrV/KHP/yBkJAQQkJCePDBB/nhhx8ICQlh4cKFtT5PeHg4cXFx1b4s12WMuc1YCmXF1sYiUp81r0JJLiR2gx7jrI7Gf1Qm3j+8BQV7rY1FAsuOJdWnttbggrzdZj/xPv3/SGNVjmIPmoxbF/ZJNRGhDkJDPP/v63K5yDxU5PHn8SceSybDwsIYPHgwCxZUL6G/YMECRo6sWewjLi6OdevWsXbt2qqvadOm0bNnT9auXcvw4X5U9KJ1T4hta65EZSy1OhqR2rlcsOJ5c//k34NdbWcbrMNwUwilogRWPm91NBJICva4dz9xL/3/SGNkroXsH8ERBv0vszqagBfrodHJSgXF5dzw2mpufH01eUXqMVnJY2smAW699VYmTZrEkCFDGDFiBM888wwZGRlMmzYNMFNUd+/ezcsvv4zdbqdv377VHp+UlERERESN7T7PZoNz/gHRrVV5T3yXzQZXzYVVL8KA31gdjX+x2czo5DtXw/Jn4ZQ/Qmik1VFJIIipOXOnWfuJe+n/RxqjvMRcfIxvD1EtrY4m4MVGhHCgwHPVcmMiQggPsVPudLH4572c2z/FY8/lTzyaTF5++eXs37+fBx98kKysLPr27cu8efPo1KkTAFlZWSfsOem31IdO/EFcCoy5x+oo/FPvCRDfwayf/HEODL7K6ogkEHQaac7LvCzq7P8al2L2E+/T/480RsfhMPVz9Zb0kpgw0yLEVdup6SZn9E5i6+JtfLExR8nkETaXy5P/5N6Xl5dHfHw8ubm5vrF+UsQXVZSZysPSPEv+C5/fa3rO3fCt1dFIoEifC3Mm1fKDI+uBVC3UWlXVdqFmQmnT/4+IhbbtO0xBcbnHjp9bVMZVs5dT4XTx39+cRKfEwG0RdrggjxG9O54wp9IiKU/a+jV8NB1+XnCiPUW8651r4JWLIHu91ZH4t0GTYNRtcOUcqyORQJIykKrE8VhxKUpUfEHaBPP/ENe2+nabA379kv5/xFj/HhQesDqKoBMb4dFJl8RHhjKkUwsAFm7M8ehz+QvP/osHu82fw6rZpodf97OsjkbEOLDVND7HBWc/bHU0/i0iHs74q9VRSKBZ8Tzggs6j4Vd/MsVcYpLN1Em7w+roBEzC2OtcU7X1UAZ8chuUF0G0GpkLsH+LWVMfEgm3bYTIBKsjChqxESFkefg5zuiVxPfbDvD1pr1MHtE56NuFaGTSk7oeaRGy9WvPTuAWaYxlswAXdDsTknpbHU1gUW85aa6yoqOtBE6eBqmjoN+l5laJpG+xO8z/y0lXQr9LzLYfXrc2JvENa14xt6mjlEh6WXiI51uEDOnc0hT7KSzlh12HPPpc/kDJpCd1Ggn2UFOg48BWq6MRMVNu1rxq7lf2SpTmy/oRXr0E5t5kdSTi79a/C0UHIL6jer/6kwETze1PH0JpobWxiLUqymDtkYsKgybXv694RHSYZydehjrsXDeqC3+7oC8DOyR49Ln8gZJJTwqLNiWhAbZ+ZW0sImCmXZcVQnJf6HKa1dEEjooy+OULU9U1P9vqaMRfuVzw/dPm/tCpGon0Jx1HQIvOUJoPGUusjkas9PPnZmp6dGtdELJITLjnV/GN6ZnEgA4J2G3BPcUVlEx6XtfTzO0WJZNisfJS+P4Zc3/EH0yvRHGP9oOhw8ngLDN9J0WaYvcq0+A8JEIjGv7GbocLnoQ//mCWEEjwqpymPuA3qppukWgvJJNylJJJT+tyurndthgqPFeqWOSEfnofCrIhti30vcTqaALPiBvN7crnofSwtbGIf0o5CSbOgTPvV4Nzf9T5VDM6KcErL9OMTIIuCFkoLMROWIjnU5wDh0t5bvFW/j4v3ePP5cuUuntaykBT8TEqEfIzIaGj1RFJsEq7ACpKwWaHkDCrowk8vc41HyQPbocf3oCh11odkfgbuwN6nG11FOIO6uUbnHatMC1iOgyHVt2tjiaoRYc7KC13evQ5bMBHP2bidMHug0W0axHp0efzVRqZ9DS7A25eCzevUSIp1gqNMH0RT7rS6kgCk90BJ//e3F/6FDg9+yYmAUYVvwPDwR3w+uXw9Gj9nwajtAvg1g1w7uNWRxL0vLFuskV0GIM6mp6TX27c4/Hn81VKJr1B05XEavpQ4x0DrzQzEQ5sgZ8/szoa8RflpfC/UbDwb1BSYHU00hyRLWDrIshJN2tgJfjEtIbkNKujCHreWjd5Ru9kAL7alEOFMzg/aymZ9KaKMvMl4k05G+CJwbDyBasjCXzhMTDmz3D+f6DzKLNWet075lY9KKUuG+bCnnWw+hVwaAq6X4uIg97nm/tr1XMyqBzeZ3UEcoxQh3fWTQ7r3JLocAf7CkpZtzvX48/ni5RMesvHt8KjqarqKt639L9mpGzLQqsjCQ7DrzejE08OhZfOg3enmtuZfSF9rtXRiS9afqTK8pCrtZ45EAz8jbld/y6Ul1gbi3hH4QH4Vx+YfQ4UB2dC4Yuiwz3fXiksxM7o7q2B4J3qqmTSW5zlpv+U+k2KNxXkmN6HACNusjaWYJE+F+ZMNlX9jpWXZbYroZRjZa6Fnd+DPRQGX211NOIOqb+C2BQoPgSbPrU6GvGGdW9DeTEU50F4nNXRyBHeWDcJcEYvM9V1yZb9FJYGX+cGJZPeUtkgfuvXVkYhwWb5s6aCa/uh0HG41dEEPmcFzL8TqG3dxJFt8+/SlFc5qrIvadoFEJtsbSziHnYHDLjc3P/hDWtjEc9zuY72lhw0WT2cfYi31k32SI6hb0oc4/q0oawi+NZNKpn0li6nATazKD8/2+poJBiUFsKK58z9EX+wNpZgsWNJzRHJalyQt9vsJ3J4vxnRABj+O2tjEfcaMNHc/rzAzBCRwJW5BvasB0c49P+11dHIMUIddsJDPZ/q2Gw2Zlzcn+tGdSE+MvhaAimZ9JaoltB2gLmv0Unxhh/egKIDkNDpaEEI8ayCBq6XaOh+EtjWvAwVJea9of1Qq6MRd2rdw4xSjX8UQoOz91zQqByVTJtg1suLT/HW6GQw07+wN3U5DbLWmmRywBUWByMBzemEZU+Z+yffYKZdiefFNHCaYkP3k8DW8xw4lAGdTtHUuEA04QmrIxBPKz1sCi2BuXggPicmLIQDlHrluZwuF+t25VJYWs6Irq288py+QCOT3tR1jLnd8pX6/oln2WymPUXfS+Ck31odTfDoNBLiUoC6EgMbxLUz+4m07gnn/Qv6XWp1JCLSFOlzoSQPWnSGTqdaHY3UwhsVXSst2bKfP3+4nue+3YYziD7na2TSmzqcDF3GQOdTTFGUkHCrI5JAZbOZ37POp1gdSXCxO2Dco6ZqKzZqLcQz7hGNFIsEi6JD8NN7pujWsOusjkbcrc+F5u+5zQ52jc/4ohCHnYhQO8VlTo8/15BOLYgKc5CTX8JPu3Pp1z7B48/pC/Sb702hETD5Axh9hxJJkUCVNgEuexni2h73Axtc/Kz5uQS3nI3w7nWwa6XVkYinZSyDj2+Brx+BijKroxF3C42E/pdpdoGP89a6yYhQB6d2M9Nbv9gYPIW3lEyKBJqPpsP8e0xfQ7FG2gSYvh6u+tgkkN3HwlUfqdKfGCuehXVz4Nt/WR2JeFq3MyC6NRTug1++sDoakaDkzSI8Z/Su7Dm5j6LS4GgDpmTSCvk5sPBhWPsmbFusnnPiPod2mspyy56Ew3utjia42R2QOspctb7ybXNfpDgX1h7pPTjsemtjEc9zhEK/y8z9ta9bG4u4T3kpvDAOvp1p2nCJT4vxYjLZu00sbeMjKC5zsmTLPq89r5WUTHpb+ofweE/45lH44Hfw0nkws69ZxC3SXN//D1wVkDoa2va3OhqpTUW51RGIlda+AWWHoXUvc55K4Bv4G3O7eT4UHrA2FnGPzfMhY6mpmu4IszoaOQGH3UZkmHdSHpvNxhm9kgBYGCRTXZVMelP6XJhzFbiOWwScl2UKdiihlOYozjva72rEH6yNRWoqyYfP7oX/DoGyIqujESs4nbD8GXN/2HVqBxIs2vSD5H6m8F5lGwnxT84KM6Psm8fM9wOuAIdqWfoDb051HdMrCRtwoLCU4rLAn32oZNJbnBUw/05qre5YuW3+XZryKk23+mVTorxVD+h2ltXRyPFCIswFo4Pbjib9Ely2LoQDWyA8Dvqr13BQqRyd/OENa+OQpkufa2aSvXQeZK8z2354QwMBfsKbyWRSbARP/OYknpo4iIjQwK/ermTSW3YsgbzMenZwQd5us59IY1WUmymuACNuVIlyX+QIhVOnm/vfzoTyEiujESt8f2RUcuCVEB5jbSziXf1+DY5wiErUzAR/lD7XzCA7/nNcwV7NLPMT0WEhXp0M0ikxGluQzD7RJ05vKdjj3v1EjrXhQ8jdCVGtNOLhy076LcSmQH4mrHnV6mjEm1wu0/c1oaP6DQajmCS442dTjCs00upopDE0sywgOOw2S0YJS8ud5BYFdlsgJZPeEpPs3v1EjtVhuFknecofTT9T8U0h4eb/CMzopPrOBQ+bzfzf3/wDJHa1OhqxQkS81RFIU2hmWcDwZlVXgIUb9zD5he95eel2rz6vtymZ9JZOIyEuBahryNsGce3MfiKNFd8ezv47nHKz1ZHIiQy+CqKTIDcDfnjT6mjE2zQFXQ5lwP4tVkchDaWZZQEjOty7I5OtYyM4XFrB4p/3BXQhHr2reYvdAeMePfLN8Qnlke/HPWL2E2mIyqpy695Rv1J/EhoJI28y95f+10x/lMC2ab6p4qmRaFk2C2b2g68fsToSaSjNLAsY3l432ScljqTYcIrKKli2db/3ntjLlEx6U9oEuOxliGtbfXtcitmeNsGauMT/HFtV7t2p6lfqb4ZcAyNvht++p/YQgc7lgi8fhHeugZWzrY5GrNZhmLnd8JFp5yS+TzPLAobdbiMyzHuDNvYg6TmpZNLb0ibA9PVw1cdwyfPmdvo6JZLScHVVlVO/Uv8RHgNjH4L4dlZHIp624zvI+QlCo6D/r62ORqyWMgha9YTyIkj/wOpopCHsDhh6HabYjmaW+Ttvr5s8vZcZsV678xD7CgKziruSSSvYHZA6CvpdavoCvnwBrHrR6qjEH6iqXGAqPWx1BOIpy4+0A+l/GUS2sDYWsZ7NdrTn5Fr1nPQbGcvM7fGVeDWzzO94s98kQJv4CPqkxOECvtoUmKOTSiattv8X2H5k3ZvIiaiqXGA5lAGvXw7PjwWn0+poxN1yd8GGj839YddbG4v4jv6Xg80OGUvgwDaro5ETyfoRfv7M/J9dv0gzy/xcVKjD66tLzjwyOrlwYw6uAKyToGTSan0uMrfbv4V8VQKTE1BVucASHgvbv4M962HTPKujEXdbORtcFdDpVEjuY3U04iviUqDLaea+Kjr7vsX/NLd9LoLWPY7OLEsdpamtfshutxHlxXWTACO7JXL5kA78+Zw0bAFYJ0HJpNUSOkK7IYAL0j+0OhrxdaoqF1giW8DwIyNWix5VZddAUlZ8dPnCcI1KynEGTDS3G7TG3aft3Xz0s9mo26yNRdzG2+smo8JC+O3JnWjXIvLEO/shJZO+oO/F5van962NQ3xfp5EQm1LPDqoq53dOvhFCoyH7R/j5c6ujEXc5nAOtupvzsee5VkcjvqbXuXDhLJi6wOpIpD7f/gtwQc9zNLsggHh73WSgUzLpC9IuMLcZS0+wHk6Cnt0BZz9cxw9VVc4vRSfC0GvM/UWPaXQyUCR0hGvmw7RvwaEPLnKcsCgYONFUdhbfdHAH/PiWuT/qdmtjEbeKCvP+ukmAH3Yd4uF5G1iyZZ/3n9yDlEz6gvj20OFkNNVVGqTvRXDZK0f6Xh1DVeX818ibISQCdq+ErV9ZHY24U1RLqyMQX+dyqQCXL4qIg9G3Q9qF0H6w1dGIG9lsNktGJ3/clcvSrft5d/UuFm3ey7pdh6hw+v8FZF0u9RX9f22uVLbsYnUk4g/SJphpUjuWmGI7MclmaqtGJP1TTBIMvhq+nwUrnoeup1sdkTTHpk+h/TAz6ixSn7VvwJIn4JQ/woDLrY5GjhXZAsbcY3UU4iHR4Q4Kisu9+pwtIkMB2LyngH98vgmAxJgwrh/VhZFdW3k1FndSMukrhl5rvkTq8/4N0GmEKS0fEm6qyUlgOOWPkNgVTppkdSTSFM4Kc3Fn32b49E+AHW5eZaa7itTl0A7I+Ql+eF3JpIgXxYSHsIcSrz3fki37eHrx1hrb9xeUMuPTjdw9vpffJpSa5iriL3YsNR84PrkNCg9YHY24W1xbGHYdhEZYHYk0VvpcmNkXXjoPPrkVnOWACzLXWh2Z+LoBV5jbrYtMX1KxXuEBeOUi+PkLrWEPYJFe7DdZ4XTxTC2J5LGeXbzVb6e8Kpn0NXmZ8OMcq6MQX/TdTHM74Dcm8ZDA5ayAw/utjkIaIn0uzJlcs3ias8xsT1frB6lHi87Q6RTAdbTYi1hr2SzYshC+fMDqSMSDbDab11qEpGfmsr+gtN599hWUkp6Z65V43E3JpC8pOggz+8F718HB7VZHI75kz0+weT5gM9MhJXBlfA9PDof31ZvQ5zkrYP6dQD1Xk+ffZfYTqcuA35jbtW9oJMxqxXmw/Glzf9RtWFLyU7zGW0V4DhSWuXU/X6Nk0pdEtjjaH/CnDywNRXzMd/82t2kXmHV1ErhikuDAVvjlC9i9yupopD47lpygnZML8nab/UTqknYBhETC/p91zlttxXNQnAutekBvVUYPdN4amWwZFerW/XyNkklf0+cic/vTe9bGIb7j4A5Y9465f+p0S0MRL2iZCv0vM/e/+Ye1sUj9Cva4dz8JThFx0Pt8c3/t69bGEsxKC2Hpk+b+qbeCXR+RA11EqN0r/81pKfEkxoTVu0+rmDDSUuI9H4wH6EzxNb0ngM0BWT/A/i1WRyO+YOmT4KqALqdByklWRyPeMOo2wAab5kH2OqujkbrEJLt3PwlegyaZfoaVSaV43+qXoXCfqcDc71KroxEvsNlsRId5fnTSYbdx/aj6W/9dN6oLDrt/TqtWMulroltB6mhz/6f3rY1FfEPaBNN38NRbrI5EvKVVd+h7sbn/zf9ZG4vUrdNIiEsB6voAYIO4dkeXL4jUJXU0XPaSud222MxG2bZY6229pbzk6HKSU28Bh39ON5TG89a6yZFdW3H3+F41Rihjwh2ktY1jRBf/7UusPpO+qM9FsPUrk0yOvt3qaMRqnU81XxJcRt0O69811UBzNkJSL6sjkuPZHTD2YXjnakxCeWzxlCMJ5rhHzH4iJ5I+1xR0OnYdblwKjHvUXFQUz7GHwFkPwtrXYOCVVkcjXuStdZNgEsrhqYmkZ+ZyoLAMm83F459vJj0rjx935TKgQ4LXYnEnjUz6ot7nmz9s+zZDXpbV0YiIFZLTjkx5c2kNta/a/Bl88xic9VDNdj1xKXDZy0oCpGHqajGTl6UWM95gd0D/X8PkDyAk3OpoxIsiwxxenV7qsNvo1z6BX/VozejuSYzvZ947Xlm2A5efVnPWyKQvimoJV74D7QZBhH8uxhU3WPmCaRFz8u8hto3V0YgVxvwZhl4Lqb+yOhI53uH98OEf4HAOFGTD9PWmamvBHrNGstNIjUhKw9TbYsYF2EyLmV7n6ndKxAOiwx3kFZVb8tyXDe7A5+l72LQnnxXbDzAs1f+mu2pk0ld1HaNEMpiVl8Ki/zNrODZ/ZnU0YpWkXqbwknqd+RaXCz651SSSrXrC6X82H/JTR5nCHamj9KFfGk4tZqzjdMKrl8CyWVBWZHU0YhFvrZusTYvoMM7vnwKY0UmnH45OKpn0B06n1RGIt62bA/mZENMGBlxhdTTiCw7vg/SPVJjDF6x/F9I/MMsRLn4aQiOtjkj8mVrMWGfTPNPT96uHTREeCUreXDdZm0sGtSMqzMH2/YV898s+S2NpCk1z9WUbPjJ95nqMgzF3Wx2NeIvTCd/ONPdH3Kj1GwLz/gTLn6HaNDgV5rBGXqYZlQQY/Se165HmU4sZa7hcsPhIL99h10FkgqXhiHUiQs26yQqnNaOCsRGhXDiwHa8vz+C17zM4pVsr7H40I0kjk76s9DBkrTXFN/xw2FuaaNMnsP9nM8158BSroxGrpc+F5U9TYz2VCnN4n8sFH94IxbmQMghG3Wp1RBII1GLGGlsWQuYaCI0ytQkkqFk9OnnBwBRO6daKW8/q4VeJJCiZ9G09zwFHuKnquucnq6MRb3C54Nt/mftDr4WIOGvjEWtVFeaozZHkcv5dmvLqLSV5Zj1zSARc9LR60Yl72B1mlgFQe0LpUosZT1j8T3M7eIrp8S1BLTrc2vMrKiyEu8b1okdyrKVxNIWSSV8WEQfdzjT3f3rf2ljEO7Z/C7tXmQ+rw6dZHY1YTYU5fEtEPFz1EUz9HFr3sDoaCSRpE0wrmeNbzITHwiXPazq7u+1YCju+A0cYjLzJ6mjEB1hZhKc2ZRX+Uy/Ft/7lpKa+F5tpjz+9byoG+tnQtzRSy1QYdr15g4tJsjoasZoKc/gGl+vo3167HdoOsDYeCUxpE0z7D7WY8bzKtZIDJx6ZYizBLiLUQYjDRnmFtcvKCkvLee37DJZt3c+TEwcREer757+SSV/X42wzSnVgC2T/qA8xgS6+PZzzf1ZHIb5ChTl8w7f/MiPEZz0AYdFWRyOBrLLFzPGcFaaic6zOdbcYc6+pwnzKH62ORHxITHgIhwrLLI0h1GFn2db95OSXMG9dFhcPam9pPA2haa6+LjwWuo819zXVVSS4qDCH9bJ+NG0DVjwLm+dbHY0Eo30/w7OnwxuXa320u7QbBJe/Ci27WB2J+BBfmOoa6rDzm6EdAXhn1S4KS8stjujElEz6g/6XQ9oF0PlUqyMRT9m/Bd68EnattDoS8SX1FuY48r0Kc3hOeQm8/ztwlkGv86DPxVZHJMEoPBYObDWVR1c8b3U0/k2V8aUeVhfhqTSmVxLtEiLJLynnw7X11U3wDUom/UHv88zC/MpiPBJ4ljwBGz+GRY+eeF8JLnUV5ohLMds7nwof3AhFhywJL6B99XfISYfo1nD+v7VmXawR2wbOvM/c//LBExTlknp9dDN8fAvk7rY6EvFB4SEOQkOs/zvvsNu4crgZnXx/zW7yiqydensiSiZFrJa/B9a+bu6fMt3SUMRHpU2A6evhqo9NZcerPobp68z2d66Gta/Cqxeb/ofiHjuWwnf/MffP/7daB4i1Bl8D7YZAab5pBySNd2AbrHkNVr4Ah3OsjkZ8VHSY9VNdAU7p1orUVtEUlVXw3ppdVodTL48nk0899RSpqalEREQwePBgFi9eXOe+7733HmeddRatW7cmLi6OESNG8Nlnn3k6RP+x72czgqVpGoHl+1lQUQLth2ntm9StsjBHv0vNbeXU1rF/h8iWpqXMq5dAcZ61cQaCkgL4YBrggoG/NRU2Raxkt8P5M8HmgPQPYbM+GzXadzPBVWFmeaWcZHU04qNifGDdJIDdZuO3wzsBsCB9DyXlvrte2qPJ5FtvvcX06dO59957WbNmDaNGjWL8+PFkZGTUuv8333zDWWedxbx581i1ahVjxozh/PPPZ82aNZ4M0z+UFcMzp8HnfzYfGiUwFOceXQNz6i2aRieN16YvTP4QIlvArhXw2qVQkm91VP5t7yYzbTi+I4ybYXU0IkabfjDi9+b+J7dD6WFr4/EneZlHZwCNut3aWMSn+UIRnkpDO7fg6pGd+e9vBhEe4hvrOWtjc7k8N8w1fPhwBg0axKxZs6q29e7dmwsvvJAZMxr2Bt2nTx8uv/xy/vrXvzZo/7y8POLj48nNzSUuLq5Jcfusd6+FdW/DyTfCuIetjkbc4dt/wRf3Q+tecMNSc/VZpCky18LLE8wFio4j4Mp3IDzG6qj8V14WFGRrBEN8S+lheHK4WUd56WxI6GB1RP5h/t2w7CnodApcPc/qaMTHbcrOp7TcaXUYljtckMeI3h1PmFN57JNraWkpq1atYuzYsdW2jx07liVLljToGE6nk/z8fFq2bFnnPiUlJeTl5VX7Clh9LjK3P70PTv2S+72yYlj6lLl/ynQlktI8KQPNCGV4PGQshY/UP61Z4toqkRTfExYNUz6Baz5XInkizgrYttiskVz+nNk26jZrYxK/4CtVXY+XeajI6hBq5bFPr/v27aOiooLk5OoNdpOTk8nOzm7QMf75z39y+PBhLrvssjr3mTFjBvHx8VVfHToE8B/XrmdAeBzkZ8Ku5VZHI81ls8HoO6DjSLMOTqS5Uk6Cye9DUh84/V6ro/E/n9wOGzVqIT6uRSddfDyR9Lkwsy+8dJ6p3uosBXsolBZYHZn4AV9ZN1mptNzJfXPXc8Nrq3wyofT4XyPbcWvAXC5XjW21eeONN7j//vt56623SEpKqnO/u+++m9zc3KqvnTt3NjtmnxUaAT3PMffXv2dtLNJ8IeEw/Hq45lNwhFodjQSKdoNh2rfVm3GraNeJrXsHVjwLcybBwR1WRyNyYqWH4fO/wKqXrI7Et6TPhTmTa7ZQcZbBnKvMz0Xq4UvrJgHCQuzYbTacLnjt+9rrzljJY8lkq1atcDgcNUYhc3JyaoxWHu+tt95i6tSpzJkzhzPPrL+3Ynh4OHFxcdW+AlrfI02z0z80UzhERI537KjFpvnwxhVQ5ntXM31GXiZ8cmT62+g7zMiPiK/7cQ4s+Y9JKPP3WB2Nb3BWwPw7gXouoM2/S5+fpF6hDjvhob41+j/pZPO+tPjnvWzf51vFtzz2LxUWFsbgwYNZsGBBte0LFixg5Mi62x+88cYbTJkyhddff51zz1U59hq6jIGIeCgrhANbrY5GmsLlgnemwg9vQoVvN6IVP1ecZ1pcbJ4Pb15p1umKUbme6se3zb9N8SEzTVhrqsRfDJoMbQdCSS58do/V0fiGHUtqjkhW44K83WY/kXr42uhkl9YxnNqtFS7g1e99a/aMR9PuW2+9leeee44XXniBDRs2cMstt5CRkcG0adMAM0V18uTJVfu/8cYbTJ48mX/+85+cfPLJZGdnk52dTW6uGnFXCQmDqz6C23+GVt2tjkaaYstCWP+OWcehFg7iSRFxcPlrEBoFW740UzjLS6yOynrHrqd671rIXG22979CU87Ff9gdR3pP2s17yi9fWh2R9QoaOELb0P0kaMWE+VYyCTBxeEfsNvh+2wE27/Gdz48eTSYvv/xyZs6cyYMPPsjAgQP55ptvmDdvHp06maHarKysaj0nn376acrLy7nxxhtp27Zt1dcf/6iqhNW0HWDWT4p/+vZf5nbwFIiqu1KxiFt0PgUmzoGQSPj5c7OWKJgTyrrWU4GZ/qb1VOJPUk6CYb8z9z+5Nbins+fuNpVbGyKm/uVWIr5Y0bVDiyjG9DR1ZF5Z5jujkx7tM2mFgO4zeTyXC8qLITTS6kjkRJwVZlpNxlL46u9gc8D0HyG+vdWRSbDYughev8z8zeh5Dvz6JTOysWOJuUofkwydRpptgcpZYUYk65wGZ4O4FJi+LrD/HSSwlOTDf4eZSu+jbocz/mJ1RN5VUWZ6SH79KJSdaC2ZznFpuJ/35FNc5lut+PbkFTPt1VW0jA7j8csGEh/pudk0De0z6XtjuNIwGz8xi+5TR8H5/7Y6GqlP+lxTEODYD7Ah4bB7tZJJ8Z4uv4LfvGmK8WyaZwrObPmi+u9lXAqMexTSJlgXpyc1Zj1V6iivhSXSLOGxcM5j8NZvYeXzcOp0sy1YrJwNC/5q7rcfBr0nwILKhPrY8ZIjnQTGPaJEUhokOjyE4rJSq8OoJjkugocu6EvPNrGEOnyjSJBvRCGNFxoFB7aYRKWi3OpopC51TakrKzTbNaVOvKnrGLjidVPIa80rNX8v87Ka/3tZWdhm3Tvm1heqJpYeNgWv5t3RsP21nkr8Ta/z4MwHYNp3wZFIHjupbtBk6DAcLngSrvkMTrkJLnsZ4tpWf0xcitkeqBfLxO18rQhPpb7t4n0mkQRNc/VfFeXwz55QuA9++x50O8PqiOR4mlInvsiTv5e1jcJbNdrpdMKOb2HtG6aV0gmnvx3jqo81MiniiyrKTT/Y9A/Neeo48mHf5YLje5hXLi8Jlmn84nblFU42ZPlOoZvjlVc4WbbtAKd0TcR2/O+/GzR0mqvvpLXSOI6Qox/Ofnrf2likdipRLr6oob+XP74FRQcbfty6RuHdMdrZWIUH4N8D4KXz4YfXTSLZIhVOu/tI4Y263nRtENfOfOgU8WdbvoKCvVZH4V4Zy+CZX5lCWRlLTQXbSrV9kLY7zEWhfpeaWyWS0kghDjuRYb6ZKjldLm5/5wcenb+RJVv2WxqLb47fSsP0uchULtvwEZz7uGkbIr7jwJaG7acpdeJNDf19++AGGDARLpplvi8rhlcuhKhEU4U4KvHoV0QLmHcbtTcKdwE28wGw17lN+0B3ohGGooOQ9QN0Oc18H9USIuOhOM78nRw40UyDs9kgKc0kt9jQeioJSF/NgEWPmFY3Fz9tdTQNU985XrDXrIn84XXzfWQLOOM+6HeZdfFK0IgOD6Go1LfWTQLYbTaGdG7Jlr2HeXXZdqLDQ8gtKqNlVChpKfE47O4fqayLkkl/1ukUiE6CwzmwbRF0P8vqiATg8D5Y+iQsm9Ww/VWiXLypob9vodEQnXj0+8L9ZjSgSY6Mdi55AnqON4WnwqIb9tC6ps6OfRjComDt67DpU9Nr7/bNprcmmGq1cSk1q12nTTDrpmqdjvuI1lOJ/+t+Fix6FH5801xI6fIr9x7f3dNH6zrHz37EfL758iEoOdJvfNBkOOP+6n+bRDwoOjyEffm+l0wCXDSwHR+u2c2uQ8X85cP1VdsTY8K4flQXRnZt5ZU4tGbS331yu1k/cOwIglgjP9t8WF75gimwA2APAWddBZK0ZlIsULVmMovaRxKP+b202Y9OHyspgC1fmoslhQdMclm436zb3v8LHMqo5Vh16H85XPyMuV9eCp//GRI6mCQzvqO5H93azLqYM7mOOI+T1AcueQ6S0xoWg9ZTSSD75DZY8RwkdoPrv4HM1e75XXf3uujK6fE1zvEjf3da9YB9m6BNfzMDq8PQpsUt0kQVThcbsvLwxWxpyZZ9zPh0Y50/v3t8r2YllGoNEiz6H+kb1/9yqyMJXk4nfHa3KU9ecaQZfNsBMPpP5gPr21cd2VFT6sQH2B3mg19jp3qGx0DaBbUfc9tieOm8Ez93i85QeLB6S5z8TFhey1Q8exi4Kqg3kbTZYeh1cNKV5sNmYwoQVK6nEglEZ/zVXIzZ/4sp1ld6TBGRpiZ/dSV+leuiG1sp1VlhEtP6pscXH4Txj8HQa/VeKZZw2G1EhNopKvWtfpMVThfPLN5a7z7PLt7K8NREj095VTLp7zoMM1+V5fh1ld377HZzlbaiBNoPNUlk97OOfrC1aUqd+Bh3T/XsNNI89kSjnTetNn+Xjm0X4giHU6ZD7k7I3QWHdkJ+FjgbMK3I5YTe55uLNyJyVES8KTyz9MnqiSQ0LflrSOL38S1gCwFXGVSUQUXpka8yiG5l1i9XWvQYZK8/cTGwghyzzlmfZ8RCvrhuMj0zl/0F9ce0r6CU9Mxc+rVP8GgsSiYDgafK8QfrNLATve59v8C3/4Jf3WFGWgDG3AtDp0Lqr2qOjqRNMIVHgvHfUnyXO38vGzvaeexzxLWFsx6ofryKMjNFb/5dJ35uFbASqclZUU+l98qiWHeaCzEleaaIVeEBU9ymco2l0wlzJpntubtOnPgV7oO3flP7j9sPrZ5MrpxtZiU0hM5xsVhsRKjPrZs8UFjm1v2aQ8mkv3P3tJNjj+sr/eLq461CAOMehVbd4Zt/wE/vmRERRwic/2+zT1Iv81UXTakTX+TO30t3jnY6QiG5b8P2VQErkZoa1AIoE/7dv/rmbmceTSbtdti6qObIZn1apEJsG3MOO8KOfIVCYvfq+w2dCjkbYf3bJz6mznGxWHSYA7vdXF/xFS2jQt26X3MomfRnDZl20pRy/J5KUN3NW4UA8jLN1dlj9RgHJx23TSTYuXO0s6FTZ9UTUqSmho7m2RxH2/1EtoCk3tV/fu4/TTKYt9sUyjqRCU807ALV6NvNZ5iM73SOi8+z2WzEhoeSW+T5Ub6GSkuJJzEmrN6priF2G4nR4R6PRcmkP2to8/EdS47+cf/0TsBmPtzZ7ObL7jBvKIndzBoLTySo7ubVQgDH6HUe/OpPWqMlUhd3jXY2tVCQiDR8NG/yB5A6uu6fDzhS3M9ZAcuecm/ip3Nc/EhsRIhPJZMOu43rR3Wpt5prudPFLW+v5cbTujG6R2uPxaJk0p819Mpj5X4uF3z/v7r363bWkZGABiSoK1+EYVMbGqnhrimpDR2R7TgCyotMS4OEjqYaJUDOBtj2DZTkQ2mB+fmBLSd43UcMn6ZEUsRb1BNSpGkaPLJ/SsOO56nET+e4+InYiBBsNnyqRcjIrq24e3wvnlm8tdoIZauYMC4b3IGvNu9lQ1Ye//f5JtbuPMT1o7sQEer+izNKJv1ZQ688HrvfqNtNuX2X0yRlLpf53lkBrXs2PEFd/dLRZNLlMo3D2/QzU2QctczPdteU1KJDkP5BwxLef3Q7umnyh9DlNHM/Yyl8+qeGP+exVAhAxLtUwEqk8TyR/Hkq8dM5Ln4gxGEnMsxBYUnFiXf2opFdWzE8NZH0zFwOFJbRMiqUtJR4HHYbY/u04Y3lGcxZuZMFG/awITuPP53dk9RWMW6NQcmkP2vsmiKbDc74S/3H3La4gc894uj9vEz48PfmfkiEGblrNxhSBkG7QbBnPcy5qmaMJ5qSumslpH8IB7fDoR1wcAcUH2pYfJUc4WZE8thWBIndIe1Csz0s1twW7IXVL574eCoEIOJ9KmAl0nieSP48lfjpHBc/EBsR4nPJJJgpr7W1/3DYbfz25E70bx/PPxdsZtfBIv4+bwNP/3aIW3tP2lwuXxqwbb68vDzi4+PJzc0lLi7O6nA8r2rtINR65bEpawdn9j1xgjp93dE3j5yNZlrp7tVQklvzIWExZjppXUKjoO1AkzBe/Ax0PtVsX/USfHRzzf0j4qG4luc53qQPoOuYE+8HTXvdIiIivi5Y23yJuFlxWQU/76nn86wPyy0q44mFP3P+gBQGNLDv5OGCPEb07njCnErJZCCodQppu6ZfeWxqgup0woGtsHuV+cpcDZlrwdmIBcsT/guDjlRJzV4Ha16DFp0goZPp6ZjQEUIjPZP4uTsxFxEREZGAsSk7n9JyH+oR0gxLtuwjPjKUPinxtf5cyWQwJZPgpX6LTUhQ174JH/zuxPsNux76XQate5iRx4bE54nEz92JuYiIiIgEhMxDRfW24/AXmYeKmP7WWkrKK7hiaEcuG9KhxtRXJZPBlkx6gjsS1G2L4aXzTrzfVR83fr2EpxI/TQkSERERkePkF5exfV+h1WE0W1FpBf/7ZgsLN+YA0CcljtvH9qRVzNG+lEomlUz6Bk+vRVTiJyIiIiJe4HK5SM/KwxkYM135alMOs77eQlFZBbHhIfzxzO4MT02kwuli5S+7uO6MfifMqVTNVTzL002JVQFORERERLzAZrMRGx5KblEj6oH4sDE9k+iZHMv/fbaJX/YW8LdPNjCkUwLb9hWy98ChBh3D7tkQRThanjyubfXtcSkqaiMiIiIifiM2IrDG4lISInns0v5cOLAdACt3HGL/4YavCw2sfw3xXWpKLCIiIiJ+LtCSSYBQh50pIzuzcGMOecWNG3UNvH8N8V2akioiIiIifizEYScq3EFhSYXVobhVemZuoxNJ0DRXERERERGRBgvE0ckDhU1bB6pkUkREREREpIHiIkKtDsHtWkY17TUpmRQREREREWmgiFAHYSGBlUalpcSTGBPW6McF1r+CiIiIiIiIhwXaVFeH3cb1o7o0+nFKJkVERERERBoh0JJJgJFdW3H3+F6NGqEMvH8FERERERERD4oJD8FuB6fT6kjca2TXVgxPTWTlL7u4buaJ99fIpIiIiIiISCPYbDZiwwOvEA+YKa99U+IbtK+SSRERERERkUYKxKmujaVkUkREREREpJGUTCqZFBERERERabQQh53IMIfVYVhKyaSIiIiIiEgTxEUG9+ikkkkREREREZEmiIsIzCI8DaVkUkREREREpAkiQh2EhtisDsMySiZFRERERESaKJhHJ5VMioiIiIiINFEwV3VVMikiIiIiItJEMeEh2IJ0pquSSRERERERkSay2WxBOzqpZFJERERERKQZgnXdpJJJERERERGRZtDIpIiIiIiIiDRaiMNOZJjD6jC8TsmkiIiIiIhIM8VFBt/opJJJERERERGRZgrGdZNKJkVERERERJopItRBaEhw9QhRMikiIiIiIuIGsUE2OqlkUkRERERExA3igqyqq5JJERERERERN4gJD8EWRDNdlUyKiIiIiIi4gc1mC6qek0omRURERERE3CSY1k0qmRQREREREXETjUyKiIiIiIhIo4U67ESGOawOwyuUTIqIiIiIiLhRsFR1VTIpIiIiIiLiRnGRwbFuUsmkiIiIiIiIG0WEOggNCfweIUomRURERERE3CwYqroqmRQREREREXGzYKjqqmRSRERERETEzWLDQ7AF+ExXJZMiIiIiIiJuZrPZAn50UsmkiIiIiIiIBwT6ukmPJ5NPPfUUqampREREMHjwYBYvXlzv/osWLWLw4MFERETQpUsX/ve//3k6RBEREREREbfTyGQzvPXWW0yfPp17772XNWvWMGrUKMaPH09GRkat+2/bto1zzjmHUaNGsWbNGu655x5uvvlm3n33XU+GKSIiIiIi4nahDjuRYQ6rw/AYm8vlcnnq4MOHD2fQoEHMmjWralvv3r258MILmTFjRo3977zzTubOncuGDRuqtk2bNo0ffviBpUuXNug58/LyiI+PJzc3l7i4uOa/CBERERERkSbKyStmT16J1WE0yuGCPEb07njCnMpjI5OlpaWsWrWKsWPHVts+duxYlixZUutjli5dWmP/s88+m5UrV1JWVlbrY0pKSsjLy6v2JSIiIiIi4gsCed2kx5LJffv2UVFRQXJycrXtycnJZGdn1/qY7OzsWvcvLy9n3759tT5mxowZxMfHV3116NDBPS9ARERERESkmSLDHISGBGaPEI8X4LEd11zF5XLV2Hai/WvbXunuu+8mNze36mvnzp3NjFhERERERMR9AnV00mPlhVq1aoXD4agxCpmTk1Nj9LFSmzZtat0/JCSExMTEWh8THh5OeHi4e4IWERERERFxs9iIEA4UlFodhtt5bGQyLCyMwYMHs2DBgmrbFyxYwMiRI2t9zIgRI2rs//nnnzNkyBBCQwMzmxcRERERkcAWExZCPZMz/ZZHp7neeuutPPfcc7zwwgts2LCBW265hYyMDKZNmwaYKaqTJ0+u2n/atGns2LGDW2+9lQ0bNvDCCy/w/PPPc/vtt3syTBEREREREY+x220B2XPSo6/o8ssvZ//+/Tz44INkZWXRt29f5s2bR6dOnQDIysqq1nMyNTWVefPmccstt/Dkk0+SkpLCf/7zHy655BJPhikiIiIiIuJRsRGh5BWVWx2GW3m0z6QV1GdSRERERER8TVmFk41Z+VaH0SCW95kUERERERERI9RhJzIssNKvwHo1IiIiIiIiPiouwFqEKJkUERERERHxgkDrN6lkUkRERERExAsiwxyEhgROjxAlkyIiIiIiIl4SSFNdlUyKiIiIiIh4SauYcGwBMjipZFJERERERMRLwkLsxEcGxuikkkkREREREREvah0bbnUIbqFkUkRERERExIsiQh0BMTqpZFJERERERMTLAmF0UsmkiIiIiIiIl0WGOYiNCLE6jGZRMikiIiIiImIBfx+dVDIpIiIiIiJigejwEKLCHVaH0WRKJkVERERERCyS5Mejk0omRURERERELBIbEUpkmH+mZf4ZtYiIiIiISIBoHRthdQhNomRSRERERETEQvGRoYSH+l9q5n8Ri4iIiIiIBJjWMf63dlLJpIiIiIiIiMUSokIJC/Gv9My/ohUREREREQlANpuNVjFhVofRKEomRUREREREfEDL6DBCHDarw2gwJZMiIiIiIiI+wIxO+s/aSSWTIiIiIiIiPiIxOgyH3T9GJ5VMioiIiIiI+Ai73X/WTiqZFBERERER8SGJMeHY/GBwUsmkiIiIiIiID3HYbST6weikkkkREREREREf08oPRieVTIqIiIiIiPiYUIedFtG+PTqpZFJERERERMQHtfbx0UklkyIiIiIiIj4oLMROfGSo1WHUScmkiIiIiIiIj2odG251CHVSMikiIiIiIuKjIkIdPjs6qWRSRERERETEh/nq6KSSSRERERERER8WGeYgJiLE6jBqUDIpIiIiIiLi45J8cHRSyaSIiIiIiIiPiw4PISrcYXUY1SiZFBERERER8QO+NjqpZFJERERERMQPxEaEEhnmOymc70QiIiIiIiIi9WodE2F1CFWUTIqIiIiIiPiJ+KhQwkN9I43zjShERERERESkQVrH+MbaSSWTIiIiIiIifiQhKpTQEJvVYSiZFBERERER8Sc2m80nRieVTIqIiIiIiPiZFlFhhDisHZ1UMikiIiIiIuJn7HYbrSwenVQyKSIiIiIi4ocSo8OwW5jRKZkUERERERHxQ1aPTiqZFBERERER8VNWjk4qmRQREREREfFTIQ47XVvHEB7q/dROyaSIiIiIiIgfiwh10K11DC2iQ736vEomRURERERE/JzdbqN9iyg6tozy2rRXJZMiIiIiIiIBIj4qlO5JsUSFOzz+XEomRUREREREAkhYiJ0uraJJivNspVclkyIiIiIiIgHGZrORHBdBautoQhw2jzyHkkkREREREZEAFRMeQvekGOIiQ9x+bCWTIiIiIiIiASzEYadTYjQpCRHY3DhIqWRSREREREQkCCTGhNMtyX09KZVMioiIiIiIBInKnpQtY8KafSwlkyIiIiIiIkHEbrfRLiGy2T0plUyKiIiIiIgEoeb2pFQyKSIiIiIiEqSO7UnZ2OI8SiZFRERERESCWFVPylbRhIY0PKNUMikiIiIiIiJEh4fQPSmWuIjQBu2vZFJEREREREQAcNhttG8Z1aB9PZZMHjx4kEmTJhEfH098fDyTJk3i0KFDde5fVlbGnXfeSb9+/YiOjiYlJYXJkyeTmZnpqRBFRERERESkiTyWTE6cOJG1a9cyf/585s+fz9q1a5k0aVKd+xcWFrJ69Wr+8pe/sHr1at577z02b97MhAkTPBWiiIiIiIiINJHN5XK53H3QDRs2kJaWxrJlyxg+fDgAy5YtY8SIEWzcuJGePXs26DgrVqxg2LBh7Nixg44dO9a6T0lJCSUlJVXf5+Xl0aFDB3Jzc4mLi2v+ixEREREREQkieXl5xMfHnzCn8sjI5NKlS4mPj69KJAFOPvlk4uPjWbJkSYOPk5ubi81mIyEhoc59ZsyYUTWVNj4+ng4dOjQndBEREREREWkAjyST2dnZJCUl1dielJREdnZ2g45RXFzMXXfdxcSJE+vNhu+++25yc3Orvnbu3NnkuEVERERERKRhGpVM3n///dhstnq/Vq5cCZheJcdzuVy1bj9eWVkZV1xxBU6nk6eeeqrefcPDw4mLi6v2JSIiIiIiIp4V0pid//CHP3DFFVfUu0/nzp358ccf2bNnT42f7d27l+Tk5HofX1ZWxmWXXca2bdtYuHChkkMREREREREf1KhkslWrVrRq1eqE+40YMYLc3FyWL1/OsGHDAPj+++/Jzc1l5MiRdT6uMpH8+eef+eqrr0hMTGxMeCIiIiIiIuIlHlkz2bt3b8aNG8d1113HsmXLWLZsGddddx3nnXdetUquvXr14v333wegvLycSy+9lJUrV/Laa69RUVFBdnY22dnZlJaWeiJMERERERERaSKP9Zl87bXX6NevH2PHjmXs2LH079+fV155pdo+mzZtIjc3F4Bdu3Yxd+5cdu3axcCBA2nbtm3VV2MqwIqIiIiIiIjneaTPpJUa2hNFREREREREarK0z6SIiIiIiIgENiWTIiIiIiIi0mhKJkVERERERKTRlEyKiIiIiIhIoymZFBERERERkUYLsToAd6ssTpuXl2dxJCIiIiIiIv6nMpc6UeOPgEsm8/PzAejQoYPFkYiIiIiIiPiv/Px84uPj6/x5wPWZdDqd9OjRg1WrVmGz2dx23KFDh7JixQq3Hc9fjpmXl0eHDh3YuXOn2/p2+sPrDuZj+kOMwXxMfzjHwT/+LT1xTH+I0V+O6Q8x+ssx9V4efMf0hxiD+Zj+cI67XC4GDx7M5s2bsdvrXhkZcCOTdrudsLCwejPopnA4HG79oOVPxwSIi4tz23H95XUH6zH9IcZgPqY/nOPgH/+WnjimP8ToL8f0hxj96Zig9/JgOqY/xBjMx/SHcxwgLCys3kQSArQAz4033qhj+jB/ed3Bekx/iDGYj+kP5zj4x7+lJ47pDzH6yzH9IUZ/Oqa7+cvrDtZj+kOMwXxMfzjHoWFxBtw0V3GvvLw84uPjyc3N9cgVFBGxls5xkcCn81wksFl5jgfkyKS4T3h4OPfddx/h4eFWhyIiHqBzXCTw6TwXCWxWnuMamRQREREREZFG08ikiIiIiIiINJqSSRE5IZvNxgcffGB1GCLiQTrPRQKbznHxBCWTIkFoypQpXHjhhVaHISIepPNcJLDpHBdfoGRSREREREREGk3JZBDTFS0B6Ny5MzNnzqy2beDAgdx///2WxCPupfNcQOd5INM5LqBzPND58nmuZFJEREREREQaTcmkADB//nxOPfVUEhISSExM5LzzzmPLli1VP9++fTs2m4333nuPMWPGEBUVxYABA1i6dKmFUYtIY+g8FwlsOsdFAp+vnedKJgWAw4cPc+utt7JixQq+/PJL7HY7F110EU6ns9p+9957L7fffjtr166lR48e/OY3v6G8vNyiqEWkMXSeiwQ2neMigc/XzvMQtx9R/NIll1xS7fvnn3+epKQk0tPT6du3b9X222+/nXPPPReABx54gD59+vDLL7/Qq1cvr8Yr7mO323G5XNW2lZWVWRSNeJLO8+Cl8zw46BwPXjrHg4evnecamRQAtmzZwsSJE+nSpQtxcXGkpqYCkJGRUW2//v37V91v27YtADk5Od4LVNyudevWZGVlVX2fl5fHtm3bLIxIPEXnefDSeR4cdI4HL53jwcPXznONTAoA559/Ph06dODZZ58lJSUFp9NJ3759KS0trbZfaGho1X2bzQZQY1hd/Mvpp5/Oiy++yPnnn0+LFi34y1/+gsPhsDos8QCd58FL53lw0DkevHSOBw9fO8+VTAr79+9nw4YNPP3004waNQqAb7/91uKoxJOcTichIeb0v/vuu9m6dSvnnXce8fHxPPTQQ7qaGYB0ngcfnefBRed48NE5Hnx88TxXMim0aNGCxMREnnnmGdq2bUtGRgZ33XWX1WGJB+Xk5NCtWzcA4uLieOutt6r9/Kqrrqr2/fHrMMT/6DwPPjrPg4vO8eCjczz4+OJ5rjWTQazyipbdbufNN99k1apV9O3bl1tuuYX/+7//szo88YCDBw/yySef8PXXX3PmmWdaHY54gc7z4KPzPLjoHA8+OseDjy+f5xqZDGLHXtE688wzSU9Pr/bzY69gde7cucYVrYSEBF3l8jPXXHMNK1as4LbbbuOCCy6wOhzxAp3nwUfneXDROR58dI4HH18+z5VMBqGDBw+yZMkSvv76a6ZNm2Z1OOJF77//vtUhiJfoPA9eOs+Dg87x4KVzPHj4w3muZDII6YqWSODTeS4S2HSOiwQ+fzjPbS7NbRAREREREZFGUgEeERERERERaTQlkyIiIiIiItJoSiYD3IwZMxg6dCixsbEkJSVx4YUXsmnTpmr7uFwu7r//flJSUoiMjOS0007jp59+qvr5gQMHuOmmm+jZsydRUVF07NiRm2++mdzc3GrHOXjwIJMmTSI+Pp74+HgmTZrEoUOHvPEyRYKWN8/xv//974wcOZKoqCgSEhK88fJEBO+d59u3b2fq1KmkpqYSGRlJ165due+++ygtLfXaaxUJRt58L58wYQIdO3YkIiKCtm3bMmnSJDIzM5scu5LJALdo0SJuvPFGli1bxoIFCygvL2fs2LEcPny4ap/HHnuMxx9/nP/+97+sWLGCNm3acNZZZ5Gfnw9AZmYmmZmZ/OMf/2DdunW8+OKLzJ8/n6lTp1Z7rokTJ7J27Vrmz5/P/PnzWbt2LZMmTfLq6xUJNt48x0tLS/n1r3/NDTfc4NXXKBLsvHWeb9y4EafTydNPP81PP/3Ev/71L/73v/9xzz33eP01iwQTb76Xjxkzhjlz5rBp0ybeffddtmzZwqWXXtr04F0SVHJyclyAa9GiRS6Xy+VyOp2uNm3auB555JGqfYqLi13x8fGu//3vf3UeZ86cOa6wsDBXWVmZy+VyudLT012Aa9myZVX7LF261AW4Nm7c6KFXIyLH89Q5fqzZs2e74uPj3R67iDSMN87zSo899pgrNTXVfcGLyAl58xz/8MMPXTabzVVaWtqkWDUyGWQqh7pbtmwJwLZt28jOzmbs2LFV+4SHh/OrX/2KJUuW1HucuLg4QkJMd5mlS5cSHx/P8OHDq/Y5+eSTiY+Pr/c4IuJenjrHRcR3ePM8z83NrXoeEfEOb53jBw4c4LXXXmPkyJGEhoY2KVYlk0HE5XJx6623cuqpp9K3b18AsrOzAUhOTq62b3JyctXPjrd//34eeughfve731Vty87OJikpqca+SUlJdR5HRNzLk+e4iPgGb57nW7Zs4YknnvDZZukigcgb5/idd95JdHQ0iYmJZGRk8OGHHzY5XiWTQeQPf/gDP/74I2+88UaNn9lstmrfu1yuGtsA8vLyOPfcc0lLS+O+++6r9xj1HUdE3M/T57iIWM9b53lmZibjxo3j17/+Nddee617gheRE/LGOX7HHXewZs0aPv/8cxwOB5MnT8blcjUpXiWTQeKmm25i7ty5fPXVV7Rv375qe5s2bQBqXNXIycmpcfUjPz+fcePGERMTw/vvv19tOLxNmzbs2bOnxvPu3bu3xnFExP08fY6LiPW8dZ5nZmYyZswYRowYwTPPPOOBVyIitfHWOd6qVSt69OjBWWedxZtvvsm8efNYtmxZk2JWMhngXC4Xf/jDH3jvvfdYuHAhqamp1X6emppKmzZtWLBgQdW20tJSFi1axMiRI6u25eXlMXbsWMLCwpg7dy4RERHVjjNixAhyc3NZvnx51bbvv/+e3NzcascREffy1jkuItbx5nm+e/duTjvtNAYNGsTs2bOx2/VRUcTTrHwvrxyRLCkpaVLsqqwQ4G688UZef/11PvzwQ2JjY6uuaMTHxxMZGYnNZmP69Ok8/PDDdO/ene7du/Pwww8TFRXFxIkTAXOFY+zYsRQWFvLqq6+Sl5dHXl4eAK1bt8bhcNC7d2/GjRvHddddx9NPPw3A9ddfz3nnnUfPnj2tefEiQcBb5zhARkYGBw4cICMjg4qKCtauXQtAt27diImJ8f6LFwkS3jrPMzMzOe200+jYsSP/+Mc/2Lt3b1UMlSMjIuJ+3jrHly9fzvLlyzn11FNp0aIFW7du5a9//Stdu3ZlxIgRTQu+STVgxW8AtX7Nnj27ah+n0+m67777XG3atHGFh4e7Ro8e7Vq3bl3Vz7/66qs6j7Nt27aq/fbv3++68sorXbGxsa7Y2FjXlVde6Tp48KD3XqxIEPLmOX7VVVfVus9XX33lvRcsEoS8dZ7Pnj27zn1ExHO8dY7/+OOPrjFjxrhatmzpCg8Pd3Xu3Nk1bdo0165du5ocu+3ICxARERERERFpME2EFxERERERkUZTMikiIiIiIiKNpmRSREREREREGk3JpIiIiIiIiDSakkkRERERERFpNCWTIiIiIiIi0mhKJkVERERERKTRlEyKiIiIiIhIoymZFBERcZOvv/4am83GoUOHrA5FRETE42wul8tldRAiIiL+6LTTTmPgwIHMnDkTgNLSUg4cOEBycjI2m83a4ERERDwsxOoAREREAkVYWBht2rSxOgwRERGv0DRXERGRJpgyZQqLFi3i3//+NzabDZvNxosvvlhtmuuLL75IQkICH3/8MT179iQqKopLL72Uw4cP89JLL9G5c2datGjBTTfdREVFRdWxS0tL+dOf/kS7du2Ijo5m+PDhfP3119a8UBERkTpoZFJERKQJ/v3vf7N582b69u3Lgw8+CMBPP/1UY7/CwkL+85//8Oabb5Kfn8/FF1/MxRdfTEJCAvPmzWPr1q1ccsklnHrqqVx++eUAXH311Wzfvp0333yTlJQU3n//fcaNG8e6devo3r27V1+niIhIXZRMioiINEF8fDxhYWFERUVVTW3duHFjjf3KysqYNWsWXbt2BeDSSy/llVdeYc+ePcTExJCWlsaYMWP46quvuPzyy9myZQtvvPEGu3btIiUlBYDbb7+d+fPnM3v2bB5++GHvvUgREZF6KJkUERHxoKioqKpEEiA5OZnOnTsTExNTbVtOTg4Aq1evxuVy0aNHj2rHKSkpITEx0TtBi4iINICSSREREQ8KDQ2t9r3NZqt1m9PpBMDpdOJwOFi1ahUOh6PafscmoCIiIlZTMikiItJEYWFh1QrnuMNJJ51ERUUFOTk5jBo1yq3HFhERcSdVcxUREWmizp078/3337N9+3b27dtXNbrYHD169ODKK69k8uTJvPfee2zbto0VK1bw6KOPMm/ePDdELSIi4h5KJkVERJro9ttvx+FwkJaWRuvWrcnIyHDLcWfPns3kyZO57bbb6NmzJxMmTOD777+nQ4cObjm+iIiIO9hcLpfL6iBERERERETEv2hkUkRERERERBpNyaSIiIiIiIg0mpJJERERERERaTQlkyIiIiIiItJoSiZFRERERESk0ZRMioiIiIiISKMpmRQREREREZFGUzIpIiIiIiIijaZkUkRERERERBpNyaSIiIiIiIg0mpJJERERERERabT/B0I1HDcHkzlfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(11, 5))\n", + "yhat.predicted_mean.plot(label=\"NDVI forecast\", ax=ax, linestyle=\"dashed\", marker=\"o\")\n", + "ax.fill_between(\n", + " yhat.predicted_mean.index,\n", + " yhat.conf_int()[\"lower NDVI\"],\n", + " yhat.conf_int()[\"upper NDVI\"],\n", + " alpha=0.2,\n", + ")\n", + "ndvi[-36:].plot(label=\"Observations\", ax=ax, linestyle=\"dashed\", marker=\"o\")\n", + "plt.legend(loc=\"upper left\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our forecast looks reasonable in the context of the timeseries above. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "\n", + "## Additional information\n", + "\n", + "**License:** The code in this notebook is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). \n", + "Digital Earth Australia data is licensed under the [Creative Commons by Attribution 4.0](https://creativecommons.org/licenses/by/4.0/) license.\n", + "\n", + "**Contact:** If you need assistance, please post a question on the [Open Data Cube Slack channel](http://slack.opendatacube.org/) or on the [GIS Stack Exchange](https://gis.stackexchange.com/questions/ask?tags=open-data-cube) using the `open-data-cube` tag (you can view previously asked questions [here](https://gis.stackexchange.com/questions/tagged/open-data-cube)).\n", + "If you would like to report an issue with this notebook, you can file one on [Github](https://github.com/GeoscienceAustralia/dea-notebooks).\n", + "\n", + "**Last modified:** October 2023\n", + "\n", + "**Compatible datacube version:** " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.8.13\n" + ] + } + ], + "source": [ + "print(datacube.__version__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tags\n", + "Browse all available tags on the DEA User Guide's [Tags Index](https://docs.dea.ga.gov.au/genindex.html)" + ] + }, + { + "cell_type": "raw", + "metadata": { + "raw_mimetype": "text/restructuredtext" + }, + "source": [ + "**Tags**: :index:`NCI compatible`, :index:`sandbox compatible`, :index:`sentinel 2`, :index:`load_ard`, :index:`real world`, :index:`forecasting`" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "015dca0a33dc4d3e8b4b8d7659cd0fed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "029256688c654bdc97a645911162fc09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "bar_style": "success", + "layout": "IPY_MODEL_2eb98d96d1f24b8fb7bf5c23ec8fe6c3", + "max": 81, + "style": "IPY_MODEL_fdeff1bd9f324adbb9dd8761bb6874c6", + "value": 81 + } + }, + "2eb98d96d1f24b8fb7bf5c23ec8fe6c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "45eb08b15cc94eec92285877c2858705": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "6123001db22f4f788daa55b686e4cd50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_bc2d415f31314ef0a83eb09c8c87b70c", + "style": "IPY_MODEL_015dca0a33dc4d3e8b4b8d7659cd0fed", + "value": " 81/81 [02:11<00:00, 2.61s/it]" + } + }, + "68d94e4355674718ad87b5f283afbb23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc2d415f31314ef0a83eb09c8c87b70c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c0b48b127fdb4498b5a8f833e3ac03dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c4f2c665bbf24d338113f8f21c0d09ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_fe7535f186984a98b39c60c3398bd987", + "IPY_MODEL_029256688c654bdc97a645911162fc09", + "IPY_MODEL_6123001db22f4f788daa55b686e4cd50" + ], + "layout": "IPY_MODEL_c0b48b127fdb4498b5a8f833e3ac03dc" + } + }, + "fdeff1bd9f324adbb9dd8761bb6874c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "fe7535f186984a98b39c60c3398bd987": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_45eb08b15cc94eec92285877c2858705", + "style": "IPY_MODEL_68d94e4355674718ad87b5f283afbb23", + "value": "100%" + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Real_world_examples/README.rst b/Real_world_examples/README.rst index 2e8eec940..5aa22ce31 100644 --- a/Real_world_examples/README.rst +++ b/Real_world_examples/README.rst @@ -13,6 +13,7 @@ More complex case study-based workflows demonstrating how DEA can be used to add Chlorophyll_monitoring.ipynb Coastal_erosion.ipynb Estimate_climate_driver_influence_on_rainfall.ipynb + Forecasting_vegetation_condition.ipynb Intertidal_elevation.ipynb Mapping_inundation_using_stream_gauges.ipynb Radar_water_detection.ipynb