-
-Channel Interpolation based on SRCNN and DnCNN
-Project-3
+
+Artificial Intelligence and Machine Learning (AI-ML) for CSI Compression and Reconstruction in 5G Networks
+
@@ -1970,7 +2071,7 @@ Channel Interpolation based on SRCNN and DnCNN Previous
- Next
+ Next
diff --git a/api/Projects/Project3/trainCSINet.html b/api/Projects/Project3/trainCSINet.html
new file mode 100644
index 00000000..0568d62f
--- /dev/null
+++ b/api/Projects/Project3/trainCSINet.html
@@ -0,0 +1,3058 @@
+
+
+
+
+
+
+
Training the CSINet — 5G Toolkit R24a documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 5G Toolkit
+
+
+
+
+
+
+
+
+
+
+Training the CSINet
+
+Import Libraries
+
+Import Python Libraries
+
+
+
+
+Important AI-ML Libraries
+
+
+
+
+Set Training Parameters
+
+
+
+
+
+
+**************************
+Number of subcarriers: 32
+Number of encoded bits: 512
+Number of antennas: 32
+Number of batches: 110000
+**************************
+
+
+
+
+
+
+
+
+
+
+Epoch 1/1000
+20/20 [==============================] - 71s 4s/step - loss: 1.7742e-04 - val_loss: 0.0043
+Epoch 2/1000
+20/20 [==============================] - 71s 4s/step - loss: 1.7259e-04 - val_loss: 0.0037
+Epoch 3/1000
+20/20 [==============================] - 70s 4s/step - loss: 1.6864e-04 - val_loss: 0.0029
+Epoch 4/1000
+20/20 [==============================] - 70s 4s/step - loss: 1.6530e-04 - val_loss: 0.0022
+Epoch 5/1000
+20/20 [==============================] - 71s 4s/step - loss: 1.6243e-04 - val_loss: 0.0017
+Epoch 6/1000
+20/20 [==============================] - 71s 4s/step - loss: 1.6001e-04 - val_loss: 0.0015
+Epoch 7/1000
+20/20 [==============================] - 72s 4s/step - loss: 1.5802e-04 - val_loss: 0.0013
+Epoch 8/1000
+20/20 [==============================] - 72s 4s/step - loss: 1.5634e-04 - val_loss: 0.0011
+Epoch 9/1000
+20/20 [==============================] - 72s 4s/step - loss: 1.5492e-04 - val_loss: 8.7465e-04
+Epoch 10/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.5370e-04 - val_loss: 6.8815e-04
+Epoch 11/1000
+20/20 [==============================] - 72s 4s/step - loss: 1.5262e-04 - val_loss: 5.2990e-04
+Epoch 12/1000
+20/20 [==============================] - 72s 4s/step - loss: 1.5167e-04 - val_loss: 4.0591e-04
+Epoch 13/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.5085e-04 - val_loss: 3.1419e-04
+Epoch 14/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.5011e-04 - val_loss: 2.5195e-04
+Epoch 15/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4947e-04 - val_loss: 2.1186e-04
+Epoch 16/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4891e-04 - val_loss: 1.8665e-04
+Epoch 17/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4841e-04 - val_loss: 1.7138e-04
+Epoch 18/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4796e-04 - val_loss: 1.6209e-04
+Epoch 19/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4754e-04 - val_loss: 1.5635e-04
+Epoch 20/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4717e-04 - val_loss: 1.5279e-04
+Epoch 21/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4683e-04 - val_loss: 1.5035e-04
+Epoch 22/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4653e-04 - val_loss: 1.4878e-04
+Epoch 23/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4625e-04 - val_loss: 1.4770e-04
+Epoch 24/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4599e-04 - val_loss: 1.4683e-04
+Epoch 25/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4575e-04 - val_loss: 1.4617e-04
+Epoch 26/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4553e-04 - val_loss: 1.4551e-04
+Epoch 27/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4533e-04 - val_loss: 1.4505e-04
+Epoch 28/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4512e-04 - val_loss: 1.4463e-04
+Epoch 29/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4493e-04 - val_loss: 1.4427e-04
+Epoch 30/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4475e-04 - val_loss: 1.4402e-04
+Epoch 31/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4457e-04 - val_loss: 1.4354e-04
+Epoch 32/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4440e-04 - val_loss: 1.4335e-04
+Epoch 33/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4423e-04 - val_loss: 1.4307e-04
+Epoch 34/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4407e-04 - val_loss: 1.4283e-04
+Epoch 35/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4391e-04 - val_loss: 1.4230e-04
+Epoch 36/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4376e-04 - val_loss: 1.4228e-04
+Epoch 37/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4361e-04 - val_loss: 1.4194e-04
+Epoch 38/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4346e-04 - val_loss: 1.4173e-04
+Epoch 39/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4332e-04 - val_loss: 1.4149e-04
+Epoch 40/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4318e-04 - val_loss: 1.4133e-04
+Epoch 41/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.4304e-04 - val_loss: 1.4106e-04
+Epoch 42/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4289e-04 - val_loss: 1.4086e-04
+Epoch 43/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4274e-04 - val_loss: 1.4061e-04
+Epoch 44/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4261e-04 - val_loss: 1.4033e-04
+Epoch 45/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4249e-04 - val_loss: 1.4021e-04
+Epoch 46/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4235e-04 - val_loss: 1.4001e-04
+Epoch 47/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4221e-04 - val_loss: 1.3973e-04
+Epoch 48/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4211e-04 - val_loss: 1.3967e-04
+Epoch 49/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4198e-04 - val_loss: 1.3946e-04
+Epoch 50/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4185e-04 - val_loss: 1.3920e-04
+Epoch 51/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4172e-04 - val_loss: 1.3910e-04
+Epoch 52/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4156e-04 - val_loss: 1.3889e-04
+Epoch 53/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4144e-04 - val_loss: 1.3886e-04
+Epoch 54/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4130e-04 - val_loss: 1.3855e-04
+Epoch 55/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4118e-04 - val_loss: 1.3846e-04
+Epoch 56/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4106e-04 - val_loss: 1.3834e-04
+Epoch 57/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4092e-04 - val_loss: 1.3812e-04
+Epoch 58/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4080e-04 - val_loss: 1.3790e-04
+Epoch 59/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4067e-04 - val_loss: 1.3776e-04
+Epoch 60/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4056e-04 - val_loss: 1.3763e-04
+Epoch 61/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4044e-04 - val_loss: 1.3736e-04
+Epoch 62/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4029e-04 - val_loss: 1.3737e-04
+Epoch 63/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4013e-04 - val_loss: 1.3721e-04
+Epoch 64/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4004e-04 - val_loss: 1.3699e-04
+Epoch 65/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3984e-04 - val_loss: 1.3682e-04
+Epoch 66/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3969e-04 - val_loss: 1.3674e-04
+Epoch 67/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3956e-04 - val_loss: 1.3660e-04
+Epoch 68/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3942e-04 - val_loss: 1.3652e-04
+Epoch 69/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.3928e-04 - val_loss: 1.3637e-04
+Epoch 70/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3915e-04 - val_loss: 1.3635e-04
+Epoch 71/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3897e-04 - val_loss: 1.3625e-04
+Epoch 72/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3884e-04 - val_loss: 1.3625e-04
+Epoch 73/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3883e-04 - val_loss: 1.3603e-04
+Epoch 74/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3857e-04 - val_loss: 1.3597e-04
+Epoch 75/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3841e-04 - val_loss: 1.3604e-04
+Epoch 76/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3821e-04 - val_loss: 1.3579e-04
+Epoch 77/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3795e-04 - val_loss: 1.3555e-04
+Epoch 78/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3775e-04 - val_loss: 1.3563e-04
+Epoch 79/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3756e-04 - val_loss: 1.3545e-04
+Epoch 80/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3738e-04 - val_loss: 1.3547e-04
+Epoch 81/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3722e-04 - val_loss: 1.3548e-04
+Epoch 82/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3710e-04 - val_loss: 1.3555e-04
+Epoch 83/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3696e-04 - val_loss: 1.3547e-04
+Epoch 84/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3697e-04 - val_loss: 1.3563e-04
+Epoch 85/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3651e-04 - val_loss: 1.3530e-04
+Epoch 86/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3612e-04 - val_loss: 1.3516e-04
+Epoch 87/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3613e-04 - val_loss: 1.3505e-04
+Epoch 88/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.3574e-04 - val_loss: 1.3499e-04
+Epoch 89/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3578e-04 - val_loss: 1.3540e-04
+Epoch 90/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3549e-04 - val_loss: 1.3534e-04
+Epoch 91/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3534e-04 - val_loss: 1.3487e-04
+Epoch 92/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3491e-04 - val_loss: 1.3490e-04
+Epoch 93/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3475e-04 - val_loss: 1.3490e-04
+Epoch 94/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3442e-04 - val_loss: 1.3471e-04
+Epoch 95/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3440e-04 - val_loss: 1.3496e-04
+Epoch 96/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3414e-04 - val_loss: 1.3508e-04
+Epoch 97/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3431e-04 - val_loss: 1.3493e-04
+Epoch 98/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3403e-04 - val_loss: 1.3515e-04
+Epoch 99/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3323e-04 - val_loss: 1.3469e-04
+Epoch 100/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3297e-04 - val_loss: 1.3585e-04
+Epoch 101/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3307e-04 - val_loss: 1.3581e-04
+Epoch 102/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3270e-04 - val_loss: 1.3471e-04
+Epoch 103/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3247e-04 - val_loss: 1.3364e-04
+Epoch 104/1000
+20/20 [==============================] - 75s 4s/step - loss: 2.7186e-04 - val_loss: 5.9999e-04
+Epoch 105/1000
+20/20 [==============================] - 75s 4s/step - loss: 2.4725e-04 - val_loss: 8.0587e-04
+Epoch 106/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4827e-04 - val_loss: 6.0315e-04
+Epoch 107/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3956e-04 - val_loss: 3.6259e-04
+Epoch 108/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3717e-04 - val_loss: 2.5379e-04
+Epoch 109/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3604e-04 - val_loss: 2.0073e-04
+Epoch 110/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3526e-04 - val_loss: 1.7553e-04
+Epoch 111/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3462e-04 - val_loss: 1.6115e-04
+Epoch 112/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3404e-04 - val_loss: 1.5349e-04
+Epoch 113/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3351e-04 - val_loss: 1.4661e-04
+Epoch 114/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3302e-04 - val_loss: 1.4291e-04
+Epoch 115/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3255e-04 - val_loss: 1.4210e-04
+Epoch 116/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3211e-04 - val_loss: 1.4070e-04
+Epoch 117/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3170e-04 - val_loss: 1.3908e-04
+Epoch 118/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3131e-04 - val_loss: 1.3821e-04
+Epoch 119/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3093e-04 - val_loss: 1.3706e-04
+Epoch 120/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3058e-04 - val_loss: 1.3630e-04
+Epoch 121/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3024e-04 - val_loss: 1.3509e-04
+Epoch 122/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2990e-04 - val_loss: 1.3495e-04
+Epoch 123/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2958e-04 - val_loss: 1.3444e-04
+Epoch 124/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2927e-04 - val_loss: 1.3385e-04
+Epoch 125/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2897e-04 - val_loss: 1.3401e-04
+Epoch 126/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2869e-04 - val_loss: 1.3360e-04
+Epoch 127/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2841e-04 - val_loss: 1.3312e-04
+Epoch 128/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2815e-04 - val_loss: 1.3210e-04
+Epoch 129/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2788e-04 - val_loss: 1.3211e-04
+Epoch 130/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2762e-04 - val_loss: 1.3188e-04
+Epoch 131/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2736e-04 - val_loss: 1.3199e-04
+Epoch 132/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2712e-04 - val_loss: 1.3122e-04
+Epoch 133/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2690e-04 - val_loss: 1.3178e-04
+Epoch 134/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2663e-04 - val_loss: 1.3107e-04
+Epoch 135/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2638e-04 - val_loss: 1.3061e-04
+Epoch 136/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2614e-04 - val_loss: 1.3039e-04
+Epoch 137/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2590e-04 - val_loss: 1.3072e-04
+Epoch 138/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2567e-04 - val_loss: 1.2932e-04
+Epoch 139/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2542e-04 - val_loss: 1.3050e-04
+Epoch 140/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2519e-04 - val_loss: 1.2852e-04
+Epoch 141/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2502e-04 - val_loss: 1.2818e-04
+Epoch 142/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2473e-04 - val_loss: 1.2908e-04
+Epoch 143/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2453e-04 - val_loss: 1.3138e-04
+Epoch 144/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2444e-04 - val_loss: 1.2780e-04
+Epoch 145/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2419e-04 - val_loss: 1.2681e-04
+Epoch 146/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2402e-04 - val_loss: 1.2615e-04
+Epoch 147/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2369e-04 - val_loss: 1.2638e-04
+Epoch 148/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2352e-04 - val_loss: 1.2830e-04
+Epoch 149/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2314e-04 - val_loss: 1.2605e-04
+Epoch 150/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2286e-04 - val_loss: 1.2743e-04
+Epoch 151/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2271e-04 - val_loss: 1.2598e-04
+Epoch 152/1000
+20/20 [==============================] - 74s 4s/step - loss: 0.0011 - val_loss: 0.0030
+Epoch 153/1000
+20/20 [==============================] - 74s 4s/step - loss: 8.0737e-04 - val_loss: 7.5406e-04
+Epoch 154/1000
+20/20 [==============================] - 74s 4s/step - loss: 2.2217e-04 - val_loss: 4.4022e-04
+Epoch 155/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.6454e-04 - val_loss: 2.8927e-04
+Epoch 156/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.5252e-04 - val_loss: 2.2517e-04
+Epoch 157/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4766e-04 - val_loss: 1.9435e-04
+Epoch 158/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4478e-04 - val_loss: 1.7687e-04
+Epoch 159/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4276e-04 - val_loss: 1.6398e-04
+Epoch 160/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4121e-04 - val_loss: 1.5581e-04
+Epoch 161/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.4001e-04 - val_loss: 1.5050e-04
+Epoch 162/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3907e-04 - val_loss: 1.4714e-04
+Epoch 163/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3830e-04 - val_loss: 1.4454e-04
+Epoch 164/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3767e-04 - val_loss: 1.4247e-04
+Epoch 165/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3711e-04 - val_loss: 1.4100e-04
+Epoch 166/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3661e-04 - val_loss: 1.3959e-04
+Epoch 167/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3615e-04 - val_loss: 1.3854e-04
+Epoch 168/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.3572e-04 - val_loss: 1.3760e-04
+Epoch 169/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3533e-04 - val_loss: 1.3684e-04
+Epoch 170/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3495e-04 - val_loss: 1.3616e-04
+Epoch 171/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3460e-04 - val_loss: 1.3561e-04
+Epoch 172/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3425e-04 - val_loss: 1.3502e-04
+Epoch 173/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3392e-04 - val_loss: 1.3455e-04
+Epoch 174/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3358e-04 - val_loss: 1.3413e-04
+Epoch 175/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3325e-04 - val_loss: 1.3369e-04
+Epoch 176/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3293e-04 - val_loss: 1.3329e-04
+Epoch 177/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3260e-04 - val_loss: 1.3295e-04
+Epoch 178/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3227e-04 - val_loss: 1.3262e-04
+Epoch 179/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3195e-04 - val_loss: 1.3225e-04
+Epoch 180/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3163e-04 - val_loss: 1.3183e-04
+Epoch 181/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3131e-04 - val_loss: 1.3149e-04
+Epoch 182/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3098e-04 - val_loss: 1.3120e-04
+Epoch 183/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3064e-04 - val_loss: 1.3091e-04
+Epoch 184/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3031e-04 - val_loss: 1.3061e-04
+Epoch 185/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2998e-04 - val_loss: 1.3030e-04
+Epoch 186/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2967e-04 - val_loss: 1.2996e-04
+Epoch 187/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2935e-04 - val_loss: 1.2962e-04
+Epoch 188/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2905e-04 - val_loss: 1.2936e-04
+Epoch 189/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2875e-04 - val_loss: 1.2912e-04
+Epoch 190/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2843e-04 - val_loss: 1.2879e-04
+Epoch 191/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2811e-04 - val_loss: 1.2853e-04
+Epoch 192/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2781e-04 - val_loss: 1.2833e-04
+Epoch 193/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2751e-04 - val_loss: 1.2804e-04
+Epoch 194/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2720e-04 - val_loss: 1.2780e-04
+Epoch 195/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2690e-04 - val_loss: 1.2748e-04
+Epoch 196/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2660e-04 - val_loss: 1.2726e-04
+Epoch 197/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2631e-04 - val_loss: 1.2693e-04
+Epoch 198/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2602e-04 - val_loss: 1.2667e-04
+Epoch 199/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2573e-04 - val_loss: 1.2636e-04
+Epoch 200/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2544e-04 - val_loss: 1.2612e-04
+Epoch 201/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2515e-04 - val_loss: 1.2579e-04
+Epoch 202/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2487e-04 - val_loss: 1.2556e-04
+Epoch 203/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2458e-04 - val_loss: 1.2523e-04
+Epoch 204/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2428e-04 - val_loss: 1.2499e-04
+Epoch 205/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2400e-04 - val_loss: 1.2467e-04
+Epoch 206/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2372e-04 - val_loss: 1.2451e-04
+Epoch 207/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2344e-04 - val_loss: 1.2414e-04
+Epoch 208/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2316e-04 - val_loss: 1.2387e-04
+Epoch 209/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2288e-04 - val_loss: 1.2359e-04
+Epoch 210/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2261e-04 - val_loss: 1.2337e-04
+Epoch 211/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2236e-04 - val_loss: 1.2307e-04
+Epoch 212/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2208e-04 - val_loss: 1.2280e-04
+Epoch 213/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2182e-04 - val_loss: 1.2255e-04
+Epoch 214/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.2157e-04 - val_loss: 1.2229e-04
+Epoch 215/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2131e-04 - val_loss: 1.2206e-04
+Epoch 216/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2107e-04 - val_loss: 1.2184e-04
+Epoch 217/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2080e-04 - val_loss: 1.2160e-04
+Epoch 218/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2056e-04 - val_loss: 1.2135e-04
+Epoch 219/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2031e-04 - val_loss: 1.2108e-04
+Epoch 220/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2006e-04 - val_loss: 1.2086e-04
+Epoch 221/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1980e-04 - val_loss: 1.2061e-04
+Epoch 222/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1956e-04 - val_loss: 1.2034e-04
+Epoch 223/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1932e-04 - val_loss: 1.2015e-04
+Epoch 224/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1907e-04 - val_loss: 1.1992e-04
+Epoch 225/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1883e-04 - val_loss: 1.1964e-04
+Epoch 226/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1859e-04 - val_loss: 1.1946e-04
+Epoch 227/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1836e-04 - val_loss: 1.1924e-04
+Epoch 228/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1812e-04 - val_loss: 1.1901e-04
+Epoch 229/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1788e-04 - val_loss: 1.1873e-04
+Epoch 230/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1762e-04 - val_loss: 1.1849e-04
+Epoch 231/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1739e-04 - val_loss: 1.1824e-04
+Epoch 232/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1716e-04 - val_loss: 1.1801e-04
+Epoch 233/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1693e-04 - val_loss: 1.1782e-04
+Epoch 234/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1669e-04 - val_loss: 1.1772e-04
+Epoch 235/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1644e-04 - val_loss: 1.1742e-04
+Epoch 236/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1620e-04 - val_loss: 1.1717e-04
+Epoch 237/1000
+20/20 [==============================] - 73s 4s/step - loss: 1.1600e-04 - val_loss: 1.1697e-04
+Epoch 238/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1574e-04 - val_loss: 1.1671e-04
+Epoch 239/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1550e-04 - val_loss: 1.1646e-04
+Epoch 240/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1526e-04 - val_loss: 1.1627e-04
+Epoch 241/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1501e-04 - val_loss: 1.1614e-04
+Epoch 242/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1479e-04 - val_loss: 1.1579e-04
+Epoch 243/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1453e-04 - val_loss: 1.1561e-04
+Epoch 244/1000
+20/20 [==============================] - 76s 4s/step - loss: 1.1430e-04 - val_loss: 1.1536e-04
+Epoch 245/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1407e-04 - val_loss: 1.1516e-04
+Epoch 246/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1384e-04 - val_loss: 1.1494e-04
+Epoch 247/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1361e-04 - val_loss: 1.1468e-04
+Epoch 248/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1338e-04 - val_loss: 1.1452e-04
+Epoch 249/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1312e-04 - val_loss: 1.1422e-04
+Epoch 250/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1291e-04 - val_loss: 1.1400e-04
+Epoch 251/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1267e-04 - val_loss: 1.1378e-04
+Epoch 252/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1242e-04 - val_loss: 1.1359e-04
+Epoch 253/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1221e-04 - val_loss: 1.1342e-04
+Epoch 254/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1198e-04 - val_loss: 1.1317e-04
+Epoch 255/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1179e-04 - val_loss: 1.1296e-04
+Epoch 256/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1158e-04 - val_loss: 1.1277e-04
+Epoch 257/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1134e-04 - val_loss: 1.1292e-04
+Epoch 258/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1103e-04 - val_loss: 1.1229e-04
+Epoch 259/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1094e-04 - val_loss: 1.1236e-04
+Epoch 260/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1069e-04 - val_loss: 1.1202e-04
+Epoch 261/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1052e-04 - val_loss: 1.1211e-04
+Epoch 262/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1020e-04 - val_loss: 1.1182e-04
+Epoch 263/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0999e-04 - val_loss: 1.1120e-04
+Epoch 264/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0988e-04 - val_loss: 1.1105e-04
+Epoch 265/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0971e-04 - val_loss: 1.1073e-04
+Epoch 266/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0925e-04 - val_loss: 1.1168e-04
+Epoch 267/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0918e-04 - val_loss: 1.1021e-04
+Epoch 268/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0899e-04 - val_loss: 1.1207e-04
+Epoch 269/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0908e-04 - val_loss: 1.1036e-04
+Epoch 270/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0850e-04 - val_loss: 1.1063e-04
+Epoch 271/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0808e-04 - val_loss: 1.0979e-04
+Epoch 272/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0885e-04 - val_loss: 1.1182e-04
+Epoch 273/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0896e-04 - val_loss: 1.0897e-04
+Epoch 274/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0755e-04 - val_loss: 1.0890e-04
+Epoch 275/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0726e-04 - val_loss: 1.0942e-04
+Epoch 276/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0698e-04 - val_loss: 1.0837e-04
+Epoch 277/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0682e-04 - val_loss: 1.1710e-04
+Epoch 278/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1099e-04 - val_loss: 1.0862e-04
+Epoch 279/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0679e-04 - val_loss: 1.0775e-04
+Epoch 280/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0615e-04 - val_loss: 1.0787e-04
+Epoch 281/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0580e-04 - val_loss: 1.0705e-04
+Epoch 282/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0551e-04 - val_loss: 1.0705e-04
+Epoch 283/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0542e-04 - val_loss: 1.0673e-04
+Epoch 284/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0500e-04 - val_loss: 1.0644e-04
+Epoch 285/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0506e-04 - val_loss: 1.0654e-04
+Epoch 286/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0493e-04 - val_loss: 1.0618e-04
+Epoch 287/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0476e-04 - val_loss: 1.0601e-04
+Epoch 288/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0445e-04 - val_loss: 1.0588e-04
+Epoch 289/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0439e-04 - val_loss: 1.1388e-04
+Epoch 290/1000
+20/20 [==============================] - 74s 4s/step - loss: 0.0033 - val_loss: 0.0015
+Epoch 291/1000
+20/20 [==============================] - 74s 4s/step - loss: 6.8803e-04 - val_loss: 4.5921e-04
+Epoch 292/1000
+20/20 [==============================] - 74s 4s/step - loss: 2.5436e-04 - val_loss: 3.2132e-04
+Epoch 293/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.8278e-04 - val_loss: 2.6234e-04
+Epoch 294/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.6361e-04 - val_loss: 2.2145e-04
+Epoch 295/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.5566e-04 - val_loss: 1.9489e-04
+Epoch 296/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.5087e-04 - val_loss: 1.7818e-04
+Epoch 297/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.4780e-04 - val_loss: 1.6677e-04
+Epoch 298/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4506e-04 - val_loss: 1.5912e-04
+Epoch 299/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.4321e-04 - val_loss: 1.5355e-04
+Epoch 300/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4175e-04 - val_loss: 1.4977e-04
+Epoch 301/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.4046e-04 - val_loss: 1.4725e-04
+Epoch 302/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3919e-04 - val_loss: 1.4475e-04
+Epoch 303/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3819e-04 - val_loss: 1.4305e-04
+Epoch 304/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3741e-04 - val_loss: 1.4133e-04
+Epoch 305/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3681e-04 - val_loss: 1.4008e-04
+Epoch 306/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3607e-04 - val_loss: 1.3953e-04
+Epoch 307/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3530e-04 - val_loss: 1.3845e-04
+Epoch 308/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3476e-04 - val_loss: 1.3803e-04
+Epoch 309/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3423e-04 - val_loss: 1.3714e-04
+Epoch 310/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3372e-04 - val_loss: 1.3652e-04
+Epoch 311/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.3321e-04 - val_loss: 1.3604e-04
+Epoch 312/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3306e-04 - val_loss: 1.3567e-04
+Epoch 313/1000
+20/20 [==============================] - 76s 4s/step - loss: 1.3240e-04 - val_loss: 1.3451e-04
+Epoch 314/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3208e-04 - val_loss: 1.3424e-04
+Epoch 315/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3160e-04 - val_loss: 1.3382e-04
+Epoch 316/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3120e-04 - val_loss: 1.3358e-04
+Epoch 317/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3088e-04 - val_loss: 1.3309e-04
+Epoch 318/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3050e-04 - val_loss: 1.3270e-04
+Epoch 319/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.3017e-04 - val_loss: 1.3238e-04
+Epoch 320/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2989e-04 - val_loss: 1.3204e-04
+Epoch 321/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2962e-04 - val_loss: 1.3130e-04
+Epoch 322/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2926e-04 - val_loss: 1.3111e-04
+Epoch 323/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2894e-04 - val_loss: 1.3055e-04
+Epoch 324/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2852e-04 - val_loss: 1.3025e-04
+Epoch 325/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2838e-04 - val_loss: 1.2969e-04
+Epoch 326/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2781e-04 - val_loss: 1.2949e-04
+Epoch 327/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2745e-04 - val_loss: 1.2937e-04
+Epoch 328/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2715e-04 - val_loss: 1.2914e-04
+Epoch 329/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2690e-04 - val_loss: 1.2808e-04
+Epoch 330/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2680e-04 - val_loss: 1.2834e-04
+Epoch 331/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2634e-04 - val_loss: 1.2769e-04
+Epoch 332/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2582e-04 - val_loss: 1.2695e-04
+Epoch 333/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2542e-04 - val_loss: 1.2670e-04
+Epoch 334/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2497e-04 - val_loss: 1.2688e-04
+Epoch 335/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2454e-04 - val_loss: 1.2615e-04
+Epoch 336/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2421e-04 - val_loss: 1.2562e-04
+Epoch 337/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2386e-04 - val_loss: 1.2582e-04
+Epoch 338/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2343e-04 - val_loss: 1.2498e-04
+Epoch 339/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2306e-04 - val_loss: 1.2484e-04
+Epoch 340/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2273e-04 - val_loss: 1.2452e-04
+Epoch 341/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2228e-04 - val_loss: 1.2410e-04
+Epoch 342/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2190e-04 - val_loss: 1.2347e-04
+Epoch 343/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.2163e-04 - val_loss: 1.2318e-04
+Epoch 344/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2135e-04 - val_loss: 1.2322e-04
+Epoch 345/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2114e-04 - val_loss: 1.2283e-04
+Epoch 346/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2067e-04 - val_loss: 1.2238e-04
+Epoch 347/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2042e-04 - val_loss: 1.2186e-04
+Epoch 348/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.2004e-04 - val_loss: 1.2154e-04
+Epoch 349/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1972e-04 - val_loss: 1.2112e-04
+Epoch 350/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1937e-04 - val_loss: 1.2095e-04
+Epoch 351/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1906e-04 - val_loss: 1.2064e-04
+Epoch 352/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1887e-04 - val_loss: 1.2023e-04
+Epoch 353/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1848e-04 - val_loss: 1.1981e-04
+Epoch 354/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1839e-04 - val_loss: 1.1967e-04
+Epoch 355/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1819e-04 - val_loss: 1.1985e-04
+Epoch 356/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1771e-04 - val_loss: 1.1919e-04
+Epoch 357/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1737e-04 - val_loss: 1.1905e-04
+Epoch 358/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1710e-04 - val_loss: 1.1872e-04
+Epoch 359/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1681e-04 - val_loss: 1.1836e-04
+Epoch 360/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1669e-04 - val_loss: 1.1834e-04
+Epoch 361/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1627e-04 - val_loss: 1.1765e-04
+Epoch 362/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1601e-04 - val_loss: 1.1751e-04
+Epoch 363/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1577e-04 - val_loss: 1.1766e-04
+Epoch 364/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1562e-04 - val_loss: 1.1697e-04
+Epoch 365/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1522e-04 - val_loss: 1.1711e-04
+Epoch 366/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.1494e-04 - val_loss: 1.1649e-04
+Epoch 367/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1469e-04 - val_loss: 1.1652e-04
+Epoch 368/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1453e-04 - val_loss: 1.1623e-04
+Epoch 369/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1437e-04 - val_loss: 1.1564e-04
+Epoch 370/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1409e-04 - val_loss: 1.1576e-04
+Epoch 371/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1377e-04 - val_loss: 1.1534e-04
+Epoch 372/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1357e-04 - val_loss: 1.1498e-04
+Epoch 373/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1338e-04 - val_loss: 1.1499e-04
+Epoch 374/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1300e-04 - val_loss: 1.1487e-04
+Epoch 375/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1315e-04 - val_loss: 1.1486e-04
+Epoch 376/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1264e-04 - val_loss: 1.1431e-04
+Epoch 377/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1249e-04 - val_loss: 1.1441e-04
+Epoch 378/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1215e-04 - val_loss: 1.1364e-04
+Epoch 379/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1187e-04 - val_loss: 1.1359e-04
+Epoch 380/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1176e-04 - val_loss: 1.1313e-04
+Epoch 381/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1202e-04 - val_loss: 1.1292e-04
+Epoch 382/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1164e-04 - val_loss: 1.1271e-04
+Epoch 383/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1137e-04 - val_loss: 1.1249e-04
+Epoch 384/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1119e-04 - val_loss: 1.1263e-04
+Epoch 385/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1053e-04 - val_loss: 1.1232e-04
+Epoch 386/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1043e-04 - val_loss: 1.1188e-04
+Epoch 387/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.1014e-04 - val_loss: 1.1179e-04
+Epoch 388/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0998e-04 - val_loss: 1.1144e-04
+Epoch 389/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0969e-04 - val_loss: 1.1139e-04
+Epoch 390/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0942e-04 - val_loss: 1.1118e-04
+Epoch 391/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0932e-04 - val_loss: 1.1173e-04
+Epoch 392/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0985e-04 - val_loss: 1.1075e-04
+Epoch 393/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0881e-04 - val_loss: 1.1055e-04
+Epoch 394/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0861e-04 - val_loss: 1.1052e-04
+Epoch 395/1000
+20/20 [==============================] - 74s 4s/step - loss: 1.0847e-04 - val_loss: 1.1021e-04
+Epoch 396/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0827e-04 - val_loss: 1.0983e-04
+Epoch 397/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0802e-04 - val_loss: 1.0977e-04
+Epoch 398/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0783e-04 - val_loss: 1.0934e-04
+Epoch 399/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0756e-04 - val_loss: 1.0930e-04
+Epoch 400/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0741e-04 - val_loss: 1.0930e-04
+Epoch 401/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0714e-04 - val_loss: 1.0883e-04
+Epoch 402/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0708e-04 - val_loss: 1.0862e-04
+Epoch 403/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0690e-04 - val_loss: 1.0862e-04
+Epoch 404/1000
+20/20 [==============================] - 75s 4s/step - loss: 1.0714e-04 - val_loss: 1.0834e-04
+Epoch 405/1000
+ 9/20 [============>.................] - ETA: 41s - loss: 1.0775e-04
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/api/Projects/Project3/trainCSINet.ipynb b/api/Projects/Project3/trainCSINet.ipynb
new file mode 100644
index 00000000..39cd1e84
--- /dev/null
+++ b/api/Projects/Project3/trainCSINet.ipynb
@@ -0,0 +1,1047 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "073df96d",
+ "metadata": {},
+ "source": [
+ "# Training the CSINet\n",
+ "\n",
+ "## Import Libraries\n",
+ "\n",
+ "### Import Python Libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "acc4abd6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# %matplotlib widget\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib as mpl\n",
+ "\n",
+ "import os\n",
+ "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\"\n",
+ "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' \n",
+ "\n",
+ "import numpy as np\n",
+ "\n",
+ "# from IPython.display import display, HTML\n",
+ "# display(HTML(\"\"))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "57eb8d37",
+ "metadata": {},
+ "source": [
+ "## Important AI-ML Libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "4392fe8e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "import numpy as np\n",
+ "\n",
+ "from keras.layers import Input, Dense, BatchNormalization, Reshape, Conv2D, add, LeakyReLU\n",
+ "from keras.models import Model, load_model\n",
+ "from keras.callbacks import TensorBoard, Callback\n",
+ "\n",
+ "from csiNet import CSINet"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "25a16e12",
+ "metadata": {},
+ "source": [
+ "## Load Datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "b91c9b54",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "db = np.load(\"Databases/PreprocessedChannel-dB.npz\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8a5df3dd",
+ "metadata": {},
+ "source": [
+ "## Set Training Parameters"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "5aacef92",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "**************************\n",
+ "Number of subcarriers: 32\n",
+ "Number of encoded bits: 512\n",
+ "Number of antennas: 32\n",
+ "Number of batches: 110000\n",
+ "**************************\n"
+ ]
+ }
+ ],
+ "source": [
+ "numTaps = 32\n",
+ "codewordSize = 512\n",
+ "Hp = db[\"Hp\"]\n",
+ "Nt = db[\"Nt\"]\n",
+ "numBatches = Hp.shape[0]\n",
+ "\n",
+ "\n",
+ "print(\"**************************\")\n",
+ "print(\"Number of subcarriers: \"+str(numTaps))\n",
+ "print(\"Number of encoded bits: \"+str(codewordSize))\n",
+ "print(\"Number of antennas: \"+str(Nt))\n",
+ "print(\"Number of batches: \"+str(numBatches))\n",
+ "print(\"**************************\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "e491b89e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "csinet = CSINet()\n",
+ "model = csinet(Nt, numSubcarrier, codewordSize)\n",
+ "\n",
+ "i = int(0.9*numBatches)\n",
+ "k = int(numBatches)\n",
+ "\n",
+ "Htrain = Hp[0:i]\n",
+ "Hval = Hp[i:k]\n",
+ "# Htest = Hprep[k:numBatches]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "14cf3332",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# model = load_model('models/CSINet.keras')\n",
+ "# csinet.model = model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "eea28f44",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/1000\n",
+ "20/20 [==============================] - 71s 4s/step - loss: 1.7742e-04 - val_loss: 0.0043\n",
+ "Epoch 2/1000\n",
+ "20/20 [==============================] - 71s 4s/step - loss: 1.7259e-04 - val_loss: 0.0037\n",
+ "Epoch 3/1000\n",
+ "20/20 [==============================] - 70s 4s/step - loss: 1.6864e-04 - val_loss: 0.0029\n",
+ "Epoch 4/1000\n",
+ "20/20 [==============================] - 70s 4s/step - loss: 1.6530e-04 - val_loss: 0.0022\n",
+ "Epoch 5/1000\n",
+ "20/20 [==============================] - 71s 4s/step - loss: 1.6243e-04 - val_loss: 0.0017\n",
+ "Epoch 6/1000\n",
+ "20/20 [==============================] - 71s 4s/step - loss: 1.6001e-04 - val_loss: 0.0015\n",
+ "Epoch 7/1000\n",
+ "20/20 [==============================] - 72s 4s/step - loss: 1.5802e-04 - val_loss: 0.0013\n",
+ "Epoch 8/1000\n",
+ "20/20 [==============================] - 72s 4s/step - loss: 1.5634e-04 - val_loss: 0.0011\n",
+ "Epoch 9/1000\n",
+ "20/20 [==============================] - 72s 4s/step - loss: 1.5492e-04 - val_loss: 8.7465e-04\n",
+ "Epoch 10/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.5370e-04 - val_loss: 6.8815e-04\n",
+ "Epoch 11/1000\n",
+ "20/20 [==============================] - 72s 4s/step - loss: 1.5262e-04 - val_loss: 5.2990e-04\n",
+ "Epoch 12/1000\n",
+ "20/20 [==============================] - 72s 4s/step - loss: 1.5167e-04 - val_loss: 4.0591e-04\n",
+ "Epoch 13/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.5085e-04 - val_loss: 3.1419e-04\n",
+ "Epoch 14/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.5011e-04 - val_loss: 2.5195e-04\n",
+ "Epoch 15/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4947e-04 - val_loss: 2.1186e-04\n",
+ "Epoch 16/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4891e-04 - val_loss: 1.8665e-04\n",
+ "Epoch 17/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4841e-04 - val_loss: 1.7138e-04\n",
+ "Epoch 18/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4796e-04 - val_loss: 1.6209e-04\n",
+ "Epoch 19/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4754e-04 - val_loss: 1.5635e-04\n",
+ "Epoch 20/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4717e-04 - val_loss: 1.5279e-04\n",
+ "Epoch 21/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4683e-04 - val_loss: 1.5035e-04\n",
+ "Epoch 22/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4653e-04 - val_loss: 1.4878e-04\n",
+ "Epoch 23/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4625e-04 - val_loss: 1.4770e-04\n",
+ "Epoch 24/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4599e-04 - val_loss: 1.4683e-04\n",
+ "Epoch 25/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4575e-04 - val_loss: 1.4617e-04\n",
+ "Epoch 26/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4553e-04 - val_loss: 1.4551e-04\n",
+ "Epoch 27/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4533e-04 - val_loss: 1.4505e-04\n",
+ "Epoch 28/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4512e-04 - val_loss: 1.4463e-04\n",
+ "Epoch 29/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4493e-04 - val_loss: 1.4427e-04\n",
+ "Epoch 30/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4475e-04 - val_loss: 1.4402e-04\n",
+ "Epoch 31/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4457e-04 - val_loss: 1.4354e-04\n",
+ "Epoch 32/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4440e-04 - val_loss: 1.4335e-04\n",
+ "Epoch 33/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4423e-04 - val_loss: 1.4307e-04\n",
+ "Epoch 34/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4407e-04 - val_loss: 1.4283e-04\n",
+ "Epoch 35/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4391e-04 - val_loss: 1.4230e-04\n",
+ "Epoch 36/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4376e-04 - val_loss: 1.4228e-04\n",
+ "Epoch 37/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4361e-04 - val_loss: 1.4194e-04\n",
+ "Epoch 38/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4346e-04 - val_loss: 1.4173e-04\n",
+ "Epoch 39/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4332e-04 - val_loss: 1.4149e-04\n",
+ "Epoch 40/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4318e-04 - val_loss: 1.4133e-04\n",
+ "Epoch 41/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.4304e-04 - val_loss: 1.4106e-04\n",
+ "Epoch 42/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4289e-04 - val_loss: 1.4086e-04\n",
+ "Epoch 43/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4274e-04 - val_loss: 1.4061e-04\n",
+ "Epoch 44/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4261e-04 - val_loss: 1.4033e-04\n",
+ "Epoch 45/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4249e-04 - val_loss: 1.4021e-04\n",
+ "Epoch 46/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4235e-04 - val_loss: 1.4001e-04\n",
+ "Epoch 47/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4221e-04 - val_loss: 1.3973e-04\n",
+ "Epoch 48/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4211e-04 - val_loss: 1.3967e-04\n",
+ "Epoch 49/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4198e-04 - val_loss: 1.3946e-04\n",
+ "Epoch 50/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4185e-04 - val_loss: 1.3920e-04\n",
+ "Epoch 51/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4172e-04 - val_loss: 1.3910e-04\n",
+ "Epoch 52/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4156e-04 - val_loss: 1.3889e-04\n",
+ "Epoch 53/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4144e-04 - val_loss: 1.3886e-04\n",
+ "Epoch 54/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4130e-04 - val_loss: 1.3855e-04\n",
+ "Epoch 55/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4118e-04 - val_loss: 1.3846e-04\n",
+ "Epoch 56/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4106e-04 - val_loss: 1.3834e-04\n",
+ "Epoch 57/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4092e-04 - val_loss: 1.3812e-04\n",
+ "Epoch 58/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4080e-04 - val_loss: 1.3790e-04\n",
+ "Epoch 59/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4067e-04 - val_loss: 1.3776e-04\n",
+ "Epoch 60/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4056e-04 - val_loss: 1.3763e-04\n",
+ "Epoch 61/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4044e-04 - val_loss: 1.3736e-04\n",
+ "Epoch 62/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4029e-04 - val_loss: 1.3737e-04\n",
+ "Epoch 63/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4013e-04 - val_loss: 1.3721e-04\n",
+ "Epoch 64/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4004e-04 - val_loss: 1.3699e-04\n",
+ "Epoch 65/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3984e-04 - val_loss: 1.3682e-04\n",
+ "Epoch 66/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3969e-04 - val_loss: 1.3674e-04\n",
+ "Epoch 67/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3956e-04 - val_loss: 1.3660e-04\n",
+ "Epoch 68/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3942e-04 - val_loss: 1.3652e-04\n",
+ "Epoch 69/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.3928e-04 - val_loss: 1.3637e-04\n",
+ "Epoch 70/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3915e-04 - val_loss: 1.3635e-04\n",
+ "Epoch 71/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3897e-04 - val_loss: 1.3625e-04\n",
+ "Epoch 72/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3884e-04 - val_loss: 1.3625e-04\n",
+ "Epoch 73/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3883e-04 - val_loss: 1.3603e-04\n",
+ "Epoch 74/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3857e-04 - val_loss: 1.3597e-04\n",
+ "Epoch 75/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3841e-04 - val_loss: 1.3604e-04\n",
+ "Epoch 76/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3821e-04 - val_loss: 1.3579e-04\n",
+ "Epoch 77/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3795e-04 - val_loss: 1.3555e-04\n",
+ "Epoch 78/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3775e-04 - val_loss: 1.3563e-04\n",
+ "Epoch 79/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3756e-04 - val_loss: 1.3545e-04\n",
+ "Epoch 80/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3738e-04 - val_loss: 1.3547e-04\n",
+ "Epoch 81/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3722e-04 - val_loss: 1.3548e-04\n",
+ "Epoch 82/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3710e-04 - val_loss: 1.3555e-04\n",
+ "Epoch 83/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3696e-04 - val_loss: 1.3547e-04\n",
+ "Epoch 84/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3697e-04 - val_loss: 1.3563e-04\n",
+ "Epoch 85/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3651e-04 - val_loss: 1.3530e-04\n",
+ "Epoch 86/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3612e-04 - val_loss: 1.3516e-04\n",
+ "Epoch 87/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3613e-04 - val_loss: 1.3505e-04\n",
+ "Epoch 88/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.3574e-04 - val_loss: 1.3499e-04\n",
+ "Epoch 89/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3578e-04 - val_loss: 1.3540e-04\n",
+ "Epoch 90/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3549e-04 - val_loss: 1.3534e-04\n",
+ "Epoch 91/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3534e-04 - val_loss: 1.3487e-04\n",
+ "Epoch 92/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3491e-04 - val_loss: 1.3490e-04\n",
+ "Epoch 93/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3475e-04 - val_loss: 1.3490e-04\n",
+ "Epoch 94/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3442e-04 - val_loss: 1.3471e-04\n",
+ "Epoch 95/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3440e-04 - val_loss: 1.3496e-04\n",
+ "Epoch 96/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3414e-04 - val_loss: 1.3508e-04\n",
+ "Epoch 97/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3431e-04 - val_loss: 1.3493e-04\n",
+ "Epoch 98/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3403e-04 - val_loss: 1.3515e-04\n",
+ "Epoch 99/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3323e-04 - val_loss: 1.3469e-04\n",
+ "Epoch 100/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3297e-04 - val_loss: 1.3585e-04\n",
+ "Epoch 101/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3307e-04 - val_loss: 1.3581e-04\n",
+ "Epoch 102/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3270e-04 - val_loss: 1.3471e-04\n",
+ "Epoch 103/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3247e-04 - val_loss: 1.3364e-04\n",
+ "Epoch 104/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 2.7186e-04 - val_loss: 5.9999e-04\n",
+ "Epoch 105/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 2.4725e-04 - val_loss: 8.0587e-04\n",
+ "Epoch 106/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4827e-04 - val_loss: 6.0315e-04\n",
+ "Epoch 107/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3956e-04 - val_loss: 3.6259e-04\n",
+ "Epoch 108/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3717e-04 - val_loss: 2.5379e-04\n",
+ "Epoch 109/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3604e-04 - val_loss: 2.0073e-04\n",
+ "Epoch 110/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3526e-04 - val_loss: 1.7553e-04\n",
+ "Epoch 111/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3462e-04 - val_loss: 1.6115e-04\n",
+ "Epoch 112/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3404e-04 - val_loss: 1.5349e-04\n",
+ "Epoch 113/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3351e-04 - val_loss: 1.4661e-04\n",
+ "Epoch 114/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3302e-04 - val_loss: 1.4291e-04\n",
+ "Epoch 115/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3255e-04 - val_loss: 1.4210e-04\n",
+ "Epoch 116/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3211e-04 - val_loss: 1.4070e-04\n",
+ "Epoch 117/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3170e-04 - val_loss: 1.3908e-04\n",
+ "Epoch 118/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3131e-04 - val_loss: 1.3821e-04\n",
+ "Epoch 119/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3093e-04 - val_loss: 1.3706e-04\n",
+ "Epoch 120/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3058e-04 - val_loss: 1.3630e-04\n",
+ "Epoch 121/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3024e-04 - val_loss: 1.3509e-04\n",
+ "Epoch 122/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2990e-04 - val_loss: 1.3495e-04\n",
+ "Epoch 123/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2958e-04 - val_loss: 1.3444e-04\n",
+ "Epoch 124/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2927e-04 - val_loss: 1.3385e-04\n",
+ "Epoch 125/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2897e-04 - val_loss: 1.3401e-04\n",
+ "Epoch 126/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2869e-04 - val_loss: 1.3360e-04\n",
+ "Epoch 127/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2841e-04 - val_loss: 1.3312e-04\n",
+ "Epoch 128/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2815e-04 - val_loss: 1.3210e-04\n",
+ "Epoch 129/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2788e-04 - val_loss: 1.3211e-04\n",
+ "Epoch 130/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2762e-04 - val_loss: 1.3188e-04\n",
+ "Epoch 131/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2736e-04 - val_loss: 1.3199e-04\n",
+ "Epoch 132/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2712e-04 - val_loss: 1.3122e-04\n",
+ "Epoch 133/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2690e-04 - val_loss: 1.3178e-04\n",
+ "Epoch 134/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2663e-04 - val_loss: 1.3107e-04\n",
+ "Epoch 135/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2638e-04 - val_loss: 1.3061e-04\n",
+ "Epoch 136/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2614e-04 - val_loss: 1.3039e-04\n",
+ "Epoch 137/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2590e-04 - val_loss: 1.3072e-04\n",
+ "Epoch 138/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2567e-04 - val_loss: 1.2932e-04\n",
+ "Epoch 139/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2542e-04 - val_loss: 1.3050e-04\n",
+ "Epoch 140/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2519e-04 - val_loss: 1.2852e-04\n",
+ "Epoch 141/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2502e-04 - val_loss: 1.2818e-04\n",
+ "Epoch 142/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2473e-04 - val_loss: 1.2908e-04\n",
+ "Epoch 143/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2453e-04 - val_loss: 1.3138e-04\n",
+ "Epoch 144/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2444e-04 - val_loss: 1.2780e-04\n",
+ "Epoch 145/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2419e-04 - val_loss: 1.2681e-04\n",
+ "Epoch 146/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2402e-04 - val_loss: 1.2615e-04\n",
+ "Epoch 147/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2369e-04 - val_loss: 1.2638e-04\n",
+ "Epoch 148/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2352e-04 - val_loss: 1.2830e-04\n",
+ "Epoch 149/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2314e-04 - val_loss: 1.2605e-04\n",
+ "Epoch 150/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2286e-04 - val_loss: 1.2743e-04\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 151/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2271e-04 - val_loss: 1.2598e-04\n",
+ "Epoch 152/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 0.0011 - val_loss: 0.0030\n",
+ "Epoch 153/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 8.0737e-04 - val_loss: 7.5406e-04\n",
+ "Epoch 154/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 2.2217e-04 - val_loss: 4.4022e-04\n",
+ "Epoch 155/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.6454e-04 - val_loss: 2.8927e-04\n",
+ "Epoch 156/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.5252e-04 - val_loss: 2.2517e-04\n",
+ "Epoch 157/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4766e-04 - val_loss: 1.9435e-04\n",
+ "Epoch 158/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4478e-04 - val_loss: 1.7687e-04\n",
+ "Epoch 159/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4276e-04 - val_loss: 1.6398e-04\n",
+ "Epoch 160/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4121e-04 - val_loss: 1.5581e-04\n",
+ "Epoch 161/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.4001e-04 - val_loss: 1.5050e-04\n",
+ "Epoch 162/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3907e-04 - val_loss: 1.4714e-04\n",
+ "Epoch 163/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3830e-04 - val_loss: 1.4454e-04\n",
+ "Epoch 164/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3767e-04 - val_loss: 1.4247e-04\n",
+ "Epoch 165/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3711e-04 - val_loss: 1.4100e-04\n",
+ "Epoch 166/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3661e-04 - val_loss: 1.3959e-04\n",
+ "Epoch 167/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3615e-04 - val_loss: 1.3854e-04\n",
+ "Epoch 168/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.3572e-04 - val_loss: 1.3760e-04\n",
+ "Epoch 169/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3533e-04 - val_loss: 1.3684e-04\n",
+ "Epoch 170/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3495e-04 - val_loss: 1.3616e-04\n",
+ "Epoch 171/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3460e-04 - val_loss: 1.3561e-04\n",
+ "Epoch 172/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3425e-04 - val_loss: 1.3502e-04\n",
+ "Epoch 173/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3392e-04 - val_loss: 1.3455e-04\n",
+ "Epoch 174/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3358e-04 - val_loss: 1.3413e-04\n",
+ "Epoch 175/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3325e-04 - val_loss: 1.3369e-04\n",
+ "Epoch 176/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3293e-04 - val_loss: 1.3329e-04\n",
+ "Epoch 177/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3260e-04 - val_loss: 1.3295e-04\n",
+ "Epoch 178/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3227e-04 - val_loss: 1.3262e-04\n",
+ "Epoch 179/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3195e-04 - val_loss: 1.3225e-04\n",
+ "Epoch 180/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3163e-04 - val_loss: 1.3183e-04\n",
+ "Epoch 181/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3131e-04 - val_loss: 1.3149e-04\n",
+ "Epoch 182/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3098e-04 - val_loss: 1.3120e-04\n",
+ "Epoch 183/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3064e-04 - val_loss: 1.3091e-04\n",
+ "Epoch 184/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3031e-04 - val_loss: 1.3061e-04\n",
+ "Epoch 185/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2998e-04 - val_loss: 1.3030e-04\n",
+ "Epoch 186/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2967e-04 - val_loss: 1.2996e-04\n",
+ "Epoch 187/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2935e-04 - val_loss: 1.2962e-04\n",
+ "Epoch 188/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2905e-04 - val_loss: 1.2936e-04\n",
+ "Epoch 189/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2875e-04 - val_loss: 1.2912e-04\n",
+ "Epoch 190/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2843e-04 - val_loss: 1.2879e-04\n",
+ "Epoch 191/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2811e-04 - val_loss: 1.2853e-04\n",
+ "Epoch 192/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2781e-04 - val_loss: 1.2833e-04\n",
+ "Epoch 193/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2751e-04 - val_loss: 1.2804e-04\n",
+ "Epoch 194/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2720e-04 - val_loss: 1.2780e-04\n",
+ "Epoch 195/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2690e-04 - val_loss: 1.2748e-04\n",
+ "Epoch 196/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2660e-04 - val_loss: 1.2726e-04\n",
+ "Epoch 197/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2631e-04 - val_loss: 1.2693e-04\n",
+ "Epoch 198/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2602e-04 - val_loss: 1.2667e-04\n",
+ "Epoch 199/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2573e-04 - val_loss: 1.2636e-04\n",
+ "Epoch 200/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2544e-04 - val_loss: 1.2612e-04\n",
+ "Epoch 201/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2515e-04 - val_loss: 1.2579e-04\n",
+ "Epoch 202/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2487e-04 - val_loss: 1.2556e-04\n",
+ "Epoch 203/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2458e-04 - val_loss: 1.2523e-04\n",
+ "Epoch 204/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2428e-04 - val_loss: 1.2499e-04\n",
+ "Epoch 205/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2400e-04 - val_loss: 1.2467e-04\n",
+ "Epoch 206/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2372e-04 - val_loss: 1.2451e-04\n",
+ "Epoch 207/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2344e-04 - val_loss: 1.2414e-04\n",
+ "Epoch 208/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2316e-04 - val_loss: 1.2387e-04\n",
+ "Epoch 209/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2288e-04 - val_loss: 1.2359e-04\n",
+ "Epoch 210/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2261e-04 - val_loss: 1.2337e-04\n",
+ "Epoch 211/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2236e-04 - val_loss: 1.2307e-04\n",
+ "Epoch 212/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2208e-04 - val_loss: 1.2280e-04\n",
+ "Epoch 213/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2182e-04 - val_loss: 1.2255e-04\n",
+ "Epoch 214/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.2157e-04 - val_loss: 1.2229e-04\n",
+ "Epoch 215/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2131e-04 - val_loss: 1.2206e-04\n",
+ "Epoch 216/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2107e-04 - val_loss: 1.2184e-04\n",
+ "Epoch 217/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2080e-04 - val_loss: 1.2160e-04\n",
+ "Epoch 218/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2056e-04 - val_loss: 1.2135e-04\n",
+ "Epoch 219/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2031e-04 - val_loss: 1.2108e-04\n",
+ "Epoch 220/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2006e-04 - val_loss: 1.2086e-04\n",
+ "Epoch 221/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1980e-04 - val_loss: 1.2061e-04\n",
+ "Epoch 222/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1956e-04 - val_loss: 1.2034e-04\n",
+ "Epoch 223/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1932e-04 - val_loss: 1.2015e-04\n",
+ "Epoch 224/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1907e-04 - val_loss: 1.1992e-04\n",
+ "Epoch 225/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1883e-04 - val_loss: 1.1964e-04\n",
+ "Epoch 226/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1859e-04 - val_loss: 1.1946e-04\n",
+ "Epoch 227/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1836e-04 - val_loss: 1.1924e-04\n",
+ "Epoch 228/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1812e-04 - val_loss: 1.1901e-04\n",
+ "Epoch 229/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1788e-04 - val_loss: 1.1873e-04\n",
+ "Epoch 230/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1762e-04 - val_loss: 1.1849e-04\n",
+ "Epoch 231/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1739e-04 - val_loss: 1.1824e-04\n",
+ "Epoch 232/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1716e-04 - val_loss: 1.1801e-04\n",
+ "Epoch 233/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1693e-04 - val_loss: 1.1782e-04\n",
+ "Epoch 234/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1669e-04 - val_loss: 1.1772e-04\n",
+ "Epoch 235/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1644e-04 - val_loss: 1.1742e-04\n",
+ "Epoch 236/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1620e-04 - val_loss: 1.1717e-04\n",
+ "Epoch 237/1000\n",
+ "20/20 [==============================] - 73s 4s/step - loss: 1.1600e-04 - val_loss: 1.1697e-04\n",
+ "Epoch 238/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1574e-04 - val_loss: 1.1671e-04\n",
+ "Epoch 239/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1550e-04 - val_loss: 1.1646e-04\n",
+ "Epoch 240/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1526e-04 - val_loss: 1.1627e-04\n",
+ "Epoch 241/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1501e-04 - val_loss: 1.1614e-04\n",
+ "Epoch 242/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1479e-04 - val_loss: 1.1579e-04\n",
+ "Epoch 243/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1453e-04 - val_loss: 1.1561e-04\n",
+ "Epoch 244/1000\n",
+ "20/20 [==============================] - 76s 4s/step - loss: 1.1430e-04 - val_loss: 1.1536e-04\n",
+ "Epoch 245/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1407e-04 - val_loss: 1.1516e-04\n",
+ "Epoch 246/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1384e-04 - val_loss: 1.1494e-04\n",
+ "Epoch 247/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1361e-04 - val_loss: 1.1468e-04\n",
+ "Epoch 248/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1338e-04 - val_loss: 1.1452e-04\n",
+ "Epoch 249/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1312e-04 - val_loss: 1.1422e-04\n",
+ "Epoch 250/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1291e-04 - val_loss: 1.1400e-04\n",
+ "Epoch 251/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1267e-04 - val_loss: 1.1378e-04\n",
+ "Epoch 252/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1242e-04 - val_loss: 1.1359e-04\n",
+ "Epoch 253/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1221e-04 - val_loss: 1.1342e-04\n",
+ "Epoch 254/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1198e-04 - val_loss: 1.1317e-04\n",
+ "Epoch 255/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1179e-04 - val_loss: 1.1296e-04\n",
+ "Epoch 256/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1158e-04 - val_loss: 1.1277e-04\n",
+ "Epoch 257/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1134e-04 - val_loss: 1.1292e-04\n",
+ "Epoch 258/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1103e-04 - val_loss: 1.1229e-04\n",
+ "Epoch 259/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1094e-04 - val_loss: 1.1236e-04\n",
+ "Epoch 260/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1069e-04 - val_loss: 1.1202e-04\n",
+ "Epoch 261/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1052e-04 - val_loss: 1.1211e-04\n",
+ "Epoch 262/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1020e-04 - val_loss: 1.1182e-04\n",
+ "Epoch 263/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0999e-04 - val_loss: 1.1120e-04\n",
+ "Epoch 264/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0988e-04 - val_loss: 1.1105e-04\n",
+ "Epoch 265/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0971e-04 - val_loss: 1.1073e-04\n",
+ "Epoch 266/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0925e-04 - val_loss: 1.1168e-04\n",
+ "Epoch 267/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0918e-04 - val_loss: 1.1021e-04\n",
+ "Epoch 268/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0899e-04 - val_loss: 1.1207e-04\n",
+ "Epoch 269/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0908e-04 - val_loss: 1.1036e-04\n",
+ "Epoch 270/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0850e-04 - val_loss: 1.1063e-04\n",
+ "Epoch 271/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0808e-04 - val_loss: 1.0979e-04\n",
+ "Epoch 272/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0885e-04 - val_loss: 1.1182e-04\n",
+ "Epoch 273/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0896e-04 - val_loss: 1.0897e-04\n",
+ "Epoch 274/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0755e-04 - val_loss: 1.0890e-04\n",
+ "Epoch 275/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0726e-04 - val_loss: 1.0942e-04\n",
+ "Epoch 276/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0698e-04 - val_loss: 1.0837e-04\n",
+ "Epoch 277/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0682e-04 - val_loss: 1.1710e-04\n",
+ "Epoch 278/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1099e-04 - val_loss: 1.0862e-04\n",
+ "Epoch 279/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0679e-04 - val_loss: 1.0775e-04\n",
+ "Epoch 280/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0615e-04 - val_loss: 1.0787e-04\n",
+ "Epoch 281/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0580e-04 - val_loss: 1.0705e-04\n",
+ "Epoch 282/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0551e-04 - val_loss: 1.0705e-04\n",
+ "Epoch 283/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0542e-04 - val_loss: 1.0673e-04\n",
+ "Epoch 284/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0500e-04 - val_loss: 1.0644e-04\n",
+ "Epoch 285/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0506e-04 - val_loss: 1.0654e-04\n",
+ "Epoch 286/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0493e-04 - val_loss: 1.0618e-04\n",
+ "Epoch 287/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0476e-04 - val_loss: 1.0601e-04\n",
+ "Epoch 288/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0445e-04 - val_loss: 1.0588e-04\n",
+ "Epoch 289/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0439e-04 - val_loss: 1.1388e-04\n",
+ "Epoch 290/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 0.0033 - val_loss: 0.0015\n",
+ "Epoch 291/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 6.8803e-04 - val_loss: 4.5921e-04\n",
+ "Epoch 292/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 2.5436e-04 - val_loss: 3.2132e-04\n",
+ "Epoch 293/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.8278e-04 - val_loss: 2.6234e-04\n",
+ "Epoch 294/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.6361e-04 - val_loss: 2.2145e-04\n",
+ "Epoch 295/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.5566e-04 - val_loss: 1.9489e-04\n",
+ "Epoch 296/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.5087e-04 - val_loss: 1.7818e-04\n",
+ "Epoch 297/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.4780e-04 - val_loss: 1.6677e-04\n",
+ "Epoch 298/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4506e-04 - val_loss: 1.5912e-04\n",
+ "Epoch 299/1000\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "20/20 [==============================] - 75s 4s/step - loss: 1.4321e-04 - val_loss: 1.5355e-04\n",
+ "Epoch 300/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4175e-04 - val_loss: 1.4977e-04\n",
+ "Epoch 301/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.4046e-04 - val_loss: 1.4725e-04\n",
+ "Epoch 302/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3919e-04 - val_loss: 1.4475e-04\n",
+ "Epoch 303/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3819e-04 - val_loss: 1.4305e-04\n",
+ "Epoch 304/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3741e-04 - val_loss: 1.4133e-04\n",
+ "Epoch 305/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3681e-04 - val_loss: 1.4008e-04\n",
+ "Epoch 306/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3607e-04 - val_loss: 1.3953e-04\n",
+ "Epoch 307/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3530e-04 - val_loss: 1.3845e-04\n",
+ "Epoch 308/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3476e-04 - val_loss: 1.3803e-04\n",
+ "Epoch 309/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3423e-04 - val_loss: 1.3714e-04\n",
+ "Epoch 310/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3372e-04 - val_loss: 1.3652e-04\n",
+ "Epoch 311/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.3321e-04 - val_loss: 1.3604e-04\n",
+ "Epoch 312/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3306e-04 - val_loss: 1.3567e-04\n",
+ "Epoch 313/1000\n",
+ "20/20 [==============================] - 76s 4s/step - loss: 1.3240e-04 - val_loss: 1.3451e-04\n",
+ "Epoch 314/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3208e-04 - val_loss: 1.3424e-04\n",
+ "Epoch 315/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3160e-04 - val_loss: 1.3382e-04\n",
+ "Epoch 316/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3120e-04 - val_loss: 1.3358e-04\n",
+ "Epoch 317/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3088e-04 - val_loss: 1.3309e-04\n",
+ "Epoch 318/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3050e-04 - val_loss: 1.3270e-04\n",
+ "Epoch 319/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.3017e-04 - val_loss: 1.3238e-04\n",
+ "Epoch 320/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2989e-04 - val_loss: 1.3204e-04\n",
+ "Epoch 321/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2962e-04 - val_loss: 1.3130e-04\n",
+ "Epoch 322/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2926e-04 - val_loss: 1.3111e-04\n",
+ "Epoch 323/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2894e-04 - val_loss: 1.3055e-04\n",
+ "Epoch 324/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2852e-04 - val_loss: 1.3025e-04\n",
+ "Epoch 325/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2838e-04 - val_loss: 1.2969e-04\n",
+ "Epoch 326/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2781e-04 - val_loss: 1.2949e-04\n",
+ "Epoch 327/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2745e-04 - val_loss: 1.2937e-04\n",
+ "Epoch 328/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2715e-04 - val_loss: 1.2914e-04\n",
+ "Epoch 329/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2690e-04 - val_loss: 1.2808e-04\n",
+ "Epoch 330/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2680e-04 - val_loss: 1.2834e-04\n",
+ "Epoch 331/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2634e-04 - val_loss: 1.2769e-04\n",
+ "Epoch 332/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2582e-04 - val_loss: 1.2695e-04\n",
+ "Epoch 333/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2542e-04 - val_loss: 1.2670e-04\n",
+ "Epoch 334/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2497e-04 - val_loss: 1.2688e-04\n",
+ "Epoch 335/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2454e-04 - val_loss: 1.2615e-04\n",
+ "Epoch 336/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2421e-04 - val_loss: 1.2562e-04\n",
+ "Epoch 337/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2386e-04 - val_loss: 1.2582e-04\n",
+ "Epoch 338/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2343e-04 - val_loss: 1.2498e-04\n",
+ "Epoch 339/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2306e-04 - val_loss: 1.2484e-04\n",
+ "Epoch 340/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2273e-04 - val_loss: 1.2452e-04\n",
+ "Epoch 341/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2228e-04 - val_loss: 1.2410e-04\n",
+ "Epoch 342/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2190e-04 - val_loss: 1.2347e-04\n",
+ "Epoch 343/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.2163e-04 - val_loss: 1.2318e-04\n",
+ "Epoch 344/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2135e-04 - val_loss: 1.2322e-04\n",
+ "Epoch 345/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2114e-04 - val_loss: 1.2283e-04\n",
+ "Epoch 346/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2067e-04 - val_loss: 1.2238e-04\n",
+ "Epoch 347/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2042e-04 - val_loss: 1.2186e-04\n",
+ "Epoch 348/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.2004e-04 - val_loss: 1.2154e-04\n",
+ "Epoch 349/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1972e-04 - val_loss: 1.2112e-04\n",
+ "Epoch 350/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1937e-04 - val_loss: 1.2095e-04\n",
+ "Epoch 351/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1906e-04 - val_loss: 1.2064e-04\n",
+ "Epoch 352/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1887e-04 - val_loss: 1.2023e-04\n",
+ "Epoch 353/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1848e-04 - val_loss: 1.1981e-04\n",
+ "Epoch 354/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1839e-04 - val_loss: 1.1967e-04\n",
+ "Epoch 355/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1819e-04 - val_loss: 1.1985e-04\n",
+ "Epoch 356/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1771e-04 - val_loss: 1.1919e-04\n",
+ "Epoch 357/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1737e-04 - val_loss: 1.1905e-04\n",
+ "Epoch 358/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1710e-04 - val_loss: 1.1872e-04\n",
+ "Epoch 359/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1681e-04 - val_loss: 1.1836e-04\n",
+ "Epoch 360/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1669e-04 - val_loss: 1.1834e-04\n",
+ "Epoch 361/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1627e-04 - val_loss: 1.1765e-04\n",
+ "Epoch 362/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1601e-04 - val_loss: 1.1751e-04\n",
+ "Epoch 363/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1577e-04 - val_loss: 1.1766e-04\n",
+ "Epoch 364/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1562e-04 - val_loss: 1.1697e-04\n",
+ "Epoch 365/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1522e-04 - val_loss: 1.1711e-04\n",
+ "Epoch 366/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.1494e-04 - val_loss: 1.1649e-04\n",
+ "Epoch 367/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1469e-04 - val_loss: 1.1652e-04\n",
+ "Epoch 368/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1453e-04 - val_loss: 1.1623e-04\n",
+ "Epoch 369/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1437e-04 - val_loss: 1.1564e-04\n",
+ "Epoch 370/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1409e-04 - val_loss: 1.1576e-04\n",
+ "Epoch 371/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1377e-04 - val_loss: 1.1534e-04\n",
+ "Epoch 372/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1357e-04 - val_loss: 1.1498e-04\n",
+ "Epoch 373/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1338e-04 - val_loss: 1.1499e-04\n",
+ "Epoch 374/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1300e-04 - val_loss: 1.1487e-04\n",
+ "Epoch 375/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1315e-04 - val_loss: 1.1486e-04\n",
+ "Epoch 376/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1264e-04 - val_loss: 1.1431e-04\n",
+ "Epoch 377/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1249e-04 - val_loss: 1.1441e-04\n",
+ "Epoch 378/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1215e-04 - val_loss: 1.1364e-04\n",
+ "Epoch 379/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1187e-04 - val_loss: 1.1359e-04\n",
+ "Epoch 380/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1176e-04 - val_loss: 1.1313e-04\n",
+ "Epoch 381/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1202e-04 - val_loss: 1.1292e-04\n",
+ "Epoch 382/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1164e-04 - val_loss: 1.1271e-04\n",
+ "Epoch 383/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1137e-04 - val_loss: 1.1249e-04\n",
+ "Epoch 384/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1119e-04 - val_loss: 1.1263e-04\n",
+ "Epoch 385/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1053e-04 - val_loss: 1.1232e-04\n",
+ "Epoch 386/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1043e-04 - val_loss: 1.1188e-04\n",
+ "Epoch 387/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.1014e-04 - val_loss: 1.1179e-04\n",
+ "Epoch 388/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0998e-04 - val_loss: 1.1144e-04\n",
+ "Epoch 389/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0969e-04 - val_loss: 1.1139e-04\n",
+ "Epoch 390/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0942e-04 - val_loss: 1.1118e-04\n",
+ "Epoch 391/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0932e-04 - val_loss: 1.1173e-04\n",
+ "Epoch 392/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0985e-04 - val_loss: 1.1075e-04\n",
+ "Epoch 393/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0881e-04 - val_loss: 1.1055e-04\n",
+ "Epoch 394/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0861e-04 - val_loss: 1.1052e-04\n",
+ "Epoch 395/1000\n",
+ "20/20 [==============================] - 74s 4s/step - loss: 1.0847e-04 - val_loss: 1.1021e-04\n",
+ "Epoch 396/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0827e-04 - val_loss: 1.0983e-04\n",
+ "Epoch 397/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0802e-04 - val_loss: 1.0977e-04\n",
+ "Epoch 398/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0783e-04 - val_loss: 1.0934e-04\n",
+ "Epoch 399/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0756e-04 - val_loss: 1.0930e-04\n",
+ "Epoch 400/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0741e-04 - val_loss: 1.0930e-04\n",
+ "Epoch 401/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0714e-04 - val_loss: 1.0883e-04\n",
+ "Epoch 402/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0708e-04 - val_loss: 1.0862e-04\n",
+ "Epoch 403/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0690e-04 - val_loss: 1.0862e-04\n",
+ "Epoch 404/1000\n",
+ "20/20 [==============================] - 75s 4s/step - loss: 1.0714e-04 - val_loss: 1.0834e-04\n",
+ "Epoch 405/1000\n",
+ " 9/20 [============>.................] - ETA: 41s - loss: 1.0775e-04"
+ ]
+ }
+ ],
+ "source": [
+ "csinet.fit(Htrain, epochs=1000, batch_size=5000, hval = Hval)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e9e07494",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "csinet.model.save('models/CSINet.keras') # The file needs to end with the .keras extension"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "1ab0d957",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# model = load_model('models/CSINet.keras')\n",
+ "# model.fit(Htrain, Htrain, epochs=1000, batch_size=5000, shuffle= True, validation_data=(Hval, Hval))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9c4e4215",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# self.model.fit(Htrain, Htrain, \n",
+ "# epochs=1000, batch_size=5000, shuffle= True, \n",
+ "# validation_data=(Hval, Hval))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.0"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/api/Projects/Project4/project4.html b/api/Projects/Project4/project4.html
index b073d6df..bc0961da 100644
--- a/api/Projects/Project4/project4.html
+++ b/api/Projects/Project4/project4.html
@@ -27,7 +27,7 @@
-
+
@@ -1749,7 +1749,57 @@
-
Channel Interpolation based on SRCNN and DnCNN
+
Artificial Intelligence and Machine Learning (AI-ML) for CSI Compression and Reconstruction in 5G Networks
+
Comparative Study of Reed Muller codes, Polar Codes and LDPC codes
Channel Quality Estimation in 5G and Beyond Networks
Hybrid Automatic repeat Request in 5G and Beyond
@@ -1969,7 +2019,7 @@
Comparative Study of Reed Muller codes, Polar Codes and LDPC codes Previous
+ Previous
Next
diff --git a/api/Projects/Project5/project5.html b/api/Projects/Project5/project5.html
index 17c9d595..5d2127d8 100644
--- a/api/Projects/Project5/project5.html
+++ b/api/Projects/Project5/project5.html
@@ -1749,7 +1749,57 @@
-