forked from stevenwudi/chalearn2014_wudi_lio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Step4_Test_CNN_viterbi.py
118 lines (93 loc) · 4.43 KB
/
Step4_Test_CNN_viterbi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from glob import glob
import os
import sys
import cPickle
import scipy.io as sio
import time
from classes import GestureSample
from functions.preproc_functions import *
from functions.test_functions import *
## Load Prior and transitional Matrix
dic=sio.loadmat('Prior_Transition_matrix_5states.mat')
Transition_matrix = dic['Transition_matrix']
Prior = dic['Prior']
#data path and store path definition
pc = "wudi"
if pc=="wudi":
data = r"I:\Kaggle_multimodal\Training" # dir of original data -- note that wudi has decompressed it!!!
obs_likelihodd_dir = r"I:\Kaggle_multimodal\Precompute_state_matrix"
outPred=r'C:\Users\PC-User\Documents\GitHub\chalearn2014_wudi_lio\CNN_valid_pred'
elif pc=="lio":
data = r"/media/lio/Elements/chalearn/trainingset"
os.chdir(data)
if pc=="wudi":
samples=glob("*") # because wudi unzipped all the files already!
elif pc=="lio":
samples=glob("*.zip")
print len(samples), "samples found"
for file_count, file in enumerate(samples):
condition = (file_count >= 650)
if condition: #wudi only used first 650 for validation !!! Lio be careful!
print("\t Processing file " + file)
time_tic = time.time()
# Create the object to access the sample
sample = GestureSample(os.path.join(data,file))
#load ober
load_path = os.path.join(obs_likelihodd_dir,file)
observ_likelihood = cPickle.load(open(load_path,"rb"))
#print observ_likelihood.shape
##########################
# viterbi path decoding
########################
log_observ_likelihood = log(observ_likelihood.T + numpy.finfo(numpy.float32).eps)
log_observ_likelihood[-1, 0:5] = 0
log_observ_likelihood[-1, -5:] = 0
print("\t Viterbi path decoding " )
# do it in log space avoid numeric underflow
[path, predecessor_state_index, global_score] = viterbi_path_log(log(Prior), log(Transition_matrix), log_observ_likelihood)
#[path, predecessor_state_index, global_score] = viterbi_path(Prior, Transition_matrix, observ_likelihood)
# Some gestures are not within the vocabulary
[pred_label, begin_frame, end_frame, Individual_score, frame_length] = viterbi_colab_states(path, global_score, state_no = 5, threshold=-2, mini_frame=19)
#heuristically we need to add 1 more frame here
begin_frame += 1
end_frame +=5 # because we cut 4 frames as a cuboid so we need add extra 4 frames
#plotting
gesturesList=sample.getGestures()
import matplotlib.pyplot as plt
STATE_NO = 5
im = imdisplay(global_score)
plt.clf()
plt.imshow(im, cmap='gray')
plt.plot(range(global_score.shape[-1]), path, color='c',linewidth=2.0)
plt.xlim((0, global_score.shape[-1]))
# plot ground truth
for gesture in gesturesList:
# Get the gesture ID, and start and end frames for the gesture
gestureID,startFrame,endFrame=gesture
frames_count = numpy.array(range(startFrame, endFrame+1))
pred_label_temp = ((gestureID-1) *STATE_NO +2) * numpy.ones(len(frames_count))
plt.plot(frames_count, pred_label_temp, color='r', linewidth=5.0)
# plot clean path
for i in range(len(begin_frame)):
frames_count = numpy.array(range(begin_frame[i], end_frame[i]+1))
pred_label_temp = ((pred_label[i]-1) *STATE_NO +2) * numpy.ones(len(frames_count))
plt.plot(frames_count, pred_label_temp, color='#ffff00', linewidth=2.0)
if False:
plt.show()
else:
from pylab import savefig
save_dir=r'C:\Users\PC-User\Documents\GitHub\chalearn2014_wudi_lio\SK_path'
save_path= os.path.join(save_dir,file)
savefig(save_path, bbox_inches='tight')
print "Elapsed time %d sec" % int(time.time() - time_tic)
pred=[]
for i in range(len(begin_frame)):
pred.append([ pred_label[i], begin_frame[i], end_frame[i]] )
sample.exportPredictions(pred,outPred)
# ###############################################
## delete the sample
del sample
TruthDir=r'I:\Kaggle_multimodal\Code_for_submission\Final_project\training\gt'
final_score = evalGesture(outPred,TruthDir)
print("The score for this prediction is " + "{:.12f}".format(final_score))
#The score for this prediction is 0.751634118181