forked from stevenwudi/chalearn2014_wudi_lio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Step_4_Train_early_fusion_modular.py
158 lines (125 loc) · 5.82 KB
/
Step_4_Train_early_fusion_modular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Video classifier using a 3D deep convolutional neural network
and DBN, fusing the two result together
Data: ChaLearn 2014 gesture challenge: gesture recognition
original code by: Lionel Pigou
Code modulated by: Di Wu [email protected]
2015-06-12
"""
# various imports
from cPickle import load
from glob import glob
from time import time, localtime
from gzip import GzipFile
import os
# numpy imports
from numpy import zeros, empty, inf, float32, random, linspace
# theano imports
from theano import function, config, shared
import theano.tensor as T
# customized imports
from dbn.GRBM_DBN import GRBM_DBN
from conv3d_chalearn import conv3d_chalearn
from convnet3d import LogRegr, HiddenLayer, DropoutLayer
# modular imports
# the hyperparameter set the data dir, use etc classes, it's important to modify it according to your need
from classes.hyperparameters import use, lr, batch, reg, mom, tr, drop,\
net, DataLoader_with_skeleton_normalisation
from functions.train_functions import _shared, _avg, write, ndtensor, print_params, lin,\
training_report, epoch_report, _batch,\
save_results, move_results, save_params, test_lio_skel
from convnet3d_grbm_early_fusion import convnet3d_grbm_early_fusion
# we need to parse an absolute path for HPC to load
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('path')
args = parser.parse_args()
load_path = args.path
print load_path
####################################################################
print "\n%s\n\t initializing \n%s"%(('-'*30,)*2)
# source and result directory
pc = "wudi"
if pc=="wudi":
src = r"/idiap/user/dwu/chalearn/"
res_dir_ = r"/idiap/user/dwu/chalearn/result/"# dir of original data -- note that wudi has decompressed it!!!
elif pc=="lio":
src = "/mnt/wd/chalearn/preproc"
res_dir_ = "/home/lpigou/chalearn_wudi/try"
lt = localtime()
res_dir = res_dir_+"/try/"+str(lt.tm_year)+"."+str(lt.tm_mon).zfill(2)+"." \
+str(lt.tm_mday).zfill(2)+"."+str(lt.tm_hour).zfill(2)+"."\
+str(lt.tm_min).zfill(2)+"."+str(lt.tm_sec).zfill(2)
os.makedirs(res_dir)
######################################################################
net_convnet3d_grbm_early_fusion = convnet3d_grbm_early_fusion(res_dir, load_path)
net_convnet3d_grbm_early_fusion.load_params(os.path.join(load_path,'paramsbest.zip'))
x_ = _shared(empty(tr.in_shape))
y_ = _shared(empty(tr.batch_size))
y_int32 = T.cast(y_,'int32')
x_skeleton_ = _shared(empty(tr._skeleon_in_shape))
#############################
# load normalisation constant given load_path
Mean_skel, Std_skel, Mean_CNN, Std_CNN = net_convnet3d_grbm_early_fusion.load_normalisation_constant(load_path)
loader = DataLoader_with_skeleton_normalisation(src, tr.batch_size, \
Mean_CNN, Std_CNN, Mean_skel, Std_skel) # Lio changed it to read from HDF5 files
######################################################################
print "\n%s\n\tcompiling\n%s"%(('-'*30,)*2)
learning_rate = shared(float32(lr.init))
apply_updates, train_model, test_model = net_convnet3d_grbm_early_fusion.build_finetune_functions(x_, y_int32, x_skeleton_,learning_rate)
######################################################################
print "\n%s\n\ttraining\n%s"%(('-'*30,)*2)
time_start = 0
best_valid = inf
lr_decay_epoch = 0
n_lr_decays = 0
train_ce, valid_ce = [], []
out_mean_all, out_std_all = [], []
res_dir = save_results(train_ce, valid_ce, res_dir, params=net_convnet3d_grbm_early_fusion.params)
save_params(net_convnet3d_grbm_early_fusion.params, res_dir)
# default learning rate
lr.start = 0.0001
lr.stop = 0.00001
# Wudi makes thie to explicity control the learning rate
learning_rate_map = linspace(lr.start, lr.stop, tr.n_epochs)
for epoch in xrange(tr.n_epochs):
learning_rate.set_value(float32(learning_rate_map[epoch]))
ce = []
out_mean_train = []
out_std_train = []
print_params(net_convnet3d_grbm_early_fusion.params)
####################################################################
print "\n%s\n\t epoch %d \n%s"%('-'*30, epoch, '-'*30)
time_start = time()
for i in range(loader.n_iter_train):
#load data
time_start_iter = time()
loader.next_train_batch(x_, y_, x_skeleton_)
ce_temp, out_mean_temp, out_std_temp = _batch(train_model, tr.batch_size, batch, True, apply_updates)
ce.append(ce_temp)
out_mean_train.append(out_mean_temp)
out_std_train.append(out_std_temp)
print "Training: No.%d iter of Total %d, %d s"% (i,loader.n_iter_train, time()-time_start_iter) \
+ "\t| negative_log_likelihood "+ training_report(ce[-1])
# End of Epoch
####################################################################
print "\n%s\n\t End of epoch %d, \n printing some debug info.\n%s" \
%('-'*30, epoch, '-'*30)
train_ce.append(_avg(ce))
out_mean_all.append(_avg(out_mean_train))
out_std_all.append(_avg(out_std_train))
# validate
valid_ce.append(test_lio_skel(use, test_model, batch, drop, tr.rng, epoch, tr.batch_size, x_, y_, loader, x_skeleton_))
# save best params
res_dir = save_results(train_ce, valid_ce, res_dir, params=net_convnet3d_grbm_early_fusion.params, out_mean_train=out_mean_all,out_std_train=out_std_all)
if not tr.moved: res_dir = move_results(res_dir)
if valid_ce[-1][1] < best_valid:
save_params(net_convnet3d_grbm_early_fusion.params, res_dir, "best")
save_params(net_convnet3d_grbm_early_fusion.params, res_dir)
if valid_ce[-1][1] < best_valid:
best_valid = valid_ce[-1][1]
# epoch report
epoch_report(epoch, best_valid, time()-time_start, learning_rate.get_value(borrow=True),\
train_ce[-1], valid_ce[-1], res_dir)
# decay the learning rate
loader.shuffle_train()