-
Notifications
You must be signed in to change notification settings - Fork 0
/
maxflow_edited.cpp
260 lines (226 loc) · 7.38 KB
/
maxflow_edited.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// C++ program for implementation of Ford Fulkerson algorithm
#include <iostream>
#include <limits.h>//INT_MAX
#include <string.h>
#include <queue>//coz, using BFS
using namespace std;
// Number of vertices in given graph
#define V 6
/* Returns true if there is a path from source 's' to sink 't' in
residual graph. Also fills parent[] to store the path */
bool bfs(int rGraph[V][V], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as not visited
bool visited[V];
memset(visited, 0, sizeof(visited));//initialise the array with zeros //needs string.h
// Create a queue, enqueue source vertex and mark source vertex as visited
queue <int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
// Standard BFS Loop
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > 0)
{
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
// If we reached sink in BFS starting from source, then return true, else false
return (visited[t] == true);
}
bool bfsr(int rGraph[V][V], int s, int t, int parent[],int x)
{
bool visited[V];
memset(visited, 0, sizeof(visited));
queue <int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v=0; v<V; v++)
{
if (visited[v]==false && (rGraph[u][v] >=x || rGraph[v][u] >= x - rGraph[u][v]))
{
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return (visited[t] == true);
}
// Returns the maximum flow from s to t in the given graph
int fordFulkerson(int graph[V][V], int s, int t, int actualFlow[V][V])
{
int u, v;
// Create a residual graph and fill the residual graph with
// given capacities in the original graph as residual capacities in residual graph
int rGraph[V][V],rrGraph[V][V]; // Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is not)
int paths[2*V][V];//to store all the traversed paths
// int actualFlow[V][V]; not required -as passeed as an argument
int sat_edges[V][2];//to store saturated edges
memset(sat_edges, -1 , sizeof(sat_edges));
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
int parent[V]; // This array is filled by BFS and to store path to retrace the patth
int max_flow = 0; // There is no flow initially
int iteration=0;
// Augment the flow while tere is path from source to sink
while (bfs(rGraph, s, t, parent))
{
iteration++;
// Find minimum residual capacity of the edges along the
// path filled by BFS. Or we can say find the maximum flow
// through the path found.
int path_flow = INT_MAX;
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
paths[iteration-1][v]=u;//storing all the paths
path_flow = min(path_flow, rGraph[u][v]);
}//now the path_flow is the min capacity of the path
// update residual capacities of the edges and reverse edges along the path
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
actualFlow[u][v]+=path_flow;//to show the actual flows
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
cout << "\nThe maximum possible flow is " << max_flow<<"\n";
//QUESTION 1
printf("\nQUESTION 1 : \n\nResidual Graph: \n");
for(u=0;u<V;u++)
{
for(v=0;v<V;v++)
{
// actualFlow[u][v]= rGraph[u][v];
printf("%d ", rGraph[u][v]);
}
printf("\n");
}
printf("\nActual Flows in each edge: \n");
for(u=0;u<V;u++)
{
for(v=0;v<V;v++)
{
printf("%d ", actualFlow[u][v]);
}
printf("\n");
}
//QUESTION 1 END
// int max_inc_path[2*V];//to store the max of each path
// memset(max_inc_path, 34344 , sizeof(max_inc_path));//initialise with a big number
int z,w;
for(z=0;z<V;z++)
{
for(w=0;w<V;w++)
{
// printf("%d\t",rGraph[z][w]);
rrGraph[z][w]=rGraph[z][w];
}
// printf("\n");
}
// printf("\n");
//QUESTION2
int x,opt;
// do
// {
cout<<"\nQUESTION2: \n\nTo increase the max flow by x,\nEnter x :";
cin>>x;
if(bfsr(rrGraph, s, t, parent,x))
{
printf("\nIncrease the capacitiy of edges as:\n");
for (v=t; v != s; v=parent[v])
{
u = parent[v];
//printf("(parent,child):(%d,%d)\n",u,v);
if(rrGraph[u][v]<x)
{
rrGraph[v][u] -= x-rrGraph[u][v];
printf("(%d -> %d)=%d\n",u,v,x-rrGraph[u][v]);
rrGraph[u][v] += x-rrGraph[u][v];
}
/*else
{
rGraph[u][v] -= x;
rGraph[v][u] += x;
}*/
}
cout << "\nThe maximum possible flow is " << max_flow+x<<"\n";
cout<<"\nAfter adding "<< x <<" to max flow: \n";
for(z=0;z<V;z++)
{
for(w=0;w<V;w++)
{
printf("%d ",rrGraph[z][w]);
rrGraph[z][w] = rGraph[z][w];
}
printf("\n");
}
}
else
{
printf("\nNot possible\n");
}
printf("\n");
// cout<<"Enter 0 to exit or any other number to continue:";
// cin>>opt;
// }while(opt != 0);
//QUESTION2 END
// Return the overall flow
return max_flow;
}
int main()
{
int actualFlow[V][V] = { {0,0,0,0,0,0},
{0,0,0,0,0,0},
{0,0,0,0,0,0},
{0,0,0,0,0,0},
{0,0,0,0,0,0},
{0,0,0,0,0,0}
};
// Let us create a graph shown in the above example
int graph[V][V] = { {0, 9, 9, 0, 0, 0},
{0, 0, 4, 8, 0, 0},
{0, 0, 0, 1, 3, 0},
{0, 0, 0, 0, 0, 10},
{0, 0, 0, 8, 0, 7},
{0, 0, 0, 0, 0, 0}
};
// int graph[V][V] = { {0, 16, 13, 0, 0, 0}, geeksforgeeks
// {0, 0, 10, 12, 0, 0},
// {0, 4, 0, 0, 14, 0},
// {0, 0, 9, 0, 0, 20},
// {0, 0, 0, 7, 0, 4},
// {0, 0, 0, 0, 0, 0}
// };
// cout << "\nThe maximum possible flow is " << fordFulkerson(graph, 0, 5, actualFlow);
fordFulkerson(graph, 0, 5, actualFlow);
// int x;
// printf("\nEnter x,to increase the max flow by x: ");
// scanf("%d",&x);
//
// int paths[V][V];//to store all the traversed paths
// int max_inc_path[V][2];//to store the max of each path
// memset(max_inc_path,-1,sizeof(max_inc_path));
// cout << "\nThe maximum possible flow is " << fordFulkerson(graph, 0, 5, actualFlow);
return 0;
}