在一个 m*n
的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
动态规划法。
我们假设 dp[i][j]
表示走到格子 (i, j)
的礼物最大累计价值,则 dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1]
。
class Solution:
def maxValue(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1]
return dp[m][n]
class Solution {
public int maxValue(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
}
}
return dp[m][n];
}
}
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for (int i = 1; i < m + 1; ++i) {
for (int j = 1; j < n + 1; ++j) {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
}
}
return dp[m][n];
}
};
/**
* @param {number[][]} grid
* @return {number}
*/
var maxValue = function (grid) {
const m = grid.length;
const n = grid[0].length;
let dp = new Array(m + 1);
for (let i = 0; i < m + 1; ++i) {
dp[i] = new Array(n + 1).fill(0);
}
for (let i = 1; i < m + 1; ++i) {
for (let j = 1; j < n + 1; ++j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
}
}
return dp[m][n];
};
func maxValue(grid [][]int) int {
m, n := len(grid), len(grid[0])
dp := make([][]int, m + 1)
for i := 0; i < m + 1; i++ {
dp[i] = make([]int, n + 1)
}
for i := 1; i < m + 1; i++ {
for j := 1; j < n + 1; j++ {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1]
}
}
return dp[m][n]
}
func max(a, b int) int {
if (a > b) {
return a
}
return b
}