编写一个高效的算法来判断 m x n
矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3 输出:true
示例 2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13 输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104
将二维矩阵逻辑展开,然后二分查找即可。
class Solution:
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
m, n = len(matrix), len(matrix[0])
left, right = 0, m * n - 1
while left < right:
mid = (left + right) >> 1
x, y = divmod(mid, n)
if matrix[x][y] >= target:
right = mid
else:
left = mid + 1
return matrix[left // n][left % n] == target
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length, n = matrix[0].length;
int left = 0, right = m * n - 1;
while (left < right) {
int mid = (left + right) >> 1;
int x = mid / n, y = mid % n;
if (matrix[x][y] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return matrix[left / n][left % n] == target;
}
}
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
int left = 0, right = m * n - 1;
while (left < right) {
int mid = left + right >> 1;
int x = mid / n, y = mid % n;
if (matrix[x][y] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return matrix[left / n][left % n] == target;
}
};
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function(matrix, target) {
const m = matrix.length;
const n = matrix[0].length;
let left = 0;
let right = m * n - 1;
while (left < right) {
const mid = (left + right) >> 1;
const x = Math.floor(mid / n);
const y = mid % n;
if (matrix[x][y] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return matrix[Math.floor(left / n)][left % n] == target;
};
func searchMatrix(matrix [][]int, target int) bool {
m, n := len(matrix), len(matrix[0])
left, right := 0, m*n-1
for left < right {
mid := (left + right) >> 1
x, y := mid/n, mid%n
if matrix[x][y] >= target {
right = mid
} else {
left = mid + 1
}
}
return matrix[left/n][left%n] == target
}