给你两个字符串 s
和 p
,其中 p
是 s
的一个 子序列 。同时,给你一个元素 互不相同 且下标 从 0 开始 计数的整数数组 removable
,该数组是 s
中下标的一个子集(s
的下标也 从 0 开始 计数)。
请你找出一个整数 k
(0 <= k <= removable.length
),选出 removable
中的 前 k
个下标,然后从 s
中移除这些下标对应的 k
个字符。整数 k
需满足:在执行完上述步骤后, p
仍然是 s
的一个 子序列 。更正式的解释是,对于每个 0 <= i < k
,先标记出位于 s[removable[i]]
的字符,接着移除所有标记过的字符,然后检查 p
是否仍然是 s
的一个子序列。
返回你可以找出的 最大 k
,满足在移除字符后 p
仍然是 s
的一个子序列。
字符串的一个 子序列 是一个由原字符串生成的新字符串,生成过程中可能会移除原字符串中的一些字符(也可能不移除)但不改变剩余字符之间的相对顺序。
示例 1:
输入:s = "abcacb", p = "ab", removable = [3,1,0] 输出:2 解释:在移除下标 3 和 1 对应的字符后,"abcacb" 变成 "accb" 。 "ab" 是 "accb" 的一个子序列。 如果移除下标 3、1 和 0 对应的字符后,"abcacb" 变成 "ccb" ,那么 "ab" 就不再是 s 的一个子序列。 因此,最大的 k 是 2 。
示例 2:
输入:s = "abcbddddd", p = "abcd", removable = [3,2,1,4,5,6] 输出:1 解释:在移除下标 3 对应的字符后,"abcbddddd" 变成 "abcddddd" 。 "abcd" 是 "abcddddd" 的一个子序列。
示例 3:
输入:s = "abcab", p = "abc", removable = [0,1,2,3,4] 输出:0 解释:如果移除数组 removable 的第一个下标,"abc" 就不再是 s 的一个子序列。
提示:
1 <= p.length <= s.length <= 105
0 <= removable.length < s.length
0 <= removable[i] < s.length
p
是s
的一个 子字符串s
和p
都由小写英文字母组成removable
中的元素 互不相同
“二分法 + 判断子序列”实现。
class Solution:
def maximumRemovals(self, s: str, p: str, removable: List[int]) -> int:
def check(mid):
m, n, i, j = len(s), len(p), 0, 0
ids = set(removable[:mid])
while i < m and j < n:
if i not in ids and s[i] == p[j]:
j += 1
i += 1
return j == n
left, right = 0, len(removable)
while left < right:
mid = (left + right + 1) >> 1
if check(mid):
left = mid
else:
right = mid - 1
return left
class Solution {
public int maximumRemovals(String s, String p, int[] removable) {
int left = 0, right = removable.length;
while (left < right) {
int mid = (left + right + 1) >> 1;
if (check(s, p, removable, mid)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
private boolean check(String s, String p, int[] removable, int mid) {
int m = s.length(), n = p.length(), i = 0, j = 0;
Set<Integer> ids = new HashSet<>();
for (int k = 0; k < mid; ++k) {
ids.add(removable[k]);
}
while (i < m && j < n) {
if (!ids.contains(i) && s.charAt(i) == p.charAt(j)) {
++j;
}
++i;
}
return j == n;
}
}
function maximumRemovals(s: string, p: string, removable: number[]): number {
let left = 0, right = removable.length;
while (left < right) {
let mid = (left + right + 1) >> 1;
if (isSub(s, p, new Set(removable.slice(0, mid)))) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
};
function isSub(str: string, sub: string, idxes: Set<number>): boolean {
let m = str.length, n = sub.length;
let i = 0, j = 0;
while (i < m && j < n) {
if (!idxes.has(i) && str.charAt(i) == sub.charAt(j)) {
++j;
}
++i;
}
return j == n;
}
class Solution {
public:
int maximumRemovals(string s, string p, vector<int>& removable) {
int left = 0, right = removable.size();
while (left < right) {
int mid = left + right + 1 >> 1;
if (check(s, p, removable, mid)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
bool check(string s, string p, vector<int>& removable, int mid) {
int m = s.size(), n = p.size(), i = 0, j = 0;
unordered_set<int> ids;
for (int k = 0; k < mid; ++k) {
ids.insert(removable[k]);
}
while (i < m && j < n) {
if (ids.count(i) == 0 && s[i] == p[j]) {
++j;
}
++i;
}
return j == n;
}
};
func maximumRemovals(s string, p string, removable []int) int {
left, right := 0, len(removable)
for left < right {
mid := (left + right + 1) >> 1
if check(s, p, removable, mid) {
left = mid
} else {
right = mid - 1
}
}
return left
}
func check(s string, p string, removable []int, mid int) bool {
m, n, i, j := len(s), len(p), 0, 0
ids := make(map[int]bool)
for k := 0; k < mid; k++ {
ids[removable[k]] = true
}
for i < m && j < n {
if !ids[i] && s[i] == p[j] {
j++
}
i++
}
return j == n
}