-
Notifications
You must be signed in to change notification settings - Fork 5
/
test.py
229 lines (181 loc) · 9.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import _init_paths
import argparse
import os
import random
import time
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torchvision.transforms as transforms
from torch.autograd import Variable
from dataset.grasp_dataset import GraspData
from tools.logger import Logger
from tools.proposal import *
from tools.transformTool import getOrientation2
from tools.transformTool import matrix2quaternion2
from lib.gpnet import GraspPoseNet
from loss import angle_loss
from tools.nms import nms, nms2
from get_contact_cos import zMove
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default='/data/wuchaozheng/dataset/shapenetSemGrasp/nips2020/new_9cls/', help='dataset root dir')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--workers', type=int, default=8, help='number of data loading workers')
parser.add_argument('--optimizer', default='sgd', type=str, help='training optimizer')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum in sgd')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--wd', default=0.0001, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--nepoch', type=int, default=50, help='max number of epochs to train')
parser.add_argument('--resume', type=str, default=None, help='resume PoseNet model')
parser.add_argument('--start_epoch', type=int, default=1, help='which epoch to start')
parser.add_argument('--tanh', dest='tanh', default=False, help='whether use tanh', action='store_true')
parser.add_argument('--grid', dest='grid', default=False, help='whether use grid coordinate', action='store_true')
parser.add_argument('--lamb', default=1.0, type=float, help='lambda for multi-angle loss')
parser.add_argument('--grid_len', default=22, type=float, help='grid space length (cm)')
parser.add_argument('--grid_num', type=int, default=10, help='number of grids')
parser.add_argument('--save_all', dest='save_all', default=False, help='whether save all prediction', action='store_true')
parser.add_argument('--view', type=int, default=0, help='view id for testing.')
parser.add_argument('--grid_th', type=float, default=0.075, help='proposal grid number id for testing.')
parser.add_argument('--epoch', type=str, default=None, help='resume epochs')
opt = parser.parse_args()
def main():
# opt.manualSeed = random.randint(1, 10000)
opt.manualSeed = 1
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
print(opt)
outputdir = os.path.join(os.path.dirname(opt.resume), 'test')
grid_len = opt.grid_len / 100
grid_num = opt.grid_num
dataset = GraspData(opt.dataset_root, split='test', view=opt.view, grid_len=grid_len, grid_num=grid_num)
dataLoader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=opt.workers,
pin_memory=True)
net = GraspPoseNet(tanh=opt.tanh, grid=opt.grid, training=False, bn=False, use_angle=True).cuda()
epochs = [int(s) for s in opt.epoch.split(',')]
for e in epochs:
resume_path = os.path.join(opt.resume, 'checkpoint_%d.pth.tar'%e)
if os.path.isfile(resume_path):
print("=> loading checkpoint '{}'".format(resume_path))
checkpoint = torch.load(resume_path)
pretrained_dict = checkpoint['state_dict']
net.load_state_dict(pretrained_dict)
# lr = checkpoint['lr']
epoch = checkpoint['epoch']
print("\n=> loaded checkpoint '{}' (epoch {})" .format(resume_path, checkpoint['epoch']))
del checkpoint
else:
assert False, 'WRONG RESUME PATH!'
if 'epoch' in outputdir.split('/')[-1]:
outputdir = os.path.dirname(outputdir)
all_grasps_dir = os.path.join(outputdir, 'epoch%d'%epoch)
if opt.save_all:
all_grasps_dir = all_grasps_dir + '_all'
outputdir = all_grasps_dir
all_grasps_dir = os.path.join(all_grasps_dir, 'view%d'%(opt.view))
if not os.path.exists(all_grasps_dir):
os.makedirs(all_grasps_dir)
log = open(os.path.join(outputdir, 'log.txt'), 'a')
log.write('view%d\n'%(opt.view))
log_all = open(os.path.join(outputdir, 'nms_poses_view%s.txt'%(opt.view)), 'w')
lr = opt.lr
score_criterion = nn.BCELoss().cuda()
reg_criterion = nn.MSELoss(reduce=False).cuda()
best_grasp_acc = -1.0
best_grasp_epoch = -1
st_time = time.time()
net.eval()
time_list = []
with torch.no_grad():
for i, data in enumerate(dataLoader):
st = time.time()
pc_, grids_, contact_index_, shape = data
shape = shape[0]
# print(shape, i)
print('\n<================================>', e, shape, i, '<================================>\n')
print(grids_.size(), contact_index_.size(), pc_.size())
pc1, grids1, contact_index1 = pc_.float().cuda(1), grids_.float().cuda(1), contact_index_.long().cuda(1)
pc, grids, contact_index = pc_.float().cuda(0), grids_.float().cuda(0), contact_index_.long().cuda(0)
data_index = torch.arange(contact_index_.size(1)).long().cuda()
radius = grid_len / grid_num * np.sqrt(3)
# pairs_all_, local_points_ = getTestProposals(pc1, grids1, contact_index1)
pairs_all_, local_points_ = getTestProposalsV3(pc1, grids1, contact_index1, grid_th=opt.grid_th)
print(pairs_all_.size())
del (pc1, grids1, contact_index1)
pairs_all, local_points = pairs_all_.cuda(0), local_points_.cuda(0)
del (pc_, grids_, contact_index_, local_points_, pairs_all_)
prop_score, pred_score, pred_offset, pred_angle, prop_posi_idx \
= net(pc, local_points, pairs_all, scale=radius)
print('\nforward time: ', time.time() - st)
print('pred_score: ', pred_score.max().item(), pred_score.min().item())
if opt.save_all:
posi_idx = torch.nonzero(pred_score.view(-1)>=0.).view(-1)
else:
posi_idx = torch.nonzero(pred_score.view(-1)>=0.5).view(-1)
if posi_idx.size(0) == 0:
continue
posi_scores = pred_score.view(-1)[posi_idx]
prop_score = prop_score.view(-1)[posi_idx]
prop_posi_idx = prop_posi_idx[posi_idx]
pred_offset = pred_offset[0, posi_idx]
pred_angle = pred_angle[0, posi_idx]
pred_pairs = pairs_all[0, prop_posi_idx]
centers, widths, quaternions = get7dofPoses(pred_pairs, pred_offset, pred_angle, scale=radius)
time_list.append(time.time() - st)
z = centers[:, 2]
select = torch.nonzero((widths < 0.085)*(z>0)).view(-1)
if select.size(0) == 0:
continue
centers, widths, quaternions = centers[select], widths[select], quaternions[select]
select_pred_pairs = pred_pairs[select]
posi_scores = posi_scores[select]
prop_score = prop_score[select]
pred_angle = pred_angle[select].view(-1)
posi_contacts = select_pred_pairs[:, 0]
posi_contacts_cpu = posi_contacts.cpu().numpy()
posi_scores_cpu = posi_scores.cpu().numpy()
centers = centers.cpu().numpy()
widths = widths.cpu().numpy()
quaternions = quaternions.cpu().numpy()
prop_score_cpu = prop_score.cpu().numpy()
pred_angle_cpu = pred_angle.cpu().numpy()
assert pred_angle_cpu.shape[0] == centers.shape[0]
assert posi_contacts_cpu.shape[0] == centers.shape[0]
print('posi grasp num:', posi_scores.size(0))
centers = zMove(quaternions, centers, zMoveLength=0.015)
all_grasps_path = os.path.join(all_grasps_dir, shape+'.npz')
np.savez(all_grasps_path, widths=widths, centers=centers, quaternions=quaternions,
scores=posi_scores_cpu, contacts=posi_contacts_cpu, angles=pred_angle_cpu)
st = time.time()
keep = nms2(centers, quaternions, posi_scores_cpu, cent_th=0.04, ang_th=np.pi/3)
keep = np.array(keep, dtype=np.int32)
print('nms time: ', time.time() - st)
centers = centers[keep]
widths = widths[keep]
quaternions = quaternions[keep]
log_all.write(shape + '\n')
for i in range(centers.shape[0]):
w = widths[i]
c = centers[i]
q = quaternions[i]
log_all.write('%f,%f,%f,%f,%f,%f,%f\n'%(c[0], c[1], c[2], q[0], q[1], q[2], q[3]))
log_all.flush()
print(max(time_list), min(time_list), np.mean(time_list))
log.write('min time%f\n'%(min(time_list)))
log.write('max time%f\n'%(max(time_list)))
log.write('mean time%f\n'%(np.mean(time_list)))
log.write(str(time_list)+'\n')
def get7dofPoses(pairs, offsets, angles, scale=0.022*np.sqrt(3)):
offsets = offsets * scale
contacts = pairs[:, 0]
grids = pairs[:, 1]
centers = grids - offsets
widths = 2 * torch.sqrt(((contacts - centers)**2).sum(1))
matrix = getOrientation2(contacts, centers, angles).contiguous().view(-1, 9)
quaternions = matrix2quaternion2(matrix)
return centers, widths, quaternions
if __name__ == '__main__':
main()