-
Notifications
You must be signed in to change notification settings - Fork 0
/
offline.py
48 lines (37 loc) · 1.45 KB
/
offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from discrepancy import *
def offline(trloader, ext, classifier, head, class_num=10):
ext.eval()
feat_stack = [[] for i in range(class_num)]
ssh_feat_stack = [[] for i in range(class_num)]
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(trloader):
feat = ext(inputs.cuda())
predict_logit = classifier(feat)
ssh_feat = head(feat)
pseudo_label = predict_logit.max(dim=1)[1]
for label in pseudo_label.unique():
label_mask = pseudo_label == label
feat_stack[label].extend(feat[label_mask, :])
ssh_feat_stack[label].extend(ssh_feat[label_mask, :])
ext_mu = []
ext_cov = []
ext_all = []
ssh_mu = []
ssh_cov = []
ssh_all = []
for feat in feat_stack:
ext_mu.append(torch.stack(feat).mean(dim=0))
ext_cov.append(covariance(torch.stack(feat)))
ext_all.extend(feat)
for feat in ssh_feat_stack:
ssh_mu.append(torch.stack(feat).mean(dim=0))
ssh_cov.append(covariance(torch.stack(feat)))
ssh_all.extend(feat)
ext_all = torch.stack(ext_all)
ext_all_mu = ext_all.mean(dim=0)
ext_all_cov = covariance(ext_all)
ssh_all = torch.stack(ssh_all)
ssh_all_mu = ssh_all.mean(dim=0)
ssh_all_cov = covariance(ssh_all)
return ext_mu, ext_cov, ssh_mu, ssh_cov, ext_all_mu, ext_all_cov, ssh_all_mu, ssh_all_cov