-
Notifications
You must be signed in to change notification settings - Fork 1
/
Precision.agda
234 lines (191 loc) · 10.2 KB
/
Precision.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
module CoercionExpr.Precision where
open import Data.Nat
open import Data.Unit using (⊤; tt)
open import Data.Bool using (true; false) renaming (Bool to 𝔹)
open import Data.List hiding ([_])
open import Data.Product renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_)
open import Data.Maybe
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Function using (case_of_)
open import Common.Utils
open import Common.SecurityLabels
open import Common.BlameLabels
open import CoercionExpr.CoercionExpr
infix 4 ⊢_⊑_
infix 4 ⊢l_⊑_
infix 4 ⊢r_⊑_
data ⊢_⊑_ : ∀ {g₁ g₁′ g₂ g₂′} (c̅ : CExpr g₁ ⇒ g₂) (c̅′ : CExpr g₁′ ⇒ g₂′) → Set where
⊑-id : ∀ {g g′}
→ (g⊑g′ : g ⊑ₗ g′)
---------------------------------
→ ⊢ id g ⊑ id g′
⊑-cast : ∀ {g₁ g₁′ g₂ g₂′ g₃ g₃′}
{c̅ : CExpr g₁ ⇒ g₂} {c̅′ : CExpr g₁′ ⇒ g₂′}
{c : ⊢ g₂ ⇒ g₃} {c′ : ⊢ g₂′ ⇒ g₃′}
→ ⊢ c̅ ⊑ c̅′
→ g₂ ⊑ₗ g₂′ → g₃ ⊑ₗ g₃′ {- c ⊑ c′ -}
-------------------------------------------
→ ⊢ c̅ ⨾ c ⊑ c̅′ ⨾ c′
⊑-castl : ∀ {g₁ g₁′ g₂ g₂′ g₃}
{c̅ : CExpr g₁ ⇒ g₂} {c̅′ : CExpr g₁′ ⇒ g₂′}
{c : ⊢ g₂ ⇒ g₃}
→ ⊢ c̅ ⊑ c̅′
→ g₂ ⊑ₗ g₂′ → g₃ ⊑ₗ g₂′ {- c ⊑ g₂′ -}
-------------------------------------------
→ ⊢ c̅ ⨾ c ⊑ c̅′
⊑-castr : ∀ {g₁ g₁′ g₂ g₂′ g₃′}
{c̅ : CExpr g₁ ⇒ g₂} {c̅′ : CExpr g₁′ ⇒ g₂′}
{c′ : ⊢ g₂′ ⇒ g₃′}
→ ⊢ c̅ ⊑ c̅′
→ g₂ ⊑ₗ g₂′ → g₂ ⊑ₗ g₃′ {- g₂ ⊑ c′ -}
-------------------------------------------
→ ⊢ c̅ ⊑ c̅′ ⨾ c′
⊑-⊥ : ∀ {g₁ g₁′ g₂ g₂′} {c̅ : CExpr g₁ ⇒ g₂} {p}
→ g₁ ⊑ₗ g₁′
→ g₂ ⊑ₗ g₂′
---------------------------------
→ ⊢ c̅ ⊑ ⊥ g₁′ g₂′ p
data ⊢l_⊑_ : ∀ {g₁ g₂} (c̅ : CExpr g₁ ⇒ g₂) (g : Label) → Set where
⊑-id : ∀ {g g′}
→ (g⊑g′ : g ⊑ₗ g′)
---------------------------------
→ ⊢l id g ⊑ g′
⊑-cast : ∀ {g₁ g₂ g₃ g′}
{c̅ : CExpr g₁ ⇒ g₂}
{c : ⊢ g₂ ⇒ g₃}
→ ⊢l c̅ ⊑ g′
→ g₂ ⊑ₗ g′ → g₃ ⊑ₗ g′ {- c ⊑ g′ -}
-------------------------------------------
→ ⊢l c̅ ⨾ c ⊑ g′
data ⊢r_⊑_ : ∀ {g₁′ g₂′} (g : Label) (c̅′ : CExpr g₁′ ⇒ g₂′) → Set where
⊑-id : ∀ {g g′}
→ (g⊑g′ : g ⊑ₗ g′)
---------------------------------
→ ⊢r g ⊑ id g′
⊑-cast : ∀ {g g₁′ g₂′ g₃′}
{c̅′ : CExpr g₁′ ⇒ g₂′}
{c′ : ⊢ g₂′ ⇒ g₃′}
→ ⊢r g ⊑ c̅′
→ g ⊑ₗ g₂′ → g ⊑ₗ g₃′ {- g ⊑ c′ -}
-------------------------------------------
→ ⊢r g ⊑ c̅′ ⨾ c′
⊑-⊥ : ∀ {g g₁′ g₂′} {p}
→ g ⊑ₗ g₁′
→ g ⊑ₗ g₂′
---------------------------------
→ ⊢r g ⊑ ⊥ g₁′ g₂′ p
prec-refl : ∀ {g₁ g₂} (c̅ : CExpr g₁ ⇒ g₂) → ⊢ c̅ ⊑ c̅
prec-refl (id _) = ⊑-id ⊑ₗ-refl
prec-refl (c̅ ⨾ c) = ⊑-cast (prec-refl c̅) ⊑ₗ-refl ⊑ₗ-refl
prec-refl (⊥ _ _ p) = ⊑-⊥ ⊑ₗ-refl ⊑ₗ-refl
prec→⊑ : ∀ {g₁ g₁′ g₂ g₂′} (c̅ : CExpr g₁ ⇒ g₂) (c̅′ : CExpr g₁′ ⇒ g₂′)
→ ⊢ c̅ ⊑ c̅′
→ (g₁ ⊑ₗ g₁′) × (g₂ ⊑ₗ g₂′)
prec→⊑ (id g) (id g′) (⊑-id g⊑g′) = ⟨ g⊑g′ , g⊑g′ ⟩
prec→⊑ (c̅ ⨾ c) (c̅′ ⨾ c′) (⊑-cast c̅⊑c̅′ _ g₂⊑g₂′) =
case prec→⊑ c̅ c̅′ c̅⊑c̅′ of λ where
⟨ g₁⊑g₁′ , _ ⟩ → ⟨ g₁⊑g₁′ , g₂⊑g₂′ ⟩
prec→⊑ (c̅ ⨾ c) c̅′ (⊑-castl c̅⊑c̅′ g₂⊑g₂′ g₃⊑g₂′) =
case prec→⊑ c̅ c̅′ c̅⊑c̅′ of λ where
⟨ g₁⊑g₁′ , _ ⟩ → ⟨ g₁⊑g₁′ , g₃⊑g₂′ ⟩
prec→⊑ c̅ (c̅′ ⨾ c′) (⊑-castr c̅⊑c̅′ g₂⊑g₂′ g₂⊑g₃′) =
case prec→⊑ c̅ c̅′ c̅⊑c̅′ of λ where
⟨ g₁⊑g₁′ , _ ⟩ → ⟨ g₁⊑g₁′ , g₂⊑g₃′ ⟩
prec→⊑ c̅ (⊥ _ _ _) (⊑-⊥ g₁⊑g₁′ g₂⊑g₂′) = ⟨ g₁⊑g₁′ , g₂⊑g₂′ ⟩
prec-left→⊑ : ∀ {g₁ g₂ g′} (c̅ : CExpr g₁ ⇒ g₂)
→ ⊢l c̅ ⊑ g′
→ (g₁ ⊑ₗ g′) × (g₂ ⊑ₗ g′)
prec-left→⊑ (id g) (⊑-id g⊑g′) = ⟨ g⊑g′ , g⊑g′ ⟩
prec-left→⊑ (c̅ ⨾ c) (⊑-cast c̅⊑g′ g₁⊑g′ g₂⊑g′) =
⟨ proj₁ (prec-left→⊑ c̅ c̅⊑g′) , g₂⊑g′ ⟩
prec-right→⊑ : ∀ {g g₁′ g₂′} (c̅′ : CExpr g₁′ ⇒ g₂′)
→ ⊢r g ⊑ c̅′
→ (g ⊑ₗ g₁′) × (g ⊑ₗ g₂′)
prec-right→⊑ (id _) (⊑-id g⊑g′) = ⟨ g⊑g′ , g⊑g′ ⟩
prec-right→⊑ (_ ⨾ _) (⊑-cast g⊑c̅′ x y) = ⟨ proj₁ (prec-right→⊑ _ g⊑c̅′) , y ⟩
prec-right→⊑ (⊥ _ _ _) (⊑-⊥ x y) = ⟨ x , y ⟩
⊑-left-expand : ∀ {g₁ g₂ g′} {c̅ : CExpr g₁ ⇒ g₂}
→ ⊢l c̅ ⊑ g′
→ ⊢ c̅ ⊑ id g′
⊑-left-expand (⊑-id g⊑g′) = ⊑-id g⊑g′
⊑-left-expand (⊑-cast c̅⊑g′ g₁⊑g′ g₂⊑g′) = ⊑-castl (⊑-left-expand c̅⊑g′) g₁⊑g′ g₂⊑g′
⊑-left-contract : ∀ {g₁ g₂ g′} {c̅ : CExpr g₁ ⇒ g₂}
→ ⊢ c̅ ⊑ id g′
→ ⊢l c̅ ⊑ g′
⊑-left-contract (⊑-id g⊑g′) = ⊑-id g⊑g′
⊑-left-contract (⊑-castl c̅⊑id g₁⊑g′ g₂⊑g′) = ⊑-cast (⊑-left-contract c̅⊑id) g₁⊑g′ g₂⊑g′
⊑-right-expand : ∀ {g g₁′ g₂′} {c̅′ : CExpr g₁′ ⇒ g₂′}
→ ⊢r g ⊑ c̅′
→ ⊢ id g ⊑ c̅′
⊑-right-expand (⊑-id g⊑g′) = ⊑-id g⊑g′
⊑-right-expand (⊑-cast g⊑c̅′ g⊑g₁′ g⊑g₂′) = ⊑-castr (⊑-right-expand g⊑c̅′) g⊑g₁′ g⊑g₂′
⊑-right-expand (⊑-⊥ g⊑g₁′ g⊑g₂′) = ⊑-⊥ g⊑g₁′ g⊑g₂′
⊑-right-contract : ∀ {g g₁′ g₂′} {c̅′ : CExpr g₁′ ⇒ g₂′}
→ ⊢ id g ⊑ c̅′
→ ⊢r g ⊑ c̅′
⊑-right-contract (⊑-id g⊑g′) = ⊑-id g⊑g′
⊑-right-contract (⊑-castr id⊑c̅′ g⊑g₁′ g⊑g₂′) = ⊑-cast (⊑-right-contract id⊑c̅′) g⊑g₁′ g⊑g₂′
⊑-right-contract (⊑-⊥ g⊑g₁′ g⊑g₂′) = ⊑-⊥ g⊑g₁′ g⊑g₂′
pres-prec-left : ∀ {g₁ g₂ g′} {c̅₁ c̅₂ : CExpr g₁ ⇒ g₂}
→ ⊢l c̅₁ ⊑ g′
→ c̅₁ —→ c̅₂
→ ⊢l c̅₂ ⊑ g′
pres-prec-left (⊑-cast prec g₁⊑g′ g₂⊑g′) (ξ r) =
⊑-cast (pres-prec-left prec r) g₁⊑g′ g₂⊑g′
pres-prec-left (⊑-cast () x x₁) ξ-⊥
pres-prec-left (⊑-cast prec _ _) (id x) = prec
pres-prec-left (⊑-cast (⊑-cast prec l⊑l ⋆⊑) ⋆⊑ l⊑l) (?-id x) = prec
pres-prec-left (⊑-cast (⊑-cast _ l⊑l ⋆⊑) ⋆⊑ ()) (?-↑ x)
pres-prec-left (⊑-cast (⊑-cast prec l⊑l ⋆⊑) ⋆⊑ ()) (?-⊥ x)
pres-prec-left-mult : ∀ {g₁ g₂ g′} {c̅₁ c̅₂ : CExpr g₁ ⇒ g₂}
→ ⊢l c̅₁ ⊑ g′
→ c̅₁ —↠ c̅₂
→ ⊢l c̅₂ ⊑ g′
pres-prec-left-mult prec (_ ∎) = prec
pres-prec-left-mult prec (_ —→⟨ r ⟩ r*) = pres-prec-left-mult (pres-prec-left prec r) r*
pres-prec-right : ∀ {g g₁ g₂} {c̅₁ c̅₂ : CExpr g₁ ⇒ g₂}
→ ⊢r g ⊑ c̅₁
→ c̅₁ —→ c̅₂
→ ⊢r g ⊑ c̅₂
pres-prec-right (⊑-cast prec g⊑g₃ g⊑g₂) (ξ r) = ⊑-cast (pres-prec-right prec r) g⊑g₃ g⊑g₂
pres-prec-right (⊑-cast (⊑-⊥ g⊑g₁ _) _ g⊑g₂) ξ-⊥ = ⊑-⊥ g⊑g₁ g⊑g₂
pres-prec-right (⊑-cast prec _ _) (id _) = prec
pres-prec-right (⊑-cast (⊑-cast prec _ _) ⋆⊑ _) (?-id _) = prec
pres-prec-right (⊑-cast (⊑-cast prec _ _) ⋆⊑ _) (?-↑ _) = ⊑-cast prec ⋆⊑ ⋆⊑
pres-prec-right (⊑-cast (⊑-cast prec _ _) _ g⊑low) (?-⊥ _) = ⊑-⊥ (proj₁ (prec-right→⊑ _ prec)) g⊑low
pres-prec-right-mult : ∀ {g g₁ g₂} {c̅₁ c̅₂ : CExpr g₁ ⇒ g₂}
→ ⊢r g ⊑ c̅₁
→ c̅₁ —↠ c̅₂
→ ⊢r g ⊑ c̅₂
pres-prec-right-mult prec (_ ∎) = prec
pres-prec-right-mult prec (_ —→⟨ r ⟩ r*) = pres-prec-right-mult (pres-prec-right prec r) r*
prec-inj-left : ∀ {g g′ ℓ}
(c̅ₙ : CExpr g ⇒ ⋆) (c̅ₙ′ : CExpr g′ ⇒ l ℓ)
→ CVal c̅ₙ → CVal c̅ₙ′
→ ⊢ c̅ₙ ⊑ c̅ₙ′ ⨾ ℓ !
→ ⊢ c̅ₙ ⊑ c̅ₙ′
prec-inj-left (c̅ₙ ⨾ c) c̅ₙ′ v v′ (⊑-cast c̅ₙ⊑c̅ₙ′ g₁⊑ℓ ⋆⊑) = ⊑-castl c̅ₙ⊑c̅ₙ′ g₁⊑ℓ ⋆⊑
prec-inj-left (c̅ₙ ⨾ id .⋆) c̅ₙ′ () v′ (⊑-castl c̅ₙ⊑c̅ₙ′⨾! ⋆⊑ ⋆⊑)
prec-inj-left c̅ₙ c̅ₙ′ v v′ (⊑-castr c̅ₙ⊑c̅ₙ′⨾! ⋆⊑ ⋆⊑) = c̅ₙ⊑c̅ₙ′⨾!
prec-left-safe : ∀ {ℓ g g′ p} {c̅ : CExpr l ℓ ⇒ g}
→ ⊢l c̅ ⊑ g′
→ ¬ (c̅ —↠ ⊥ (l ℓ) g p)
prec-left-safe (⊑-id g⊑g′) (.(id (l _)) —→⟨ () ⟩ _)
prec-left-safe (⊑-cast prec x y) (_ —→⟨ ξ r ⟩ r*) =
prec-left-safe (⊑-cast (pres-prec-left prec r) x y) r*
prec-left-safe (⊑-cast () _ _) (_ —→⟨ ξ-⊥ ⟩ _ ∎)
prec-left-safe (⊑-cast prec _ _) (_ —→⟨ id _ ⟩ r*) =
prec-left-safe prec r*
prec-left-safe (⊑-cast (⊑-cast prec _ _) _ _) (_ —→⟨ ?-id _ ⟩ r*) =
prec-left-safe prec r*
prec-left-safe (⊑-cast (⊑-cast _ l⊑l _) _ ()) (_ —→⟨ ?-↑ _ ⟩ _)
prec-left-safe (⊑-cast (⊑-cast _ l⊑l _) _ ()) (_ —→⟨ ?-⊥ _ ⟩ _ ∎)
-- shorthands
!⊑↑ : ⊢ id (l low) ⨾ (low !) ⊑ id (l low) ⨾ ↑
!⊑↑ = ⊑-cast (⊑-id l⊑l) l⊑l ⋆⊑
!⊑↑! : ⊢ id (l low) ⨾ (low !) ⊑ id (l low) ⨾ ↑ ⨾ (high !)
!⊑↑! = ⊑-castr (⊑-cast (⊑-id l⊑l) l⊑l ⋆⊑) ⋆⊑ ⋆⊑
↑!⊑↑ : ⊢ id (l low) ⨾ ↑ ⨾ (high !) ⊑ id (l low) ⨾ ↑
↑!⊑↑ = ⊑-castl (prec-refl _) l⊑l ⋆⊑