Skip to content

Latest commit

 

History

History

s3dis

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Prepare S3DIS Data

We follow the procedure in pointnet.

  1. Download S3DIS data by filling this Google form. Download the Stanford3dDataset_v1.2_Aligned_Version.zip file and unzip it. Link or move the folder to this level of directory.

  2. In this directory, extract point clouds and annotations by running python collect_indoor3d_data.py.

  3. Enter the project root directory, generate training data by running

python tools/create_data.py s3dis --root-path ./data/s3dis --out-dir ./data/s3dis --extra-tag s3dis

The overall process could be achieved through the following script

python collect_indoor3d_data.py
cd ../..
python tools/create_data.py s3dis --root-path ./data/s3dis --out-dir ./data/s3dis --extra-tag s3dis

The directory structure after pre-processing should be as below

s3dis
├── meta_data
├── indoor3d_util.py
├── collect_indoor3d_data.py
├── README.md
├── Stanford3dDataset_v1.2_Aligned_Version
├── s3dis_data
├── points
│   ├── xxxxx.bin
├── instance_mask
│   ├── xxxxx.bin
├── semantic_mask
│   ├── xxxxx.bin
├── seg_info
│   ├── Area_1_label_weight.npy
│   ├── Area_1_resampled_scene_idxs.npy
│   ├── Area_2_label_weight.npy
│   ├── Area_2_resampled_scene_idxs.npy
│   ├── Area_3_label_weight.npy
│   ├── Area_3_resampled_scene_idxs.npy
│   ├── Area_4_label_weight.npy
│   ├── Area_4_resampled_scene_idxs.npy
│   ├── Area_5_label_weight.npy
│   ├── Area_5_resampled_scene_idxs.npy
│   ├── Area_6_label_weight.npy
│   ├── Area_6_resampled_scene_idxs.npy
├── s3dis_infos_Area_1.pkl
├── s3dis_infos_Area_2.pkl
├── s3dis_infos_Area_3.pkl
├── s3dis_infos_Area_4.pkl
├── s3dis_infos_Area_5.pkl
├── s3dis_infos_Area_6.pkl