-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict_test_layout.py
399 lines (350 loc) · 16.2 KB
/
predict_test_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#!/usr/bin/env python
# coding=utf-8
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import logging
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import ClassLabel, load_dataset, load_metric
import transformers
from transformers import (
AdamW,
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerFast,
TrainingArguments,
get_linear_schedule_with_warmup
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
import pandas as pd
from sklearn.utils import shuffle
from sklearn.metrics import classification_report, roc_auc_score
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from layoutlmv3.data import *
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.5.0")
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms
import torch
import random
from models import MultiModelLayout
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
text_model_name_or_path: str = field(
default="bert-base-uncased", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
cross_attn_type: int = field(default=-1, metadata={"help": "cross attention type"})
use_forget_gate: int = field(default=1, metadata={"help": "use forget gate or not"})
use_margin_ranking_loss: int = field(default=0, metadata={"help": "use margin ranking loss or not"})
margin: float = field(default=0.1, metadata={"help": "margin for margin ranking loss"})
use_pooler: int = field(default=0, metadata={"help": "use pooler or not"})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default='funsd', metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_val_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_test_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
visual_embed: bool = field(default=True)
data_dir: Optional[str] = field(default=None)
input_size: int = field(default=224, metadata={"help": "images input size for backbone"})
second_input_size: int = field(default=112, metadata={"help": "images input size for discrete vae"})
train_interpolation: str = field(
default='bicubic', metadata={"help": "Training interpolation (random, bilinear, bicubic)"})
second_interpolation: str = field(
default='lanczos', metadata={"help": "Interpolation for discrete vae (random, bilinear, bicubic)"})
imagenet_default_mean_and_std: bool = field(default=False, metadata={"help": ""})
exp_mode: int = field(default=0, metadata={"help": "0: stance; 1: persuasive"})
use_wordnet: int = field(default=0, metadata={"help": "0: not use; 1: use"})
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def evaluate(model_args, data_args, training_args, model, eval_dataset, data_collator, output_name):
if not os.path.exists(training_args.output_dir) and training_args.local_rank in [-1, 0]:
os.makedirs(training_args.output_dir)
eval_batch_size = training_args.per_gpu_eval_batch_size * max(1, training_args.n_gpu)
eval_dataloader = DataLoader(
eval_dataset, batch_size=eval_batch_size, collate_fn=data_collator
)
# Eval!
print(" Num examples = {}".format(len(eval_dataset)))
print(" Batch size = {}".format(eval_batch_size))
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for _, batch in enumerate(eval_dataloader):
model.eval()
batch = {k: v.to(training_args.device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = batch["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, batch["labels"].detach().cpu().numpy(), axis=0
)
del batch
# eval_loss = eval_loss / nb_eval_steps
if model_args.use_margin_ranking_loss == 0:
predicted_probs = torch.sigmoid(torch.tensor(preds))[:,1].numpy()
preds = np.argmax(preds, axis=1)
else:
preds = (np.sign(preds)+1)/2
preds = preds.astype(int).reshape([-1])
# epoch_metrics = classification_report(out_label_ids, preds, output_dict=True, digits=4)
# epoch_f1 = epoch_metrics["1"]['f1-score']
# epoch_precision = epoch_metrics["1"]['precision']
# epoch_recall = epoch_metrics["1"]['recall']
# epoch_acc = epoch_metrics["accuracy"]
#
# macro_f1 = (epoch_metrics["1"]['f1-score'] + epoch_metrics["0"]['f1-score']) / 2
# # auc_score = roc_auc_score(out_label_ids, preds)
#
# print(
# 'test loss: {:.4f}, acc: {:.4f}, f1: {:.4f}, precision: {:.4f}, recall: {:.4f}, macro_f1: {:.4f}'.format(
# eval_loss, epoch_acc,
# epoch_f1,
# epoch_precision,
# epoch_recall, macro_f1))
# print(classification_report(out_label_ids, preds, digits=4))
# predict_df = pd.DataFrame(
# {"tweet_id": test_tweet_id, "gold_labels": out_label_ids, "predicted_labels": preds, "probabilities": predicted_probs})
predict_df = pd.DataFrame(
{"tweet_id": test_tweet_id, "predicted_labels": preds, "probabilities": predicted_probs})
predict_df.to_csv(f"./output/{output_name}", index=False)
if __name__ == '__main__':
dataset_name = 'abortion'
model_name = 'stance_alltrain_layoutlmv3-base_lr1e-05_bs4*1_warmup0'
output_name = 'stance_alltrain_layoutlmv3-base_lr1e-05_bs4*1_warmup0_abortion.csv'
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
args = [model_args, data_args, training_args]
set_seed(training_args)
processor = LayoutProcessor()
label_list = processor.get_labels()
num_labels = len(label_list)
text_config = AutoConfig.from_pretrained(model_args.text_model_name_or_path)
text_tokenizer = AutoTokenizer.from_pretrained(model_args.text_model_name_or_path)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
input_size=data_args.input_size,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
tokenizer_file=None, # avoid loading from a cached file of the pre-trained model in another machine
cache_dir=model_args.cache_dir,
use_fast=True,
add_prefix_space=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model.to(training_args.device)
padding = "max_length" if data_args.pad_to_max_length else False
imagenet_default_mean_and_std = data_args.imagenet_default_mean_and_std
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
common_transform = Compose([
# transforms.ColorJitter(0.4, 0.4, 0.4),
# transforms.RandomHorizontalFlip(p=0.5),
RandomResizedCropAndInterpolationWithTwoPic(
size=data_args.input_size, interpolation=data_args.train_interpolation),
])
patch_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std))
])
def encode_annotation(annotation):
for idx in range(len(annotation)):
annotation.loc[idx, 'stance'] = encode_stance(annotation.loc[idx, 'stance'])
annotation.loc[idx, 'persuasiveness'] = encode_persuasiveness(annotation.loc[idx, 'persuasiveness'])
return annotation
print("Creating features from dataset file at {}".format(data_args.data_dir))
# df_test = pd.read_csv(f"./data/{dataset_name}_dev.csv", index_col=0)
df_test = pd.read_csv(f"./data/{dataset_name}_test.csv", index_col=0)
df_test.insert(2, 'stance', 'oppose')
df_test.insert(3, 'persuasiveness', 'no')
test_annotation = df_test.reset_index()
test_annotation = encode_annotation(test_annotation)
test_tweet_id = np.array(test_annotation)[:, 0]
test_dataset = processor.get_examples(data_args.data_dir,
os.path.join(data_args.data_dir, 'images/' + dataset_name),
data_args.exp_mode, test_annotation, dataset_name, "test")
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples, augmentation=False):
tokenized_text_inputs = tokenize_text(examples["tweet_texts"], text_tokenizer)
tokenized_inputs = tokenizer(
examples["tokens"],
padding=False,
truncation=True,
return_overflowing_tokens=False,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
bboxes = []
images = []
for batch_index in tqdm(range(len(tokenized_inputs["input_ids"]))):
word_ids = tokenized_inputs.word_ids(batch_index=batch_index)
label = examples["labels"][batch_index]
bbox = examples["bboxes"][batch_index]
bbox_inputs = []
for word_idx in word_ids:
if word_idx is None:
bbox_inputs.append([0, 0, 0, 0])
else:
bbox_inputs.append(bbox[word_idx])
labels.append(label)
bboxes.append(bbox_inputs)
if data_args.visual_embed:
ipath = examples["image_path"][batch_index]
img = pil_loader(ipath)
for_patches, _ = common_transform(img, augmentation=augmentation)
patch = patch_transform(for_patches)
images.append(patch)
tokenized_inputs["labels"] = labels
tokenized_inputs["bbox"] = bboxes
if data_args.visual_embed:
tokenized_inputs["images"] = images
tokenized_inputs["text_input_ids"] = tokenized_text_inputs[0]
tokenized_inputs["text_attention_mask"] = tokenized_text_inputs[1]
return tokenized_inputs
test_dataset = tokenize_and_align_labels(test_dataset)
test_dataset = LayoutlmDataset(test_dataset)
# Data collator
data_collator = DataCollatorForKeyValueExtraction(
tokenizer,
pad_to_multiple_of=8 if training_args.fp16 else None,
padding=padding,
max_length=512,
)
checkpoint = torch.load(os.path.join(f"/home/data/zwanggy/2023/image_arg_experiments/{model_name}/{dataset_name}",
f'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
model.to(training_args.device)
evaluate(model_args, data_args, training_args, model, test_dataset, data_collator, output_name)