From 5f1d5f38720df80ec8640b257180a08f7d2683bf Mon Sep 17 00:00:00 2001 From: Chun Tian Date: Mon, 16 Oct 2023 10:17:50 +1100 Subject: [PATCH] Removed "funpow" for lambda terms, using FUNPOW (APP f) instead --- examples/lambda/barendregt/solvableScript.sml | 13 +++---- examples/lambda/basics/appFOLDLScript.sml | 34 ++++--------------- 2 files changed, 14 insertions(+), 33 deletions(-) diff --git a/examples/lambda/barendregt/solvableScript.sml b/examples/lambda/barendregt/solvableScript.sml index 378bc5aff1..92eb87503f 100644 --- a/examples/lambda/barendregt/solvableScript.sml +++ b/examples/lambda/barendregt/solvableScript.sml @@ -657,7 +657,8 @@ Proof >> qabbrev_tac ‘n = LENGTH vs’ >> qabbrev_tac ‘m = LENGTH Ns’ >> Q.PAT_X_ASSUM ‘N = LAMl vs (VAR y @* Ns)’ (ONCE_REWRITE_TAC o wrap) - >> qabbrev_tac ‘Ms = GENLIST (\i. funpow K m I) n’ + (* now we use arithmeticTheory.FUNPOW instead of locally defined one *) + >> qabbrev_tac ‘Ms = GENLIST (\i. FUNPOW (APP K) m I) n’ >> Q.EXISTS_TAC ‘Ms’ (* applying lameq_LAMl_appstar and ssub_appstar *) >> MATCH_MP_TAC lameq_TRANS @@ -665,7 +666,7 @@ Proof >> CONJ_TAC >- (MATCH_MP_TAC lameq_LAMl_appstar >> art [] \\ CONJ_TAC >- rw [Abbr ‘Ms’] \\ - rw [EVERY_EL, Abbr ‘Ms’, closed_def, FV_funpow]) + rw [EVERY_EL, Abbr ‘Ms’, closed_def, FV_FUNPOW]) >> REWRITE_TAC [ssub_appstar] >> Q.PAT_ASSUM ‘MEM y vs’ ((Q.X_CHOOSE_THEN ‘i’ STRIP_ASSUME_TAC) o (REWRITE_RULE [MEM_EL])) @@ -680,7 +681,7 @@ Proof ‘j <> i’ by rw [] \\ METIS_TAC [EL_ALL_DISTINCT_EL_EQ]) >> Rewr' - >> Know ‘EL i Ms = funpow K m I’ + >> Know ‘EL i Ms = FUNPOW (APP K) m I’ >- (‘i < n’ by rw [Abbr ‘n’] \\ rw [Abbr ‘Ms’, EL_GENLIST]) >> Rewr' @@ -689,11 +690,11 @@ Proof >> Know ‘LENGTH Ps = m’ >- (rw [Abbr ‘m’, Abbr ‘Ps’]) >> KILL_TAC >> Q.ID_SPEC_TAC ‘Ps’ - >> Induct_on ‘m’ >- ASM_SIMP_TAC (betafy(srw_ss())) [LENGTH_NIL, funpow_def] - >> rw [funpow_SUC] + >> Induct_on ‘m’ >- ASM_SIMP_TAC (betafy(srw_ss())) [LENGTH_NIL, FUNPOW] + >> rw [FUNPOW_SUC] >> Cases_on ‘Ps’ >> fs [] >> MATCH_MP_TAC lameq_TRANS - >> Q.EXISTS_TAC ‘funpow K m I @* t’ >> rw [] + >> Q.EXISTS_TAC ‘FUNPOW (APP K) m I @* t’ >> rw [] >> MATCH_MP_TAC lameq_appstar_cong >> rw [lameq_K] QED diff --git a/examples/lambda/basics/appFOLDLScript.sml b/examples/lambda/basics/appFOLDLScript.sml index bd458ffafd..3b9a2733cf 100644 --- a/examples/lambda/basics/appFOLDLScript.sml +++ b/examples/lambda/basics/appFOLDLScript.sml @@ -6,8 +6,6 @@ open termTheory binderLib; val _ = new_theory "appFOLDL" -val _ = set_trace "Unicode" 1 - val _ = set_fixity "@*" (Infixl 901) val _ = Unicode.unicode_version { u = "··", tmnm = "@*"} val _ = overload_on ("@*", ``λf (args:term list). FOLDL APP f args``) @@ -301,38 +299,20 @@ Proof QED (*---------------------------------------------------------------------------* - * funpow for lambda terms (cf. arithmeticTheory.FUNPOW) + * funpow for lambda terms (using arithmeticTheory.FUNPOW) *---------------------------------------------------------------------------*) -Definition funpow : - funpow f n (x :term) = - if n = 0 then x else funpow f (n - 1) (f @@ x) -End - -Theorem funpow_def : - (!f x. funpow f 0 x = x) /\ - (!f n x. funpow f (SUC n) x = funpow f n (f @@ x)) -Proof - NTAC 2 (rw [Once funpow]) -QED - -Theorem funpow_SUC : - !f n x. funpow f (SUC n) x = f @@ (funpow f n x) -Proof - Q.X_GEN_TAC ‘f’ - >> Induct_on ‘n’ >> rw [funpow_def] - >> fs [funpow_def] -QED +Overload funpow = “\f. FUNPOW (APP (f :term))” -Theorem FV_funpow : - !f x n. FV (funpow f n x) = if n = 0 then FV x else FV f UNION FV x +Theorem FV_FUNPOW : + !(f :term) x n. FV (FUNPOW (APP f) n x) = if n = 0 then FV x else FV f UNION FV x Proof rpt STRIP_TAC >> Q.SPEC_TAC (‘n’, ‘i’) - >> Cases_on ‘i’ >- rw [funpow_def] + >> Cases_on ‘i’ >- rw [FUNPOW] >> simp [] - >> Induct_on ‘n’ >- rw [funpow_def] - >> fs [funpow_SUC] + >> Induct_on ‘n’ >- rw [FUNPOW] + >> fs [FUNPOW_SUC] >> SET_TAC [] QED