Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

lower mAP #78

Open
JWSunny opened this issue Sep 14, 2022 · 1 comment
Open

lower mAP #78

JWSunny opened this issue Sep 14, 2022 · 1 comment

Comments

@JWSunny
Copy link

JWSunny commented Sep 14, 2022

hello,I modified the config xxx.py file into a yaml file and used the hrnet or higherhrnet framework code for training. I found that the mAP on the coco validation dataset was only about 0.51.

2022-08-22 15:25:59,519 Epoch: [179][0/2341] Time 3.316s (3.316s) Speed 19.3 samples/s Data 2.263s (2.263s) Loss 0.00042 (0.00042) Accuracy 0.751 (0.751)
2022-08-22 15:30:13,151 Epoch: [179][300/2341] Time 0.813s (0.854s) Speed 78.8 samples/s Data 0.000s (0.019s) Loss 0.00032 (0.00038) Accuracy 0.803 (0.748)
2022-08-22 15:34:33,721 Epoch: [179][600/2341] Time 0.813s (0.861s) Speed 78.7 samples/s Data 0.000s (0.014s) Loss 0.00039 (0.00038) Accuracy 0.725 (0.747)
2022-08-22 15:42:29,909 Epoch: [179][900/2341] Time 1.648s (1.103s) Speed 38.8 samples/s Data 0.000s (0.012s) Loss 0.00035 (0.00038) Accuracy 0.737 (0.746)
2022-08-22 15:50:49,289 Epoch: [179][1200/2341] Time 1.665s (1.243s) Speed 38.4 samples/s Data 0.000s (0.013s) Loss 0.00035 (0.00038) Accuracy 0.756 (0.747)
2022-08-22 15:59:08,989 Epoch: [179][1500/2341] Time 1.639s (1.328s) Speed 39.1 samples/s Data 0.000s (0.013s) Loss 0.00035 (0.00038) Accuracy 0.775 (0.747)
2022-08-22 16:07:28,549 Epoch: [179][1800/2341] Time 1.668s (1.384s) Speed 38.4 samples/s Data 0.000s (0.013s) Loss 0.00041 (0.00038) Accuracy 0.752 (0.748)
2022-08-22 16:15:47,927 Epoch: [179][2100/2341] Time 1.674s (1.424s) Speed 38.2 samples/s Data 0.000s (0.012s) Loss 0.00033 (0.00038) Accuracy 0.785 (0.748)
2022-08-22 16:22:31,716 Test: [0/199] Time 1.750 (1.750) Loss 0.0004 (0.0004) Accuracy 0.816 (0.816)
2022-08-22 16:24:33,818 => writing results json to LiteHRNet_w18_output/coco/HigherLiteHRNet/LiteHRNet_w18_256x256_coco_correct_lr1e-3/results/keypoints_val2017_results_0.json
2022-08-22 16:24:44,456 | Arch | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) |
2022-08-22 16:24:44,457 |---|---|---|---|---|---|---|---|---|---|---|
2022-08-22 16:24:44,457 | HigherLiteHRNet | 0.511 | 0.807 | 0.544 | 0.501 | 0.530 | 0.557 | 0.830 | 0.598 | 0.539 | 0.583 |

@JWSunny
Copy link
Author

JWSunny commented Sep 14, 2022

config.yaml 内容如下:

AUTO_RESUME: true
CUDNN:
BENCHMARK: true
DETERMINISTIC: false
ENABLED: true
DATA_DIR: ''
GPUS: (0,1)
OUTPUT_DIR: 'LiteHRNet_w18_output'
LOG_DIR: 'LiteHRNet_w18_log'
WORKERS: 8
PRINT_FREQ: 300

DATASET:
COLOR_RGB: false
DATASET: 'coco'
ROOT: '/mnt/share/COCO/'
TEST_SET: 'val2017'
TRAIN_SET: 'train2017'
NUM_JOINTS_HALF_BODY: 8
PROB_HALF_BODY: 0.3
FLIP: true
ROT_FACTOR: 45
SCALE_FACTOR: 0.35
MODEL:
NAME: 'LiteHRNet'
MODEL_FILE: ''
INIT_WEIGHTS: true
IMAGE_SIZE:

  • 256
  • 256
    HEATMAP_SIZE:
  • 64
  • 64
    SIGMA: 2
    NUM_JOINTS: 17
    BASE_CHANNEL: 40
    TARGET_TYPE: 'gaussian'
    RATIO: 0.5
    NUM_STAGES: 3
    STAGE_REPEATS:
  • 2
  • 4
  • 2
    STAGE_BRANCHES:
  • 2
  • 3
  • 4
    STAGE_BLOCKS:
  • 2
  • 2
  • 2
    MODULE_TYPE:
  • 'LITE'
  • 'LITE'
  • 'LITE'
    WITH_FUSE:
  • True
  • True
  • True
    REDUCE_RATIOS:
  • 8
  • 8
  • 8
    WITH_HEAD: True

LOSS:
USE_TARGET_WEIGHT: true
TRAIN:
BATCH_SIZE_PER_GPU: 32
SHUFFLE: true
BEGIN_EPOCH: 0
END_EPOCH: 210
OPTIMIZER: 'adam'
LR: 0.002
LR_FACTOR: 0.1
LR_STEP:

  • 160
  • 190
    WD: 0.0001
    GAMMA1: 0.99
    GAMMA2: 0.0
    MOMENTUM: 0.9
    NESTEROV: false
    TEST:
    BATCH_SIZE_PER_GPU: 32
    COCO_BBOX_FILE: '/mnt/share/COCO/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
    BBOX_THRE: 1.0
    IMAGE_THRE: 0.0
    IN_VIS_THRE: 0.2
    MODEL_FILE: 'LiteHRNet_w18_output/coco/LiteHRNet/LiteHRNet_w18_256x256_coco_better_lr1e-3/model_best.pth'
    NMS_THRE: 1.0
    OKS_THRE: 0.9
    FLIP_TEST: true
    POST_PROCESS: true
    BLUR_KERNEL: 11
    USE_GT_BBOX: true
    DEBUG:
    DEBUG: true
    SAVE_BATCH_IMAGES_GT: true
    SAVE_BATCH_IMAGES_PRED: true
    SAVE_HEATMAPS_GT: false
    SAVE_HEATMAPS_PRED: false

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant