forked from Sterncat/opticspy
-
Notifications
You must be signed in to change notification settings - Fork 1
/
zernike_rec.py
296 lines (260 loc) · 10.3 KB
/
zernike_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from __future__ import division as __division__
import numpy as __np__
from numpy import cos as __cos__
from numpy import sin as __sin__
from numpy import sqrt as __sqrt__
from numpy import arctan2 as __arctan2__
import matplotlib.pyplot as __plt__
from mplot3d import Axes3D as __Axes3D__
from matplotlib import cm as __cm__
from matplotlib.ticker import LinearLocator as __LinearLocator__
from matplotlib.ticker import FormatStrFormatter as __FormatStrFormatter__
from numpy.fft import fftshift as __fftshift__
from numpy.fft import ifftshift as __ifftshift__
from numpy.fft import fft2 as __fft2__
from numpy.fft import ifft2 as __ifft2__
import tools as __tools__
class Coefficient(object):
"""
Return a set of Orthonormal Rectangular Polynomials For Rectangle aperture
Reference: Mahajan, Virendra N., and Guang-ming Dai.
"Orthonormal polynomials in wavefront analysis: analytical
solution." JOSA A 24.9 (2007): 2994-3016.
"""
__coefficients__ = []
__a__ = 1/__sqrt__(2)
__zernikelist__ = []
def __init__(self, a = __a__,\
R1=0, R2=0, R3=0, R4=0, R5=0, R6=0, R7=0, R8=0, \
R9=0, R10=0, R11=0, R12=0, R13=0, R14=0, R15=0):
if type(R1) == list:
self.__coefficients__ = R1 + [0]*(15-len(R1))
self.__a__ = a
else:
self.__coefficients__ = [R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11, R12, R13, R14, R15]
self.__a__ = a
def outputcoefficient(self):
return [self.__a__,self.__coefficients__]
def zernikesurface(self):
"""
------------------------------------------------
zernikesurface(self, label_1 = True):
Return a 3D Zernike Polynomials surface figure
label_1: default show label
------------------------------------------------
"""
a = self.__a__
b = __sqrt__(1-a**2)
x1 = __np__.linspace(-a, a, 50)
y1 = __np__.linspace(-b, b, 50)
[X,Y] = __np__.meshgrid(x1,y1)
Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
fig = __plt__.figure(figsize=(12, 8), dpi=80)
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
linewidth=0, antialiased=False, alpha = 0.6)
ax.auto_scale_xyz([-1, 1], [-1, 1], [Z.max(), Z.min()])
# ax.set_xlim(-a, a)
# ax.set_ylim(-b, b)
# v = max(abs(Z.max()),abs(Z.min()))
# ax.set_zlim(-v*5, v*5)
# cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
# ax.zaxis.set_major_locator(__LinearLocator__(10))
# ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
fig.colorbar(surf, shrink=1, aspect=30)
# p2v = round(__tools__.peak2valley(Z),5)
# rms1 = round(__tools__.rms(Z),5)
__plt__.show()
def zernikemap(self):
a = self.__a__
b = __sqrt__(1-a**2)
x1 = __np__.linspace(-a, a, 100)
y1 = __np__.linspace(-b, b, 100)
[X,Y] = __np__.meshgrid(x1,y1)
Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
fig = __plt__.figure(figsize=(12, 8), dpi=80)
ax = fig.gca()
im = __plt__.pcolormesh(X, Y, Z, cmap=__cm__.RdYlGn)
__plt__.colorbar()
ax.set_aspect('equal', 'datalim')
__plt__.show()
return 0
def __psfcaculator__(self,lambda_1=632*10**(-9),z=0.1):
"""
height: Exit pupil height
width: Exit pupil width
z: Distance from exit pupil to image plane
"""
a = self.__a__
b = __sqrt__(1-a**2)
l1 = 100;
x1 = __np__.linspace(-a, a, l1)
y1 = __np__.linspace(-b, b, l1)
[X,Y] = __np__.meshgrid(x1,y1)
Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
d = 400 # background
A = __np__.zeros([d,d])
A[d/2-l1/2+1:d/2+l1/2+1,d/2-l1/2+1:d/2+l1/2+1] = Z
# fig = __plt__.figure()
# __plt__.imshow(A)
# __plt__.colorbar()
# __plt__.show()
abbe = __np__.exp(-1j*2*__np__.pi*A)
for i in range(len(abbe)):
for j in range(len(abbe)):
if abbe[i][j]==1:
abbe[i][j]=0
PSF = __fftshift__(__fft2__(__fftshift__(abbe)))**2
PSF = PSF/PSF.max()
return PSF
def psf(self,lambda_1=632*10**(-9),z=0.1):
"""
------------------------------------------------
psf()
Return the point spread function of a wavefront described by
Orthonormal Rectangular Polynomials
------------------------------------------------
Input:
r: exit pupil radius(mm)
lambda_1: wavelength(m)
z: exit pupil to image plane distance(m)
"""
PSF = self.__psfcaculator__(lambda_1=lambda_1,z=z)
fig = __plt__.figure(figsize=(9, 6), dpi=80)
__plt__.imshow(abs(PSF),cmap=__cm__.RdYlGn)
__plt__.colorbar()
__plt__.show()
return 0
def mtf(self,lambda_1=632*10**(-9),z=0.1,matrix = False):
"""
Modulate Transfer function
"""
PSF = self.__psfcaculator__(lambda_1=lambda_1,z=z)
MTF = __fftshift__(__fft2__(PSF))
MTF = MTF/MTF.max()
fig = __plt__.figure(figsize=(9, 6), dpi=80)
__plt__.imshow(abs(MTF),cmap=__cm__.bwr)
__plt__.colorbar()
__plt__.show()
if matrix == True:
return MTF
else:
return 0
def ptf(self):
"""
Phase transfer function
"""
PSF = self.__psfcaculator__()
PTF = __fftshift__(__fft2__(PSF))
PTF = __np__.angle(PTF)
l1 = 100
d = 400
A = __np__.zeros([d,d])
A[d/2-l1/2+1:d/2+l1/2+1,d/2-l1/2+1:d/2+l1/2+1] = PTF[d/2-l1/2+1:d/2+l1/2+1,d/2-l1/2+1:d/2+l1/2+1]
__plt__.imshow(abs(A),cmap=__cm__.rainbow)
__plt__.colorbar()
__plt__.show()
return 0
def __zernikepolar__(coefficient,a,r,u):
"""
------------------------------------------------
__zernikepolar__(coefficient,r,u):
Return combined aberration
Orthonormal Rectangle Aperture Polynomials Caculation in polar coordinates
coefficient: Orthonormal Rectangle Aperture Polynomials Coefficient from input
r: rho in polar coordinates
u: theta in polar coordinates
------------------------------------------------
"""
mu = __sqrt__(9-36*a**2+103*a**4-134*a**6+67*a**6+67*a**8)
v = __sqrt__(49-196*a**2+330*a**4-268*a**6+134*a**8)
tau = 1/(128*v*a**4*(1-a**2)**2)
eta = 9-45*a**2+139*a**4-237*a**6+210*a**8-67*a**10
R = [0]+coefficient
R1 = R[1] * 1
R2 = R[2] * __sqrt__(3)/a*r*__cos__(u)
R3 = R[3] * __sqrt__(3/(1-a**2))*r*__sin__(u)
R4 = R[4] * __sqrt__(5)/2/__sqrt__(1-2*a**2+2*a**4)*(3*r**2-1)
R5 = R[5] * 3/2/a/__sqrt__(1-a**2)*r**2*__sin__(2*u)
R6 = R[6] * __sqrt__(5)/2/a**2/(1-a**2)/__sqrt__(1-2*a**2+2*a**4)*\
(3*(1-2*a**2+2*a**4)*r**2*__cos__(2*u)+3*(1-2*a**2)*r**2-\
2*a**2*(1-a**2)*(1-2*a**2))
R7 = R[7] * __sqrt__(21)/2/__sqrt__(27-81*a**2+116*a**4-62*a**6)*\
(15*r**2-9+4*a**2)*r*__sin__(u)
R8 = R[8] * __sqrt__(21)/2/a/__sqrt__(35-70*a**2+62*a**4)*\
(15*r**2-5-4*a**2)*r*__cos__(u)
R9 = R[9] * (__sqrt__(5)*__sqrt__((27-54*a**2+62*a**4)/(1-a**2))/\
(8*a**2*(27-81*a**2+116*a**4-62*a**6)))*((27-54*a**2+62*a**4)*\
r*__sin__(3*u)-3*(4*a**2*(3-13*a**2+10*a**4)-(9-18*a**2-26*a**4))\
*r*__sin__(u))
r1 = 35-70*a**2+62*a**4
R10 = R[10] * (__sqrt__(5)/(8*a**3*(1-a**2)*__sqrt__(r1)))*((r1)*r**3*__cos__(3*u)-\
3*(4*a**2*(7-17*a**2+10*a**4)-(r1)*r**2)*r*__cos__(u))
R11 = R[11] * 1/8/mu*(315*r**4+30*(1-2*a**2)*r**2*__cos__(2*u)-240*r**2+27+16*a*2-16*a**4)
R12 = R[12] * (3*mu/(8*a**2*v*eta))*(315*(1-2*a**2)*(1-2*a**2+2*a**4)*r**4+\
5*(7*mu**2*r**2-21+72*a**2-225*a**4+306*a**6-152*a**8)*r**2*__cos__(2*u)-\
15*(1-2*a**2)*(7+4*a**2-71*a**4+134*a**6-67*a**8)*r**2+\
a**2*(1-a**2)*(1-2*a**2)*(70-233*a**2+233*a**4))
R13 = R[13] * __sqrt__(21)/(4*a*__sqrt__(1-3*a**2+4*a**4-2*a**6))*(5*r**2-3)*r**2*__sin__(2*u)
R14 = R[14] * 6*tau*(5*v**2*r**4*__cos__(4*u)-20*(1-2*a**2)*(6*a**2*(7-16*a**2+18*a**4-9*a**6)-\
49*(1-2*a**2+2*a**4)*r**2)*r**2*__cos__(u)+8*a**4*(1-a**2)**2*(21-62*a**2+62*a**4)-\
120*a**2*(7-30*a**2+46*a**4-23*a**6)*r**2+\
15*(49-196*a**2+282*a**4-172*a**6+86*a**8)*r**4)
R15 = R[15] * (__sqrt__(21)/(8*a**3*__sqrt__((1-a**2)**3))/__sqrt__(1-2*a**2+2*a**4))*\
(-(1-2*a**2)*(6*a**2-6*a**4-5*r**2)*r**2*__sin__(2*u)+\
(5/2)*(1-2*a**2+2**a**4)*r**4*__sin__(4*u))
RW = R1 + R2 + R3+ R4+ R5+ R6+ R7+ R8+ R9+ \
R10+ R11+ R12+ R13+ R14+ R15
return RW
def __zernikecartesian__(coefficient,a,x,y):
"""
------------------------------------------------
__zernikecartesian__(coefficient,a,x,y):
Return combined aberration
Orthonormal Rectangle Aperture Polynomials Caculation for
Rectangle aperture in Cartesian coordinates
coefficient: Zernike Polynomials Coefficient from input
a: 1/2 aperture width in a circle(See reference)
x: x in Cartesian coordinates
y: y in Cartesian coordinates
------------------------------------------------
"""
mu = __sqrt__(9-36*a**2+103*a**4-134*a**6+67*a**6+67*a**8)
v = __sqrt__(49-196*a**2+330*a**4-268*a**6+134*a**8)
tau = 1/(128*v*a**4*(1-a**2)**2)
eta = 9-45*a**2+139*a**4-237*a**6+210*a**8-67*a**10
r = x**2+y**2
R = [0]+coefficient
R1 = R[1] * 1
R2 = R[2] * __sqrt__(3)/a*x
R3 = R[3] * __sqrt__(3/(1-a**2))*y
R4 = R[4] * __sqrt__(5)/2/__sqrt__(1-2*a**2+2*a**4)*(3*r**2-1)
R5 = R[5] * 3/a/__sqrt__(1-a**2)*x*y
R6 = R[6] * __sqrt__(5)/4/a**2/(1-a**2)/__sqrt__(1-2*a**2+2*a**4)*\
(3*(1-a**2)**2*x**2-3*a**4*y**2-a*82*(1-3*a**2+2*a**4))
R7 = R[7] * __sqrt__(21)/2/__sqrt__(27-81*a**2+116*a**4-62*a**6)*\
(15*r**2-9+4*a**2)*y
R8 = R[8] * __sqrt__(21)/2/a/__sqrt__(35-70*a**2+62*a**4)*\
(15*r**2-5-4*a**2)*x
R9 = R[9] * (__sqrt__(5)*__sqrt__((27-54*a**2+62*a**4)/(1-a**2))/\
(2*a**2*(27-81*a**2+116*a**4-62*a**6)))*(27*(1-a**2)**2*x**2-\
35*a**4*y**2-a**2*(9-39*a**2+30*a**4))*y
r1 = 35-70*a**2+62*a**4
R10 = R[10] * (__sqrt__(5)/(2*a**3*(1-a**2)*__sqrt__(r1)))*(35*(1-a**2)**2*x**2-\
27*a**4*y**2-a**2*(21-51*a**2+30*a**4))*x
R11 = R[11] * 1/8/mu*(315*r**4+30*(7+2*a**2)*x**2-30*(9-2*a**2)*y**2+27+16*a**2-16*a**4)
R12 = R[12] * (3*mu/(8*a**2*v*eta))*(35*(1-a**2)**2*(18-36*a**2+67*a**4)*x**4+\
630*(1-2*a**2)*(1-2*a**2+2*a**4)*x**2*y**2-35*a**4*(49-98*a**2+67*a**4)*y**4-\
30*(1-a**2)*(7-10*a**2-12*a**4+75*a**6-67*a**8)*x**2-\
30*a**2*(7-77*a**2+189*a**4-193*a**6+67*a**8)*y**2+\
a**2*(1-a**2)*(1-2*a**2)*(70-233*a**2+233*a**4))
R13 = R[13] * __sqrt__(21)/(2*a*__sqrt__(1-3*a**2+4*a**4-2*a**6))*(5*r**2-3)*x*y
R14 = R[14] * 16*tau*(735*(1-a**2)**4*x**4-540*a**4*(1-a**2)**2*x**2*y**2+735*a**8*y**4-\
90*a**2*(1-a**2)**3*(7-9*a**2)*x**2+90*a**6*(1-a**2)*(2-9*a**2)*y**2+\
+3*a**4*(1-a**2)**2*(21-62*a**2+62*a**4))
R15 = R[15] * __sqrt__(21)/(2*a**3*(1-a**2)*__sqrt__(1-3*a**2+4*a**4-2*a**6))*\
(5*(1-a**2)**2*x**2-5*a**4*y**2-a**2*(3-9*a**2+6*a**4))*x*y
RW = R1 + R2 + R3+ R4+ R5+ R6+ R7+ R8+ R9+ \
R10+ R11+ R12+ R13+ R14+ R15
return RW