Skip to content

Latest commit

 

History

History
27 lines (19 loc) · 1.63 KB

读文献的笔记.md

File metadata and controls

27 lines (19 loc) · 1.63 KB

[toc]

Deep Learning for Visual Tracking: A Comprehensive Survey-2019

Comments: Accepted Manuscript in IEEE Transactions on Intelligent Transportation Systems

Abstract

  • benchmark dataset
  • evaluation metrics
  • fundamental characteristics, primary motivations, and contributions of DL-based methods
  • conducting critical analyses quantitatively and qualitatively, their pros and cons under various common scenarios are investigate

introduction

  • 任务:只给出目标的初始状态,来估计一个视觉目标的未知的轨迹。
    • 应用广泛:自动驾驶、自动机器人、监控、增强现实、无人机跟踪、运动、手术、生物、海洋探险。
    • ill-posed defifinition of the visual tracking((i.e., model-free tracking, on-the-flfly learning, single-camera, 2D information)
    • 在现实世界中的challenge(ay include arbitrary classes of targets (e.g., human, drone, animal, vehicle) and motion models, various imaging characteristics (e.g.,static/moving camera, smooth/fast movement, camera resolution), and changes in environmental conditions (e.g., illumination variation, background clutter, crowded scenes). 包括任意类别的目标(如人类、无人机、动物、车辆)和任意类别的运动模型,各种成像特征(静态/移动相机,平稳/快速运动,相机的分辨率),以及环境条件的变化(例如,光照变化,背景杂乱,拥挤场景)。