-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Partition_Problem.py
87 lines (57 loc) · 1.94 KB
/
Partition_Problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Purpose: To determine whether a given array of numbers can be divided
into to sets of equal sum or not.
Example: 6 3 11 2
Output: Yes ((6,3,2) and (11))
Method: Dynamic Programing
Intution: The problem can be solved using dynamic programming when the
sum of the elements is not too big. We can create a 2D array part[][]
of size (sum/2 + 1)*(n+1).And we can construct the solution in a
bottom-up manner such that every filled entry has the following property.
DP[i][j] = True if a subset of {arr[0], arr[1], ..arr[j-1]} has sum
equal to i, otherwise false
Reference: https://www.geeksforgeeks.org/partition-problem-dp-18/
Time Complecity: O(sum * N)
Space Complexity: O(sum * N)
Argument: List
Return : Boolean
"""
def Partition_Problem(n, arr):
# Calculate the sum of the each element in the array
s = sum(arr)
# Base Case: if the sum is odd, return false
if s % 2:
return False
DP = [[True] * (n + 1) for j in range(s // 2 + 1)]
# Initilize the leftmost col to False
for i in range(1, s // 2 + 1):
DP[i][0] = True
# Construct the DP table
for row in range(1, s // 2 + 1):
for col in range(1, n + 1):
DP[row][col] = DP[row][col - 1]
if row >= arr[col - 1]:
DP[row][col] = DP[row][col] or DP[row - 1][col - 1]
# Return the last element of the table
return DP[-1][-1]
# ------------------------DRIVER CODE ------------------------
if __name__ == "__main__":
# Input the array form the user
a = list(map(int, input("Enter the array elements: ").split()))
n = len(a)
ans = Partition_Problem(n, a)
if ans:
print("Yes")
else:
print("No")
"""
Sample Input / Output
Enter the array elements: 6 3 11 2
Yes
Enter the array elements: 1 3 4 14 6
Yes
Enter the array elements: 1 2 3 4 5 6
No
Enter the array elements: 10 6 7 4 2 9 5
No
"""